

GROUNDWATER MONITORING REPORT AUGUST 2012

GENERAL ELECTRIC PUERTO RICO INVESTMENT, INC. PATILLAS, PUERTO RICO

Prepared For:

General Electric Energy Management

Prepared By:

MWH Americas, Inc.

GROUNDWATER MONITORING REPORT AUGUST 2012 GENERAL ELECTRIC PUERTO RICO INVESTMENT, INC. PATILLAS, PUERTO RICO

FOR

General Electric Energy Management

Atlanta, Georgia

United States

Prepared By

Bradly Toth Lead Scientist MWH Americas, Inc.

Budy A Total

Date

October 31, 2012

Reviewed By

Kim Kesler-Arnold Principal Project Manager MWH Americas, Inc. October 31, 2012

Date

TABLE OF CONTENTS

SECT	ION	Page
1.0	INTF	RODUCTION1-1
2.0	PRC	DJECT BACKGROUND2-1
3.0	FIEL	D ACTIVITIES3-1
	3.1	DEPTH-TO-GROUNDWATER MEASUREMENTS3-1
	3.2	GROUNDWATER SAMPLING PROCEDURES AND ANALYSIS3-1
	3.3	SURFACE WATER AND PORE-WATER SAMPLING3-3
4.0	GRO	DUNDWATER MONITORING RESULTS4-1
	4.1	GROUNDWATER ELEVATIONS4-1
	4.2	GROUNDWATER SAMPLE RESULTS4-1
	4.3	SURFACE WATER AND PORE-WATER SAMPLE RESULTS 4-3
	4.4	SAMPLE RESULTS SUMMARY4-3
LIST	OF FIG	GURES
Figur		Site Location Map
Figur Figur		Site Map Shallow Groundwater Surface Map – August 2012
Figur		Deep Groundwater Surface Map – August 2012
Figur		Groundwater Sample Results - August 2012
Figur		Extent of 1,1-DCE in Shallow Groundwater – August 2012
Figur Figur		Extent of 1,1-DCE in Deep Groundwater – August 2012 Surface and Pore Water Sample Results – August 2012
LIST	OF TA	BLES
Table		Groundwater Elevation Data – August 2012
Table Table		Groundwater Sample Results – August 2012 Historical Groundwater Sample Results
Table		Surface Water and Pore-Water Sample Results – August 2012
LIST	OF AP	PENDICES
Appe	ndix A	Groundwater Sampling Logs
	ndix B	Laboratory Analytical Data (included on CD)
	ndix C ndix D	1,1-DCE Trend Graphs Progress Report
, , , , , , ,	D	

ACRONYMS AND ABBREVIATIONS

1,1,1-TCA 1,1,1-Trichloroethane 1,1,2-TCA 1,1,2-Trichloroethane 1,1-DCA 1.1-Dichloroethane 1,1-DCE 1,1-Dichloroethene 1,2-DCA 1,2-Dichloroethane amsl above mean sea level COC constituent of concern DO dissolved oxygen ft/ft feet per foot

GE General Electric Energy Management

HCI hydrochloric acid

IDW Investigation derived waste

MCL Maximum Contaminant Level

ORP oxidation-reduction potential

PPE personal protection equipment

QA/QC quality assurance/quality control

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation
SOP standard operating procedure
SWMU Solid Waste Management Unit
VOCs volatile organic compounds

μg/l micrograms per liter

USEPA United States Environmental Protection Agency

1.0 INTRODUCTION

This Groundwater Monitoring Report describes the activities performed in August 2012 to evaluate groundwater and surface water quality in the vicinity of the General Electric (GE) Puerto Rico Investment facility (Site) located in Patillas, Puerto Rico. During this effort, MWH performed the following activities:

- Measured groundwater elevations from the existing onsite and accessible offsite monitoring wells.
- Collected groundwater samples for analysis to provide recent groundwater quality data onsite and offsite.
- Collected surface water and pore-water samples for analysis to evaluate whether VOCimpacted groundwater is venting to the Rio Grande de Patillas.

These activities were performed in accordance with the *Quality Assurance Project Plan* (QAPP, MWH, 2012), which was approved by the USEPA in May 2012. This groundwater monitoring event (August 2012) is the third of four additional monitoring events requested by the USEPA following a meeting with GE in April 2010. The two previous events were performed in August/September and December 2010. Prior sampling activities were performed in June, September and December of 2009, and in March 2010. The need for future actions is currently being evaluated in conjunction with the USEPA.

2.0 PROJECT BACKGROUND

The Site is located on the southeastern coast of Puerto Rico at Road #3, Km 122.9, Patillas, Puerto Rico. The Site location is shown on *Figure 1*. The Site covers approximately 7.8 acres. From November 1974 to March 1987, GE (operating as Caribe General Electric Products) manufactured and assembled electro-mechanical products. A French Sump was constructed at the facility in 1977 and was used for waste disposal until 1980. The location of the sump is shown on *Figure 2*. The Site was idle from 1987 to 1993, when no manufacturing operations were conducted. From 1993 to 2010, GE used the facility for warehousing and assembly operations under the current name of GE Puerto Rico Investment, Inc. The facility has been unused since 2010.

In October 1990, soils in and adjacent to the former French Sump were excavated, stabilized, and shipped to a Resource Conservation and Recovery Act (RCRA)-approved landfill. The USEPA accepted the closure of the sump as complete in March 1991. The impacted groundwater that is the subject of this investigation is associated with the former French Sump and extends south-southwest from the facility to the flood plain of the Rio Grande de Patillas.

Investigation of the groundwater impacts in the area of the French Sump began in 1989 as part of a RCRA Facility Investigation (RFI). Eleven onsite monitoring wells were installed adjacent to and downgradient of the former French Sump (see *Figure 2*). Five monitoring wells were also installed offsite to assess groundwater quality. Of the 16 total wells, one onsite well (P-4A) was abandoned; one offsite well (P-12) cannot be located and was presumably destroyed; and four offsite wells (P-13S, P-13D, P-14S, and P-14D) have had their access permission rescinded by the property owner.

The *RFI Report* (SEC, 1991) was submitted to the USEPA in 1991. Quarterly groundwater sampling was conducted from 1991 through 1999. Volatile organic compounds (VOCs), namely 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCE), were identified in the RFI Report as the constituents of concern (COCs) in groundwater within the alluvial/colluvial aquifer beneath the Site. The extent of 1,1,1-TCA does not extend offsite. However, the extent of 1,1-DCE impacted groundwater extends offsite to the south-southwest, which is generally consistent with the direction of apparent groundwater flow.

In 2003, GE installed six additional monitoring wells offsite to determine the extent of the 1,1-DCE in groundwater. The results of this investigation were provided to the USEPA in a

Supplemental RFI Report (EarthTech, 2005). USEPA's response to this Supplemental RFI Report stated that the information was not sufficient to determine the extent of impacted groundwater, and therefore the CA-750 determination could not be completed. At the time of the Supplemental RFI, the farthest downgradient wells (P-13S/D and P-14S/D) had not been sampled for nine years, and access to these wells had been rescinded. From 1991 through 1996, these wells were sampled eight times and VOCs were not detected.

In 2006, GE installed an additional monitoring well cluster (P-20S and P-20D) to further delineate the extent of 1,1-DCE in groundwater. Analytical results from the shallow well (P-20S) did not show the presence of 1,1-DCE. However, groundwater samples from the deeper well (P-20D) indicated 1,1-DCE downgradient and offsite at a concentration of 37 to 44 micrograms per liter (μ g/l), which is greater than its Maximum Contaminant Level (MCL) of 7 μ g/l.

Based on these results, the USEPA requested that GE pursue access to additional downgradient properties to install monitoring wells to further define the extent of the 1,1-DCE in groundwater. GE intended to install these additional wells downgradient of P-20S/D and upgradient of P-13S/D and P-14S/S. Although numerous attempts were made by GE, access was not granted to the properties, and the wells could not be installed. As a result, GE and the USEPA agreed that the project should move forward to estimate the extent of 1,1-DCE in groundwater without the use of these wells.

In June 2009, GE performed a groundwater monitoring event, and in July 2009, GE performed fate and transport modeling to estimate the extent of 1,1-DCE in groundwater. The output of the model, which contained the necessary information to make the CA-750 determination, was provided to the USEPA in September 2009. The model estimated that 1,1-DCE may have reached the Rio Grande de Patillas at a concentration of 23 µg/L. This concentration is less than 10 times the MCL for 1,1-DCE (7 µg/L x 10, or 70 ug/L) and is considered an insignificant discharge to a surface water by the USEPA (*Documentation of Environmental Indicator Determination, RCRA Corrective Action, Environmental Indicator [EI] RCRIS code [CA750], Migration of Contaminated Groundwater Under Control,* Interim Final 2/5/99).

Subsequent to the fate and transport modeling and at the request of the USEPA, GE performed additional groundwater monitoring events (September 2009, December 2009, March 2010, and August/September 2010) and submitted the results to the USEPA and EQB. EQB has reviewed these documents.

A meeting between the USEPA and GE was held on April 22, 2010, to discuss the extent of impacted groundwater and the need for further downgradient characterization. During this meeting, GE agreed to the USEPA's request to continue groundwater monitoring on a quarterly basis for one additional year.

In June of 2010, GE ceased manufacturing operations at the Site, and in September of 2010, GE completed a Phase II Environmental Site Assessment (ESA) to document Site conditions prior to exiting the lease for the Site. The Phase II ESA included installation of 25 soil borings to an average depth of 15 feet' below ground surface, and soil sampling at several intervals within each of those 25 boring locations. The Phase II ESA also included installation of six temporary groundwater monitoring wells and four permanent monitoring wells at the Site, and their subsequent development and sampling. The results of the Phase II ESA are summarized in a separate document.

GE performed site closure and cleaning activities in March 2011, during which a 7-ft by 7-ft concrete vault was discovered northeast of the main building near the loading dock. The vault contained sediment and had several pipes entering and exiting the side walls. The sediment was removed and disposed of offsite during site closure and cleaning activities.

At the request of USEPA, in April 2011 GE agreed to evaluate whether VOC-impacted groundwater could be venting to the Rio Grande de Patillas. Surface water and pore-water sampling was proposed and approved along with the QAPP in May 2012. These sampling activities were conducted concurrently with the August 2012 groundwater monitoring event.

In September 2011, GE voluntarily collected soil and groundwater samples from the loading dock area to evaluate whether the presence of VOCs in sediment found in the concrete vault had resulted in environmental impacts. Soil and groundwater samples collected in the loading dock area indicated limited impacts to soil and groundwater associated with the vault. Based on the results of the investigation, GE decided to permanently close the vault by filling it with clean backfill and topping it with a concrete cover. In August 2012, GE conducted concrete vault closure activities at the site. The vault was backfilled with clean backfill and topped with a concrete cover. Additionally, GE installed one monitoring well (P-23) during vault closure activities. The monitoring well was installed adjacent to the vault and is intended to be included in future routine groundwater monitoring events. Vault closure activities are summarized in a separate document.

This report summarizes the field activities and result monitoring event and the surface water and pore-water sa	e August	2012	groundwater

3.0 FIELD ACTIVITIES

The following field activities were performed during this monitoring event:

- Measuring groundwater elevations from onsite and accessible offsite monitoring wells.
- Collecting groundwater samples from monitoring wells for laboratory analysis.
- Collecting surface and pore-water samples from the Rio Grande de Patillas for laboratory analysis.

Groundwater elevation measurements were taken by MWH on August 8, 2012. The surface and pore-water sampling activities were performed by MWH on August 21, 2012, and groundwater sampling activities were performed on August 27, 2012. The procedures used during these activities are described in the following sections.

3.1 DEPTH-TO-GROUNDWATER MEASUREMENTS

Depth-to-groundwater measurements were collected from onsite monitoring wells P-1/1A, P-2/2A, P-3/3A, P-4, P-5/5A, P-7/7A, P-8D, P-9, P-10A, P-11, P-15DD, P-16S, P-17D, P-18S/18D, P-19S/19D, P-21S and P-22S. Depth-to-groundwater was also measured at offsite wells P-20S/20D.

Groundwater depths were measured by using a decontaminated water-level meter to record the depth-to-water below a surveyed reference point (top of well casing). The water level meter was slowly lowered into the monitoring well until the meter was activated (as indicated by an audible tone). The depth-to-water reading was then measured at 30 second intervals until two consecutive readings were identical. This measurement was then recorded in the field notebook.

3.2 GROUNDWATER SAMPLING PROCEDURES AND ANALYSIS

The following 16 existing monitoring wells were sampled during this field event: P-4, P-7, P-7A, P-8, P-9, P-10A, P-11, P-15DD, P-16S, P-17D, P-18S, P-18D, P-19S, P-19D, P-20S, and P-20D. In addition, new monitoring well P-23 was sampled for a total of 17 wells sampled. Well locations are indicated on *Figure 2*.

The groundwater samples were collected in accordance with the *Groundwater Sampling Procedure: Passive Diffusion Bag Samplers*, which was submitted to USEPA as part of the QAPP. For each monitoring well, the following sequence of activities was performed:

- The depth-to-water was measured in the monitoring well.
- A Passive Diffusion Bag (PDB) sampling assembly was installed in the well and set at a
 pre-determined depth to correspond with the most highly permeable zone as
 determined by well installation logs.
 - The PDB assemblies consist of:
 - 1. 12 or 18 inch low-density polyethylene sampler bag
 - 2. ASTM Type I Reagent Grade de-ionized water
 - 3. 3/16-inch polyethylene braided rope for holding the PDB sampler tethers
 - 4. Locking well caps with suspension ring
 - 5. Aluminum well identification tag
 - 6. Stainless steel weight
- After allowing the PDBs to equilibrate with the aquifer, the PDBs were retrieved and the samples were collected in laboratory-supplied vials which were pre-preserved with hydrochloric acid (HCI).

Field sampling records for each well are presented in *Appendix A*. The sample bottles were labeled with date, time, sample identification, analytical parameters, and the sampler's initials, and immediately placed on ice in a cooler. The cooler was maintained under chain-of-custody documentation until arrival at the laboratory.

The following quality assurance/quality control (QA/QC) samples were collected during this event:

One field duplicate sample:

P-10A (Duplicate 1) – a duplicate sample of P-10A

- One trip blank
- One matrix spike/matrix spike duplicate

Groundwater and QA/QC samples were analyzed for VOCs by USEPA Method SW-846 8260B for the Appendix IX list of compounds by Lancaster Laboratories of Lancaster, Pennsylvania. Analytical data were certified by a Puerto Rican chemist and validated in accordance with the USEPA Region II Standard Operating Procedure (SOP) HW-6 – CLP Organics Data Review and Preliminary Review. The data were found to be acceptable for use without significant qualification. The complete analytical data package is presented in *Appendix B*.

3.3 SURFACE WATER AND PORE-WATER SAMPLING

Surface water and pore-water samples were collected from the Rio Grande de Patillas in three co-located locations (SW-01, SW-02, SW-03, PW-01, PW-02, PW-03) southwest of the Site. The surface water and pore-water sample collection locations are presented in *Figure 2*.

The surface water samples were collected prior to pore-water sampling. The samples were collected directly from the river at mid-depth using a clean glass container (fetch bottle) and then transferred to a laboratory-supplied 40-ml vial for analysis.

The pore-water samples were collected using a stainless steel PushPoint sampler. The sampler was manually pushed into the river sediment until refusal (approximately 1 to 2 feet below the river bed). The sampling screen was then opened and flexible tubing was attached to the top of the sampler. The pore-water sample was then collected using a large syringe. Each sample was collected in a laboratory-supplied 40-ml vial for analysis.

The sample bottles were labeled with date, time, sample identification, analytical parameters, and the sampler's initials, and immediately placed on ice in a cooler. The cooler was maintained under chain-of-custody documentation until arrival at the laboratory.

Surface water and pore-water samples were analyzed for VOCs by USEPA Method SW846 8260B by Lancaster Laboratories. Analytical data were certified by a Puerto Rican chemist and validated by MWH in accordance with the USEPA Region II Standard Operating Procedure (SOP) HW-6 – CLP Organics Data Review and Preliminary Review. The data were found to be acceptable for use without significant qualification. The complete analytical data package is presented in *Appendix B*.

4.0 GROUNDWATER MONITORING RESULTS

4.1 GROUNDWATER ELEVATIONS

The depth to groundwater measurements and groundwater elevations for August 2012 are presented in *Table 1*. Groundwater is generally encountered 6 to 17 feet below ground surface, or 27 to 58 feet above mean sea level (amsl). Groundwater elevation contours for the shallow and deep aquifers are presented in *Figure 3a* and *Figure 3b*, respectively. Based on these contours the groundwater flow direction is generally southwest, towards the Quebrada Mamey and the Rio Grande de Patillas. The groundwater flow direction observed during this monitoring event is consistent with previous monitoring events and historical records.

The horizontal hydraulic gradient for the shallow aquifer onsite is 0.022 vertical feet per horizontal foot (ft/ft). The horizontal hydraulic gradient for the deep aquifer offsite is 0.019 ft/ft. The vertical hydraulic gradient between these two aquifers is approximately 0.108 ft/ft downward onsite. The hydraulic gradients observed during this event are generally consistent with those observed during previous monitoring events.

4.2 GROUNDWATER SAMPLE RESULTS

Groundwater sample results are presented in *Table 2* with the detected sample results posted in *Figure 4*. The results posted in *Figure 4* are for the compounds that are associated with historical operations and/or that are routinely detected during groundwater monitoring. The following table summarizes the results for the compounds that were detected during the August 2012 sampling event (17 investigative samples were collected). Concentrations are reported in micrograms per liter (µg/L).

Compound	Number of Detections	Lowest Detected Result (µg/L)	Highest Detected Result (µg/L)	MCL (µg/L)	# Detections Above MCL
1,1,1-Trichloroethane (1,1,1-TCA)	2	1.0 (estimated)	52	200	0
1,1,2-Trichloroethane (1,1,2-TCA)	0	NA	NA	5	NA
1,1-Dichloroethane (1,1-DCA)	3	2.0 (estimated)	11	2.4*	2
1,1-Dichloroethene (1,1-DCE)	10	1.0 (estimated)	170	7	5
1,2-Dichloroethane (1,2-DCA)	0	NA	NA	5	NA
Chloroform	4	2.0 (estimated)	3.0 (estimated)	80	0
Trichlorofluoromethane	0	NA	NA	1,100*	NA

^{*} USEPA Risk-based Screening Level for tap water

As shown on the summary table, 1,1-DCA and 1,1-DCE were the only compounds exceeding their respective MCLs. The highest VOC concentrations (primarily 1,1-DCA and 1,1-DCE) were detected in the sample collected from well P-8, which is located onsite and downgradient of the former French Sump. The 1,1-DCE concentration for the farthest downgradient monitoring well sampled (P-20D, located approximately 1,300 feet southwest of the former French Sump) was 7 µg/L. The approximate extent of 1,1-DCE in groundwater (based on the recent sample results) is presented in *Figures 5a and 5b*. As shown in these figures, 1,1-DCE in the shallow zone extends from the Site towards P-19S; for the deep zone, 1,1-DCE has been detected at low levels in P-20D. As noted previously, wells located farther downgradient (P-13S/D and P-14S/D, as shown on *Figure 2*) could not be sampled because the property owner denied access to the wells. From 1991 through 1996, these wells did not contain VOCs at detectable levels.

The historical sample results for constituents of concern in groundwater within the alluvial/colluvial aquifer are presented in *Table 3*. In general, the results obtained during the August 2012 monitoring event are consistent with the historical results. However, 1,1-DCE concentrations in the following wells appear to be decreasing over time: P-7A, P-9, P-10A, P-16S, P-17D, P-18S, P-18D, P-19D, and P-20D. Trend graphs for 1,1-DCE concentrations in selected monitoring wells are provided in *Appendix C*.

4.3 SURFACE WATER AND PORE-WATER SAMPLE RESULTS

Surface water and pore-water results are presented in *Table 4* with the detected sample results posted in *Figure 6*. Chloroform was the only detected compound from the surface and pore-water sampling activities. The only detection was from pore-water sample PW-01 with an estimated chloroform concentration of 3.0 μ g/L, which is below the MCL of 80 μ g/L for chloroform.

4.4 SAMPLE RESULTS SUMMARY

The 1,1-DCE groundwater impact appears to be limited to a narrow pathway southwest of the former sump. Additionally, the decreasing 1,1-DCE concentration trends appear to indicate some natural attenuation of this compound. Analytical results from the surface water and porewater sampling do not indicate the presence of COCs in the Rio Grande de Patillas.

Table 1
Groundwater Elevation Data - August 2012
GE Puerto Rico Investment, Inc.
Patillas, Puerto Rico

Well No.	Aquifer Zone	Well Install Date	Boring Depth (ft bgs)	Land Surface Elevation (ft amsl)	Top Of Casing Elevation (ft amsl)	Depth to Water (ft btoc)	Groundwate Elevation (ft amsl)
P-1	Shallow	8/1/86	25.50	67.54	68.71	11.96	56.75
P-1A	Deep Saprolite	8/7/86	70.00	67.47	68.71	10.96	57.75
P-2	Shallow	8/1/86	20.50	61.85	63.60	10.23	53.37
P-2A	Deep	8/20/86	69.00	62.23	63.46	16.10	47.36
P-3	Shallow	8/4/86	25.50	63.54	64.58	10.82	53.76
P-3A	Deep	8/15/86	70.00	63.23	64.68	16.68	48.00
P-4	Shallow	7/29/86	19.11	51.25	52.92	9.23	43.69
P-4A	Abandoned	7/31/86	63.00	51.66	52.88	NG	NG
P-5	Shallow	8/4/86	20.50	52.29	53.90	11.85	42.05
P-5A	Deep Saprolite	9/15/86	70.00	51.14	52.51	18.40	34.11
P-6	Shallow	8/30/88	26.00	63.05	63.70	NG	NG
P-7	Shallow	2/3/89	18.15	47.64	49.73	9.30	40.43
Р-7А	Deep Saprolite	2/2/89	58.20	47.80	49.67	15.25	34.42
P-8	Shallow	2/3/89	17.70	52.19	54.87	NG	NG
P-8D	Deep	9/17/10	45.60	53.27	55.34	15.11	40.23
P-9	Shallow	2/6/89	17.40	50.35	52.32	8.81	43.51
P-10A	Deep Alluvium/Sap	2/9/89	51.50	47.92	49.86	16.01	33.85
P-11	Shallow	2/8/89	13.20	52.95	54.68	7.60	47.08
P-12	Shallow	11/20/89	29.50	19.70	21.82	NG	NG
P-13D	Deep	6/28/91	62.74	20.40	22.10	NG	NG
P-13S	Shallow	7/5/91	28.70	19.59	23.25	NG	NG
P-14D	Deep	7/10/91	67.80	16.28	19.38	NG	NG
P-14S	Shallow	7/13/91	30.50	15.64	18.07	NG	NG
P-15DD	Bedrock	5/26/04	73.60	45.48	47.68	14.98	32.70
P-16S	Shallow	5/27/04	26.30	40.39	42.61	16.85	25.76
P-17D	Deep	6/1/04	61.00	38.26	41.02	9.10	31.92
P-18S	Shallow	5/28/04	16.60	36.55	39.08	11.10	27.98
P-18D	Deep	5/31/04	50.00	36.26	38.52	11.80	26.72
P-19S	Shallow	5/28/04	15.80	33.89	36.37	9.36	27.01
P-19D	Deep	6/30/04	36.50	34.32	36.45	10.35	26.10
P-20S	Shallow	5/4/06	26.00	31.70	34.67	11.40	23.27
P-20D	Deep	5/4/06	52.00	31.50	34.31	6.76	27.55
P-21S	Shallow	9/9/10	17.28	47.02	49.61	9.95	39.66
P-21D	Deep	9/14/10	45.80	46.34	48.38	NG	NG
P-22S	Shallow	9/10/10	17.26	49.64	52.24	10.35	41.89
P-23	Shallow	8/20/12	20.30	NS	NS	4.00	NS NS

Horizontal coordinates in Puerto Rico State Plane (feet, ft), Zone 1, NAD 27

bgs - Below Ground Surface

amsl - Above Mean Sea Level

btoc - Below Top of Casing

NG - Not Gauged (access to wells was denied by the property owner)

NS - Not Surveyed. New monitoring well.

	USEPA Tapwater RSL	USEPA MCL	P-4	P-7	P-7A	P-8	P-9	P-10A	P-11	P-15DD	P-16S	P-17D	P-18S	P-18D	P-19S	P-19D	P-20S	P-20D	P-23
olatile Organic Compound (ug/L)																			
1,1,2-Tetrachloroethane	0.50	NS	1.0 U																
1,1-Trichloroethane	7,500	200	0.80 U	0.80 U	0.80 U	52	0.80 U	1.0 J	0.80 U	0.80 ل									
1,2,2-Tetrachloroethane	0.067	NS	1.0 U																
1,2-Trichloroethane	0.24	5	0.80 U	ا 0.80															
1-Dichloroethane	2.4	NS	1.0 U	1.0 U	1.0 U	11	1.0 U	5.0 J	1.0 U	2.0 J	1.0 U								
1-Dichloroethene	260	7	0.80 U	0.80 U	2.0 J	170	1.0 J	120	0.80 U	59	0.80 U	1.0 J	14	21	0.80 U	2.0 J	0.80 U	7	ا 0.80
1-Dichloropropene	NS	NS	1.0 U																
2,3-Trichlorobenzene	5.2	NS	1.0 U																
2,3-Trichloropropane	0.00065	NS	1.0 U																
2,4-Trichlorobenzene	0.99	70	1.0 U																
2,4-Trimethylbenzene	15	NS	1.0 U	1.0 L															
2-Dibromo-3-chloropropane	0.00032	0.2	2.0 U	2.0 ℃															
2-Dibromoethane	0.0065	0.05	1.0 U	1.0 L															
2-Dichlorobenzene	280	600	1.0 U	1.0 L															
2-Dichloroethane	0.15	5	1.0 U	1.0 L															
2-Dichloropropane	0.38	5	1.0 U	1.0 L															
3,5-Trimethylbenzene	87	NS	1.0 U	1.0 L															
3-Dichlorobenzene	NS	NS	1.0 U	1.0 l															
3-Dichloropropane	290	NS	1.0 U	1.0 เ															
4-Dichlorobenzene	0.42	75	1.0 U	1.0 L															
2-Dichloropropane	NS	NS	1.0 U	1.0 l															
Butanone (MEK)	4,900	NS	8.0 J	6.0 J	7.0 J	3.0 U	3.0 U	8.0 J	6.0 J	7.0 J	7.0 J	6.0 J	8.0 J	9.0 J	9.0 J	9.0 J	9.0 J	6.0 J	13
Chlorotoluene	NS	NS	1.0 U	1.0 l															
Chlorotoluene	NS	NS	1.0 U	1.0 l															
Methyl-2-pentanone (MIBK)	1,000	NS	3.0 U	3.0 (
cetone	12,000	NS	10 J	11 J	7.0 J	6.0 U	6.0 U	10 J	9.0 J	12 J	9.0 J	6.0 J	12 J	11 J	14 J	12 J	14 J	6.0 J	28
enzene	0.39	5	0.50 U	0.50															
omobenzene	54	NS	1.0 U	1.0															
romochloromethane	83	NS	1.0 U	1.0															
romodichloromethane	0.12	80	1.0 U	1.0 (
romoform	7.9	80	1.0 U	1.0 l															
romomethane	7.3	NS	1.0 U	1.0 (
arbon Tetrachloride	0.39	5	1.0 U	1.0 (
hlorobenzene	72	100	0.80 U	0.80															
hloroethane	NS	NS	1.0 U	1.0 l															
	0.19	80	0.80 U	3.0 J	2.0 J	2.0 J	3.0 J	0.80 U	0.80 U	0.80									
hloroform	190	NS	1.0 U	1.0 L															
hloromethane																			
s-1,2-Dichloroethene	28	70 NO	0.80 U	0.80															
s-1,3-Dichloropropene	NS 0.45	NS	1.0 U	1.0 \															
bromochloromethane	0.15	80	1.0 U	1.0 l															
bromomethane	7.9	NS	1.0 U	1.0 (
chlorodifluoromethane	190	NS	1.0 U	1.0 (
hylbenzene	1.3	700	0.80 U	0.80															
exachlorobutadiene 	0.26	NS	2.0 U	2.0															
opropylbenzene	NS	NS	1.0 U	1.0															
+p-Xylene	190	NS	0.80 U	0.80															
ethyl Tertiary Butyl Ether	12	NS	0.50 U	0.50															
ethylene Chloride	9.9	5	2.0 U	2.0															
aphthalene	0.14	NS	1.0 U	1.0															
Butylbenzene	780	NS	5.0 U	5.0															
Propylbenzene	530	NS	1.0 U	1.0															
Xylene	190	NS	0.80 U	0.80															
sopropyltoluene	NS	NS	1.0 U	1.0															
c-Butylbenzene	NS	NS	1.0 U	1.0															
yrene	1,100	100	1.0 U	1.0															
t-Butylbenzene	NS	NS	1.0 U	1.0															
etrachloroethene	9.7	5	0.80 U	0.80															
bluene	860	1,000	0.70 U	0.70															
ins-1,2-Dichloroethene	86	100	0.80 U	0.80															
ans-1,3-Dichloropropene	NS	NS	1.0 U	1.0															
ichloroethene	0.44	5	1.0 U	1.0															
richlorofluoromethane	1,100	NS	1.0 U	1.0															
		INO	1.00	1.0 0	1.0 0	1.0 0	1.0 0	1.00	1.0 0	1.00	1.0 0	1.0.0	1.00	1.00	1.00	1.00	1.0.0	1.0 0	1.0

Concentrations are reported in micrograms per liter (ug/L)
USEPA Tapwater RSL = United States Environmental Protection Agency Tapwater Regional Screening Level - May 2012

MCL - Maximum Contaminant Level

Detections are bolded; results that exceed one or more comparison criteria are boxed.

U - The analyte was not detected above the indicated reporting limit.

J - Estimated.

NS - No standard screening level set

Shallow Zone Monitoring Wells Deep Zone Monitoring Wells 1,1,1-TCA 1,1-DCA 1,1-DCE 1,1,1-TCA 1,1-DCA 1,1-DCE RSL or MCL* RSL or MCL* 2009 7.0* 2009 P-4 Feb-89 U U 1.0 U 1.0 1.0 No associated deep well Jul-91 1.0 U 1.0 U U 1.0 U U Aug-92 1.0 1.0 1.0 U Nov-92 1.0 U 1.0 U 1.0 U Feb-93 U U U 1.0 1.0 1.0 May-93 U U U 1.0 1.0 1.0 May-94 Ū Ū Ū 1.0 1.0 1.0 U Jun-95 1.0 U 1.0 U 1.0 Jul-96 U 1.0 U 1.0 1.0 U U Oct-97 U U 1.0 1.0 1.0 U U Nov-98 U 1.0 1.0 1.0 U Dec-99 U U 1.0 1.0 1.0 U Jun-04 1.0 U 1.0 1.0 U Jun-09 1.0 U 1.0 U 1.0 U Sep-10 1.0 U 1.0 U 1.0 U Aug-12 U 1.0 U U 8.0 P-5 Feb-89 1 0 U 1.0 U 1 0 U P-5A Feb-89 1.0 U 1.0 1.0 Aug-92 Ū Ū Ū Aug-92 U U U 1.0 1.0 1.0 1.0 1.0 1.0 Nov-92 1.0 U U U Nov-92 U U 1.0 U 1.0 1.0 1.0 1.0 U U U U Feb-93 U Feb-93 U 1.0 1.0 1.0 1.0 1.0 1.0 U May-93 1.0 U 1.0 1.0 U May-93 1.0 U 1.0 U 1.0 U U May-94 1.0 U 1.0 1.0 U May-94 1.0 U 1.0 U 1.0 U U U Jun-95 1.0 U 1.0 1.0 U Jun-95 1.0 U 1.0 1.0 U Jul-96 1.0 U 1.0 U 1.0 U Jul-96 1.0 U 1.0 U 1.0 U Oct-97 U U U Oct-97 U U U 1.0 1.0 1.0 1.0 1.0 1.0 Nov-98 U U U Nov-98 1.0 1.0 1.0 1.0 1.0 1.0 Dec-99 U U U Dec-99 U U 1.0 1.0 1.0 1.0 1.0 1.0 P-7 Feb-89 U P-7A Feb-89 U 20 1.0 31 1.0 17 Jul-91 Jul-91 2.0 25 3.0 30 10 21 П Aug-92 П Aug-92 4.0 1.0 1.0 Nov-92 1.0 U 1.0 U 1.0 U Nov-92 12 5.0 37 Feb-93 1.0 U 1.0 U 1.0 U Feb-93 23 6.0 60 May-93 1.0 U 1.0 U 5.0 May-93 17 5.0 40 Aug-93 1.0 U 1.0 U 1.0 u Aug-93 11 1.0 29 Nov-93 U Nov-93 5.0 1.0 4.0 50 8.0 11 Ū Feb-94 14 1.0 Feb-94 4.0 3.0 40 19 Ū May-94 13 21 May-94 U 3.0 30 1.0 1.0 Sep-94 U Sep-94 U 6.0 1.0 16 1.0 10 24 Ū Nov-94 U U Nov-94 U 25 1.0 1.0 5.0 1.0 1.0 Mar-95 Mar-95 21 22 1.0 U 1.0 U 4.0 1.0 U Jun-95 1.0 1.0 8.0 Jun-95 5.0 3.0 Oct-95 1.0 U 1.0 U 3.0 Oct-95 3.0 1.0 17 U Jan-96 1.0 U 1.0 2.0 Jan-96 7.0 3.0 34 Apr-96 U U Apr-96 6.0 24 1.0 1.0 2.0 3.0 Jul-96 1.0 U 1.0 U 1.0 U Jul-96 8.0 3.0 27 Oct-96 1.0 U 1.0 U 1.0 U Oct-96 5.0 3.0 22 U Feb-97 1.0 Feb-97 6.0 30 18 14 1.0 U Jun-97 13 1.0 17 Jun-97 3.0 23 3.0 Ū Oct-97 U 23 Oct-97 4.0 1.0 1.0 1.0 11 Feb-98 Feb-98 U 1.0 U 1.0 1.0 U 1.0 U 1.0 U 19 Jun-98 U U Jun-98 U U 1.0 1.0 1.0 U 1.0 1.0 11 Nov-98 U Nov-98 U U U 1.0 U 1.0 1.0 U 1.0 U 1.0 12 U U 19 May-99 1.0 U 1.0 1.0 U May-99 1.0 1.0 U Aug-99 1.0 U 1.0 1.0 U Aug-99 1.0 1.0 18 Dec-99 1.0 U 1.0 U 1.0 U Dec-99 1.0 U 1.0 U 19 Dec-00 1.0 U 1.0 U 1.0 U Dec-00 1.0 U 1.0 U 16 Dec-01 1.0 U 1.0 U 1.0 Dec-01 1.0 U 1.0 U 18 U U Jun-04 1.0 Jun-04 0.4 14 1.0 1.0 1.2 U 3.0 Jun-09 8.0 26 Jun-09 1.0 1.0 1.0 Sep-09 Sep-09 U U 3.0 11 13.0 51 0.8 1.0 Dec-09 Dec-09 5.0 9.0 31 0.8 U 1.0 U 3.0 Mar-10 U U Mar-10 7.0 7.0 22 0.8 1.0 1.0 7.0 U Aug-10 2.0 J 2.0 Aug-10 0.8 U 1.0 1.0 Dec-10 1.0 U 0.32 1.0 Dec-10 1.0 U 1.0 U 0.81 Aug-12 8.0 U U U Aug-12 0.8 U 1.0 U 2.0 1.00 8.0

Shallow Zone Monitoring Wells Deep Zone Monitoring Wells 1,1-DCE 1,1,1-TCA 200* 1,1-DCA 1,1-DCE 7.0* 1,1,1-TCA 1,1-DCA RSL or MCL* RSL or MCL* 7.0* 2009 2.4 P-8 U P-8D Feb-89 9.0 1.0 U 1.0 Sep-10 1.4 27 99 U U 17 Jul-91 1.0 1.0 1.0 U Dec-10 24 290 U U Aug-92 1.0 1.0 1.0 Nov-92 1.0 U 1.0 U 1.0 U Feb-93 1.0 U 1.0 U 1.0 U May-93 U 1.0 1.0 1.0 May-94 Ū Ū Ū 1.0 1.0 1.0 Jun-95 U U U 1.0 1.0 1.0 Jul-96 U U U 1.0 1.0 1.0 U Oct-97 1.0 1.0 1.0 Nov-98 2410 128 1120 U May-99 9.0 1.0 7.0 U U U Aug-99 1.0 1.0 Dec-99 2040 198 2020 Dec-00 1.0 U 1.0 U 1.0 Dec-01 1.0 U 1.0 U 1.0 Jun-04 586 61 360 Aug-12 170 11 P-9 Feb-89 1.0 U 1.0 U 22 No associated deep well Jul-91 U 1.0 2.0 13 U Aug-92 1.0 U 18 Nov-92 1.0 U 3.0 19 U Feb-93 1.0 U 1.0 16 May-93 1.0 U 1.0 U 9 Aug-93 1.0 U 1.0 U 15 Nov-93 2.0 2.0 13 Feb-94 U U 1.0 1.0 12 May-94 Ū 10 1.0 U 1.0 Sep-94 Nov-94 Ū U 1.0 1.0 1.0 11 Ŭ Ū 1.0 10 Mar-95 U 1.0 U 1.0 8.0 Ū Jun-95 U 1.0 1.0 8.0 Oct-95 U U 1.0 U 1.0 6.0 U Jan-96 1.0 1.0 10 Apr-96 1.0 U 1.0 U 9.0 Jul-96 1.0 U 1.0 U 8.0 Oct-96 U U 1.0 1.0 7.0 Feb-97 1.0 Ū 1.0 Ū 9.0 Jun-97 Ū Ū 1.0 1.0 8.0 Oct-97 U U 1.0 1.0 6.0 Feb-98 U U 1.0 U 1.0 1.0 Jun-98 U U U U 1.0 1.0 5.0 Nov-98 1.0 1.0 6.0 May-99 U 1.0 U 1.0 13 U Aug-99 1.0 U 1.0 13 Dec-99 1.0 U 1.0 U 11 Dec-00 1.0 U 1.0 U 7.0 Dec-01 1.0 U 1.0 U 1.0 Jun-04 U 1.0 0.8 6.3 U Jun-09 1.0 U 1.0 2.0 J U Sep-10 U 0.32 1.0 1.9 Aug-12 U J 0.8 1.00 1.0

Shallow Zone Monitoring Wells Deep Zone Monitoring Wells 1,1-DCE 1,1,1-TCA 1,1-DCA 1,1-DCE 1,1,1-TCA 1,1-DCA RSL or MCL* RSL or MCL* 7.0* 200* 7.0* 2009 2.4 P-10A P-10A Feb-89 26 13 851 Jul-91 U No associated shallow well 1.0 12 1740 Aug-92 15 17 1310 Nov-92 7.0 12 1310 Feb-93 U 1.0 1320 1.0 May-93 U 1.0 1.0 937 Aug-93 Ū Ū 1.0 1180 Nov-93 U 1.0 17 1270 Feb-94 9.0 18 1900 May-94 7.0 1500 16 Sep-94 Nov-94 U u 1.0 1.0 1260 U 1.0 13 1200 Mar-95 U u 1.0 1.0 960 Jun-95 1.0 U 16 961 Oct-95 1.0 U 17 1110 Jan-96 4.0 13 1260 Apr-96 3.0 10 770 Jul-96 4.0 14 1100 Oct-96 3.0 18 924 Feb-97 U 1.0 11 707 Jun-97 1.0 U 10 601 Ŭ Oct-97 1.0 12 800 Feb-98 1.0 U 11 702 U Jun-98 1.0 11 667 U Nov-98 1.0 11 580 May-99 1.0 U 17 857 Aug-99 1.0 U 23 742 Dec-99 23 1350 1.0 Dec-00 18 6.0 992 21 Dec-01 974 6.1 Jun-04 1.3 23 21 1230 Jun-09 U 1.0 770 Sep-09 U 0.8 18 760 Dec-09 U 8.0 21 900 U Mar-10 0.8 17 630 U Aug-10 0.8 17 660 Sep-10 1.0 U 19 910 Dec-10 2.0 U 8 200 Aug-12 U 0.8 120 5 P-11 Feb-89 No associated deep well 62 911 Jul-91 1180 20 409 Aug-92 **26** 139 11 U u Nov-92 20 1.0 Feb-93 80 8.0 19 May-93 115 6.0 25 Aug-93 148 29 17 Nov-93 736 49 103 Feb-94 520 21 204 May-94 259 649 1.0 Sep-94 25 271 665 Nov-94 37 390 176 Mar-95 394 13 118 Jun-95 875 46 295 Oct-95 420 44 172 Jan-96 878 83 392 Apr-96 185 8.0 62 Jul-96 712 49 160 Oct-96 9120 173 2260 Feb-97 5850 65 1630 Jun-97 611 26 1220 50 Oct-97 1050 431 Feb-98 118 5.0 53 Jun-98 113 1.0 47 Nov-98 U 10 1.0 1.0 May-99 U 17 1.0 1.0 U Aug-99 27 5.0 6.0 U Dec-99 1.0 U 1.0 U 1.0 Dec-00 1.0 U 1.0 U 1.0 U Dec-01 1.0 U U U 1.0 1.0 Jun-04 1.0 U 1.0 U 1.1 Jun-09 U 1.0 2.0 1.0 Ū Ū Sep-10 1.0 U 1.0 1.0 U Aug-12 8.0 U 1.0 8.0 U

Shallow Zone Monitoring Wells Deep Zone Monitoring Wells 1,1,1-TCA 1,1-DCA 1,1-DCE 1,1,1-TCA 1,1-DCA 1,1-DCE RSL or MCL* RSL or MCL* 2009 2009 7.0* 2.4 P-12 U Nov-89 2.0 1.0 30 No associated deep well Jul-91 3.0 1.0 U 25 U U Aug-92 1.0 1.0 8.0 Nov-92 1.0 U 1.0 U 5.0 Feb-93 U U 1.0 1.0 5.0 May-93 U 1.0 U 1.0 20 Ū Ū Aug-93 1.0 1.0 U 27 Nov-93 3.0 1.0 Feb-94 U 2.0 1.0 30 U U May-94 1.0 1.0 20 Sep-94 U U 1.0 1.0 18 Nov-94 U U 1.0 1.0 6.0 U Mar-95 1.0 U 1.0 12 Jun-95 1.0 U 1.0 U 1.0 U Oct-95 1.0 U 1.0 U 4.0 Jan-96 1.0 U 1.0 U 6.0 Apr-96 1.0 U 1.0 U 5.0 Jul-96 U U U 1.0 1.0 1.0 P-13S Jul-91 1.0 U 1.0 U 1.0 U P-13D Jul-91 1.0 U 1.0 U 1.0 U Aug-92 Aug-92 U U U U 1.0 U 1.0 1.0 U 1.0 1.0 1.0 Nov-92 1.0 U 1.0 U 1.0 U Nov-92 1.0 U 1.0 U 1.0 U U Feb-93 1.0 U 1.0 1.0 U Feb-93 1.0 U 1.0 U 1.0 U U U May-93 1.0 U 1.0 1.0 U May-93 1.0 U 1.0 1.0 U May-94 1.0 U 1.0 U 1.0 U May-94 1.0 U 1.0 U 1.0 U Jun-95 U U U Jun-95 U U U 1.0 1.0 1.0 1.0 1.0 1.0 Jul-96 U Jul-96 1.0 1.0 1.0 1.0 1.0 1.0 P-14D P-14S Jul-91 U U U Jul-91 U 1.0 1.0 1.0 1.0 U 1.0 U 1.0 1.0 Ū Aug-92 Ū Aug-92 U 1.0 1.0 U 1.0 U 1.0 1.0 U Nov-92 Nov-92 U U U U U 1.0 1.0 1.0 U 1.0 1.0 1.0 U Feb-93 U U Feb-93 1.0 U 1.0 1.0 U 1.0 1.0 1.0 U May-93 1.0 U 1.0 U 1.0 U May-93 1.0 U 1.0 U 1.0 U U U May-94 1.0 U 1.0 1.0 U May-94 1.0 U 1.0 1.0 U Jun-95 1.0 U 1.0 U 1.0 U Jun-95 1.0 U 1.0 1.0 U Jul-96 1.0 U 1.0 U 1.0 U Jul-96 1.0 U 1.0 U 1.0 U P-15DD P-15DD Jun-04 0.5 2.1 104 No associated shallow well Dec-05 U 0.8 2.0 96 May-06 0.8 U 2.0 J 99 Aug-06 U J J 8.0 2.0 86 Ŭ 61 Jun-09 0.8 2.0 Sep-09 0.8 U 2.0 J 68 Dec-09 0.8 U 2.0 J 65 Mar-10 0.8 U 2.0 52 Aug-10 0.8 U 2.0 51 Sep-10 0.27 J 2.0 62 Dec-10 0.31 2.2 55 U Aug-12 J 0.80 2.0 59 P-16S Jun-04 No associated deep well 0.4 5.3 13 Dec-05 8.0 U 4.0 17 May-06 8.0 U 3.0 11 Aug-06 8.0 U 2.0 9.0 Jun-09 0.8 U U 4.0 1.0 Sep-09 8.0 U 1.0 U 1.0 Dec-09 0.8 U 1.0 1.0 U Mar-10 U U U 0.8 1.0 1.0 Ū Aug-10 U U 0.8 1.0 8.0 U U U Dec-10 1.0 1.0 1.0 Ū Aug-12 0.8 U 1.0 0.8 U P-17D U P-17D Jun-04 1.0 2.1 163 No associated shallow well Dec-05 0.8 U 2.0 120 May-06 8.0 U 2.0 J 130 Aug-06 0.8 U 2.0 J 110 Jun-09 0.8 U 2.0 75 Sep-09 0.8 U 2.0 100 Dec-09 J 0.8 U 2.0 91 Mar-10 0.8 U J 2.0 72 Aug-10 0.8 U 2.0 J 72 Dec-10 1.0 U 1.9 64 U U Aug-12 0.8 1.0 1.0

Shallow Zone Monitoring Wells

Deep Zone Monitoring Wells

	1,1,1-TCA 1,1-DCA 1,1-DCE				1,1,1-TCA 1,1-DCA 1,1-DC										
	RSL or MCL*		A	1,1-DCA		1,1-DCE			RSL or MCL*		A		١.		=
	HOL OF MICE	200*		2.4		7.0*			RSL OF MICL	200*		2.4		7.0*	
P-18S	Jun-04	1.6		2.3		64	7	P-18D	Jun-04	1.2		2.1		65	-1
F-103	Dec-05	1.0	J	1.0	J	26	-	F-10D	Dec-05	1.2	J	1.0	J	38	
	May-06	1.0	J	2.0	J	39	-		May-06	0.8	U	2.0	J	53	
			J		Ü	20	-		Aug-06		J		J		_
	Aug-06	0.9		1.0	U		-			1.0		2.0		53	_
	Jun-09	0.8	J	1.0		17	_		Jun-09	8.0	Ų	1.0	J	31	_
	Sep-09	1.0	J	1.0	J	20	_		Sep-09	0.8	J	1.0		37	_
	Dec-09	1.0	J	2.0	J	30	4		Dec-09	1.0	J	2.0	J	38	_
	Mar-10	1.0	J	2.0	J	27	4		Mar-10	0.8	U	2.0	J	33	_
	Aug-10	0.8	U	1.0	J	13			Aug-10	0.8	U	2.0	J	24	_
	Sep-10	1.0	U	0.57	J 	5.8			Sep-10	0.39	J	1.3		23	
	Dec-10	1.0	U	1.0	U	0.51	_J		Dec-10	0.34	J	1.3		20	
	Aug-12	1.0	J	1.0	U	14			Aug-12	0.80	U	1.0	U	21	
P-19S	Jun-04	0.4	J	0.3	J	5.4		P-19D	Jun-04	1.1		0.7	J	15	
1 -130	Dec-05	0.8	Ü	1.0	Ü	2.0	J	1-135	Dec-05	0.8	U	1.0	Ü	5.0	_
	May-06	0.8	Ü	1.0	Ŭ	1.0	Ĵ		May-06	0.8	Ŭ	1.0	Ŭ	7.0	
	Aug-06	0.8	Ü	1.0	Ü	0.8	Ü		Aug-06	1.0	J	1.0	Ü	8.0	
	Jun-09	0.8	Ü	1.0	Ü	0.8	Ü		Jun-09	0.8	Ü	1.0	Ü	2.0	
	Sep-09	0.8	U	1.0	U	2.0	J		Sep-09		U	1.0	U		J
										8.0				4.0	
	Dec-09	8.0	U	1.0	U	3.0	J		Dec-09	8.0	U	1.0	U	6.0	J
	Mar-10	8.0	U	1.0	U	3.0	J		Mar-10	0.8	U	1.0	U	6.0	J
	Aug-10	0.8	U	1.0	U	0.8	U		Aug-10	0.8	U	1.0	U	3.0	J
	Dec-10	1.0	U	1.0	U	1.0	U		Dec-10	1.0	U	1.0	U	1.2	
	Aug-12	0.8	U	1.0	U	0.8	U		Aug-12	8.0	U	1.0	U	2.0	J
P-20S	May-06	0.8	U	1.0	U	0.8	U	P-20D	May-06	0.8	U	1.0	J	37	
	Aug-06	0.8	Ū	1.0	Ū	0.8	Ü		Aug-06	0.8	Ū	1.0	Ĵ	44	
	Jun-09	0.8	Ü	1.0	Ŭ	0.8	Ü		Jun-09	0.8	Ŭ	1.0	Ŭ	24	
	Sep-09	0.8	Ü	1.0	Ŭ	7.0	Ū		Sep-09	0.8	Ŭ	1.0	Ŭ	28	
	Dec-09	0.8	Ü	1.0	Ŭ	5.0	J		Dec-09	0.8	Ŭ	1.0	Ŭ	22	
	Mar-10	0.8	Ü	1.0	Ŭ	8.0	٦Ŭ		Mar-10	0.8	Ŭ	1.0	Ŭ	22	
	Aug-10	0.8	Ü	1.0	Ŭ	0.8	Ŭ		Aug-10	0.8	Ŭ	1.0	Ŭ	20	
	Sep-10	1.0	Ü	1.0	Ü	1.0	Ü		Sep-10	1.0	Ü	0.74	J	23	
	Dec-10	1.0	Ü	1.0	Ü	0.67	J		Dec-10	1.0	Ü	0.74	J	14	
	Aug-12	0.8	Ü	1.0	Ü	0.80	Ü		Aug-12	0.8	Ü	1.0	Ü	7	
P-21S	Sep-10 Dec-10	1.0 1.0	U U	0.57 0.39	J J	2.0 0.80	J	P-21D	Sep-10 Dec-10	1.0 1.0	U U	1.0 1.0	U U	1.0 1.0	U
P-22S	Sep-10	1.0	U	0.35	J	2.4		No asso	ciated deep we	ell					
	Dec-10	1.0	U	0.26	J	1.5									
P-23	Aug-12	0.8	U	1.0	U	0.8	U	No asso	ciated deep we	ell					

Concentrations are reported in micrograms per liter (ug/L).

RSL - USEPA Regional Screening Level *MCL - Maximum contaminant level NA - Not available

1,1,1-TCA - 1,1,1-Trichoroethane

1,1-DCA - 1,1-Dichloroethane 1,1-DCE - 1,1-Dichloroethene

U - Non-Detect. The analyte was not detected above the indicated reporting limit.

J - Estimated. The analyte was detected below the reporting limit. Results that exceed the RSL or MCLs are boxed.

September 2010 results obtained the during execution of the Phase II ESA.

Table 4 Surface Water and Pore-Water Sample Results - August 2012 GE Puerto Rico Investment, Inc. Patillas, Puerto Rico

	USEPA Tapwater RSL	USEPA MCL	SW-01	PW-01	SW-02	PW-02	SW-03	PW-03
Volatile Organic Compound (ug/L)	•							
1,1,1,2-Tetrachloroethane	0.50	NS	1.0 U					
1,1,1-Trichloroethane	7,500	200	0.80 U					
1,1,2,2-Tetrachloroethane	0.067	NS	1.0 U					
1,1,2-Trichloroethane	0.24	5	0.80 U					
1,1-Dichloroethane	2.4	NS	1.0 U					
1,1-Dichloroethene	260	7	0.80 U					
1,1-Dichloropropene	NS	NS	1.0 U					
1,2,3-Trichlorobenzene	5.2	NS	1.0 U					
1,2,3-Trichloropropane	0.00065	NS	1.0 U					
1,2,4-Trichlorobenzene	0.99	70	1.0 U					
1,2,4-Trimethylbenzene	15	NS	1.0 U					
1,2-Dibromo-3-chloropropane	0.00032	0.2	2.0 U					
1,2-Dibromoethane	0.0065	0.05	1.0 U					
1,2-Dichlorobenzene	280	600	1.0 U					
1,2-Dichloroethane	0.15	5	1.0 U					
1,2-Dichloropropane	0.38	5	1.0 U					
1,3,5-Trimethylbenzene	87	NS	1.0 U					
1,3-Dichlorobenzene	NS	NS	1.0 U					
1,3-Dichloropropane	290	NS	1.0 U					
1,4-Dichlorobenzene	0.42	75	1.0 U					
2,2-Dichloropropane	NS	NS	1.0 U					
2-Butanone (MEK)	4,900	NS	3.0 U					
2-Chlorotoluene	NS	NS	1.0 U					
4-Chlorotoluene	NS	NS	1.0 U					
4-Methyl-2-pentanone (MIBK)	1,000	NS	3.0 U					
Acetone	12,000	NS	6.0 U					
Benzene	0.39	5	0.50 U					
Bromobenzene	54	NS	1.0 U					
Bromochloromethane	83	NS	1.0 U					
Bromodichloromethane	0.12	80	1.0 U					
Bromoform	7.9	80	1.0 U					
Bromomethane	7	NS	1.0 U					
Carbon Tetrachloride	0.39	5	1.0 U					
Chlorobenzene	72	100	0.80 U					
Chloroethane	NS	NS	1.0 U					
Chloroform	0.19	80	0.80 U	3.0 J	0.80 U	0.80 U	0.80 U	0.80 U
Chloromethane	190	NS	1.0 U					
cis-1,2-Dichloroethene	28	70	0.80 U					
cis-1,3-Dichloropropene	NS	NS	1.0 U					
Dibromochloromethane	0.15	80	1.0 U					
Dibromomethane	7.9	NS	1.0 U					
Dichlorodifluoromethane	190	NS	1.0 U					
Ethylbenzene	1.3	700	0.80 U					
Hexachlorobutadiene	0.26	NS	2.0 U					
Isopropylbenzene	NS	NS	1.0 U					
m+p-Xylene	190	NS	0.80 U					
Methyl Tertiary Butyl Ether	12	NS	0.50 U					
Methylene Chloride	9.9	5	2.0 U					
Naphthalene	0.14	NS	1.0 U					
n-Butylbenzene	780	NS	5.0 U					
n-Propylbenzene	530	NS	1.0 U					
o-Xylene	190	NS	0.80 U					
p-Isopropyltoluene	NS	NS	1.0 U					
sec-Butylbenzene	NS	NS	1.0 U					
Styrene	1,100	100	1.0 U					
tert-Butylbenzene	NS	NS	1.0 U					
Tetrachloroethene	9.7	5	0.80 U					
Toluene	860	1,000	0.70 U					
trans-1,2-Dichloroethene	86	100	0.80 U					
trans-1,3-Dichloropropene	NS	NS	1.0 U					
Trichloroethene	0.44	5	1.0 U					
	1,100	NS	1.0 U					
Trichlorofluoromethane								

Concentrations are reported in micrograms per liter (ug/L)
USEPA Tapwater RSL = United States Environmental Protection Agency Tapwater Regional Screening Level - May 2012

MCL - Maximum Contaminant Level

Detections are bolded; results that exceed one or more comparison criteria are boxed.

U - The analyte was not detected above the indicated reporting limit.

J - Estimated.

NS - No standard screening level set

APPENDIX A GROUNDWATER SAMPLING LOGS

Groundwater Sample Record Sheet

Passive Diffusion Bag Sampler

₩ MW	Н			WELL	I.D.:	P-23		
Project:	Former GE Patilla	ıs, Patillas, P.R.						
Job No:1050105	5.010103							
Location:	Patillas							
PDB Sampler De	ployment							
Field Staff: Omai	r Negron, P.G.		Date & Time: 08	3/20/2012 130PM				
Felix Ocasio			Weather: Sunny	1				
Depth to Water	(btoc): 4FT		Well Condition:	New well.				
Total Well Depth	n (btoc): 20FT							
Sampling Interva	al(s) (btoc): 18ft							
PDB Sampler Re	<u> </u>		1					
Field Staff: Oma	r Negron, P.G.		Date & Time: 08					
Felix Ocasio			Weather: Sunny					
			<u></u>					
Sample ID & Tim	e: P-23 1045am		Sample Condition: clear					
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Bla	ank		
8260B	3 (40ml) vials	HCL	n/a	n/a		/a		
02005	3 (10111) Viais	1102	, a	11, G		, <u> </u>		

Notes:

Groundwater Sample Record Sheet

Passive Diffusion Bag Sampler

₩ MW	Н			WELL	I.D.: <u>P-11</u>			
Project:	Former GE Patilla	s, Patillas, P.R.						
Job No:1050105	5.010103							
Location:	Patillas							
PDB Sampler De	ployment							
Field Staff: Omai	r Negron, P.G.		Date & Time: 08	3/08/2012 0947 AN	M			
Felix Ocasio			Weather: Rainy					
Depth to Water	(btoc): 7.60FT		Well Condition:	Need well lock.				
	(btoc): 15.20FT							
	al(s) (btoc): 9.70ft							
PDB Sampler Re	covery							
Field Staff: Omai	r Negron, P.G.		Date & Time: 08	3/27/12 1050am				
Felix Ocasio			Weather: Sunny	1				
Sample ID & Tim	e: P-11 1050am		Sample Condition: clear					
	l		T					
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank			
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a			
1	l		I.					

Notes:

Passive Diffusion Bag Sampler

WELL I.D.: P-4					
Project: Former GE Patillas, Patillas, P.R.					
Job No:1050105	5.010103				
Location:	Patillas				
PDB Sampler De	ployment				
Field Staff: Omai	Negron, P.G.		Date & Time: 08	3/20/2012 0940AN	Л
Felix Ocasio			Weather: Rainy		
Depth to Water	(btoc): 9.23FT		Well Condition: well lock.	casing steel cap co	orroded, need
Total Well Depth	(btoc): 21FT				
Sampling Interva	ıl(s) (btoc): 15.80f	t			
PDB Sampler Re	covery				
Field Staff: Omai	Negron, P.G.		Date & Time: 08	3/27/12 1100am	
Felix Ocasio			Weather: Sunny		
Sample ID & Tim	e: P-4 1100am		Sample Condition: clear		
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a

Passive Diffusion Bag Sampler

WELL I.D.: P-9					
Project:	Former GE Patilla	ıs, Patillas, P.R.			
Job No:1050105	5.010103				
Location:	Patillas				
PDB Sampler De	eployment				
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/08/2012 1000AN	1
Felix Ocasio			Weather: Sunny	<u>'</u>	
Depth to Water	(btoc): 4FT		Well Condition:	bended steel casir	ng, need lock.
Total Well Deptl	n (btoc): 20FT				
Sampling Interva	al(s) (btoc): 18ft				
PDB Sampler Re Field Staff: Oma Felix Ocasio	•		Date & Time: 08/27/12 1110am		
Felix Ocasio			Weather: Sunny		
Sample ID & Tim	ne: P-9 1110am		Sample Condition: clear		
A malman	No Pottles	Duna a musticus	Doublests	NAC /NACD	Dlamb
Analyses 8260B	No. Bottles 3 (40ml) vials	Preservative HCL	Duplicate n/a	MS/MSD n/a	Blank n/a
8200B	3 (401111) Viais	ПСЬ	II/ d	II/a	II/a

Passive Diffusion Bag Sampler

₩ MW	Н			WELL I.	D.: <u>P-10A</u>	
Project:	Former GE Patilla	ıs, Patillas, P.R.				
Job No:1050105	55.010103					
Location:	Patillas					
PDB Sampler De	eployment					
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/08/2012 1008AN	1	
Felix Ocasio			Weather: Cloud	У		
Depth to Water	(btoc): 16.01FT		Well Condition:	submersible pump	o in hole.	
Total Well Dept	h (btoc): 50.90FT (see note)	Need new lock.			
Sampling Interv	al(s) (btoc): 44.80f	t				
PDB Sampler Ro	ecovery					
Field Staff: Oma	ır Negron, P.G.		Date & Time: 08	3/27/12 1126am		
Felix Ocasio			Weather: Sunny			
Sample ID & Tin	ne: P-10A 1126am		Sample Condition: clear			
				T		
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank	
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a	
8260B	3 (40ml) vials	HCL	1	n/a	n/a	
1						

Notes: ID for Duplicate 1223pm. This well has a grunfus pump stuck on hole. Actual depth is 39.25 ft. PDB interval is set at 38 feet.

Passive Diffusion Bag Sampler

₩ MW	Н			WELL	l.D.: <u>P-8D</u>
Project:	Former GE Patilla	ns, Patillas, P.R.			
Job No:1050105	55.010103				
Location:	Patillas				
PDB Sampler De	eployment				
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/20/2012 140PM	
Felix Ocasio			Weather: Rainy		
5	(I) 45 44 5 7		144 H G 1993		
•	(btoc): 15.11 FT		Well Condition:		
Total Well Dept			Bended in first 5	to 8 ft.	
Sampling Interv	al(s) (btoc): ft				
PDB Sampler Re	ecoverv				
Field Staff: Oma	•		Date & Time: 08/27/12 1045am		
Felix Ocasio	<u> </u>		Weather: Sunny		
Sample ID & Tin	ne: P-8 1138am		Sample Condition: clear		
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a
	(2 , 2.0	_	, ,	, , ,	, -

Passive Diffusion Bag Sampler

₩ MWH				WELL I.D	.: P-15DD	
Project:	Former GE Patilla	ns, Patillas, P.R.				
Job No:1050105	55.010103					
Location:	Patillas					
PDB Sampler Deployment						
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/08/2012 1045AN	1	
Felix Ocasio			Weather: Rainy			
Depth to Water	(btoc): 14.98FT		Well Condition:	Need new lock.		
Total Well Dept	h (btoc): 75.80FT					
Sampling Interv	al(s) (btoc): 71.80t	ft				
PDB Sampler Re	ecovery					
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/27/12 12md		
Felix Ocasio			Weather: Sunny			
Sample ID & Tin	ne: P-15DD 1200m	d	Sample Condition: clear			
		T	T			
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank	
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a	

Passive Diffusion Bag Sampler

WELL I.D.: P-7						
Project:	Former GE Patilla	ıs, Patillas, P.R.				
Job No:1050105						
Location:	Patillas					
PDB Sampler De	ployment					
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/08/2012 1015AN	1	
Felix Ocasio			Weather: Rainy			
Depth to Water	(btoc): 9.30FT		Well Condition:	need new loc k.		
•	n (btoc): 18.70FT					
Sampling Interva	al(s) (btoc): 14.30	t				
PDB Sampler Re	covery					
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/27/12 1045am		
Felix Ocasio			Weather: Sunny			
Sample ID & Tim	ne: P-7 1145am		Sample Condition: clear			
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank	
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a	

Passive Diffusion Bag Sampler

WELL I.D.: P-74					
Project:	Former GE Patilla	ıs, Patillas, P.R.			
Job No:1050105					
Location:	Patillas				
PDB Sampler D	eployment				
Field Staff: Oma	ır Negron, P.G.		Date & Time: 08	3/08/2012 1020AN	1
Felix Ocasio			Weather: Sunny	,	
Depth to Water	(btoc): 15.25FT		Well Condition:	well without lock.	
Total Well Dept	h (btoc): 57.80FT				
Sampling Interv	al(s) (btoc): 54.50	t			_
PDB Sampler Ro	•				
Field Staff: Oma	r Negron, P.G.		Date & Time: 08/27/12 1150am		
Felix Ocasio			Weather: Sunny		
Sample ID & Tin	ne: P-7A 1150am		Sample Condition: clear		
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a
					_

Passive Diffusion Bag Sampler

WELL I.D.: P-16S					.D.: <u>P-16S</u>
Project:	Former GE Patilla	ıs, Patillas, P.R.			
Job No:1050105	5.010103				
Location:	Patillas				
PDB Sampler De	ployment				
Field Staff: Omai	r Negron, P.G.		Date & Time: 08	3/08/2012 1105AN	Λ
Felix Ocasio			Weather: Cloud	у	
Depth to Water	· · · · · · · · · · · · · · · · · · ·		Well Condition:	Need new lock.	
<u> </u>	n (btoc): 26.30FT				
Sampling Interva	al(s) (btoc): 23.80f	t			
PDB Sampler Re	<u> </u>				
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/27/12 1045am	
Felix Ocasio			Weather: Sunny		
Sample ID & Tim	e: P-16S 1234pm		Sample Condition: clear		
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a
8260B	3 (40ml) vials	HCL	n/a	1	n/a

Notes: ms/msd collected from P-16S.

Passive Diffusion Bag Sampler

₩ MW	Н			WELL I.	D.: <u>P-19D</u>	
Project:	Former GE Patilla	ıs, Patillas, P.R.				
Job No:1050105	5.010103					
Location:	Patillas					
PDB Sampler Deployment						
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/08/2012 1140AN	1	
Felix Ocasio			Weather: Sunny	1		
Depth to Water	(btoc): 10.35FT		Well Condition:	need new lock.		
•	n (btoc): 38.30FT					
Sampling Interva	al(s) (btoc): 32.00f	t				
PDB Sampler Re	covery					
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/27/12 1045am		
Felix Ocasio			Weather: Sunny			
Sample ID & Tim	ne: P-19D 1256pm		Sample Condition: clear			
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank	
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a	
				-		

Passive Diffusion Bag Sampler

WELL I.D.: P-1					.D.: <u>P-19S</u>
Project:	Former GE Patilla	ıs, Patillas, P.R.			
Job No:1050105					
Location:	Patillas				
PDB Sampler De	eployment				
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/08/2012 1145am	1
Felix Ocasio			Weather: Sunny	1	
Depth to Water	(btoc): 9.36FT		Well Condition:	need new lock.	
•	n (btoc): 18.70FT				
Sampling Interva	al(s) (btoc): 12.50f	t			
PDB Sampler Re	covery				
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/27/12 1300pm	
Felix Ocasio			Weather: Sunny		
Sample ID & Tim	ne: P-16S 1300pm		Sample Condition: clear		
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a

Passive Diffusion Bag Sampler

₩ MW	Н			WELL I.	D.: <u>P-17D</u>	
Project:	Former GE Patilla	ıs, Patillas, P.R.				
Job No:1050105	5.010103					
Location:	Patillas					
PDB Sampler Deployment						
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/08/2012 1135AN	1	
Felix Ocasio			Weather: Sunny	<u>'</u>		
Depth to Water	(btoc): 9.10FT		Well Condition:	need new lock.		
•	n (btoc): 63.50FT					
Sampling Interva	al(s) (btoc): 51.10f	t				
PDB Sampler Re	<u> </u>		Data & Time: 09	2/27/12 1210nm		
Felix Ocasio	i Negron, P.G.		Date & Time: 08/27/12 1310pm Weather: Sunny			
relix Ocasio			weather: Suffry			
Sample ID & Tim	ne: P-17D 1310pm		Sample Condition: clear			
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank	
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a	

Passive Diffusion Bag Sampler

WELL I.D.: P-1					.D.: <u>P-18S</u>
Project:	Former GE Patilla	ıs, Patillas, P.R.			
Job No:1050105	5.010103				
Location:	Patillas				
PDB Sampler De	eployment				
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/08/2012 1215PM	1
Felix Ocasio			Weather: Cloud	у	
Depth to Water	(btoc): 11.10FT		Well Condition:	needs new lock.	
•	h (btoc): 19.10FT		Needs new bolla	ırds.	
Sampling Interva	al(s) (btoc): 13.50f	it			
PDB Sampler Re	•				
Field Staff: Oma	r Negron, P.G.		Date & Time: 08	3/27/12 1315pm	
Felix Ocasio			Weather: Sunny		
Sample ID & Tim	ne: P-18S 1315pm		Sample Condition: clear		
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a

Passive Diffusion Bag Sampler

₩WH				WELL I.	D.: <u>P-18D</u>	
Project: Former GE Patillas, Patillas, P.R.						
Job No:105010!	55.010103					
Location:	Patillas					
PDB Sampler D	eployment					
Field Staff: Omar Negron, P.G.			Date & Time: 08/08/2012 1210PM			
Felix Ocasio			Weather: Sunny	1		
Depth to Water (btoc): 11.80FT			Well Condition: Needs new lock.			
Total Well Depth (btoc): 47.90FT						
Sampling Interval(s) (btoc): 39.00ft						
PDB Sampler R	ecoverv					
Field Staff: Omar Negron, P.G.			Date & Time: 08/27/12 1323pm			
Felix Ocasio			Weather: Sunny			
Sample ID & Time: P-18D 1323pm			Sample Condition: clear			
	N. B. W		D	NAC / NAC 7	DI. I	
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank	
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a	
İ						

Passive Diffusion Bag Sampler

₩ MWH				WELL I.	.D.: P-20S
Project:	: Former GE Patillas, Patillas, P.R.				
Job No:1050105	5.010103				
Location:	Location: Patillas				
PDB Sampler De	eployment				
Field Staff: Omar Negron, P.G.			Date & Time: 08/08/2012 1235PM		
Felix Ocasio			Weather: Sunny	<i>'</i>	
Depth to Water (btoc): 11.40FT			Well Condition: needs new lock.		
Total Well Depth (btoc): 25.00FT					
Sampling Interval(s) (btoc): 18.10ft					_
PDB Sampler Re	<u> </u>		Date & Time: 08	3/27/12 1330pm	
Felix Ocasio			Weather: Sunny		
Sample ID & Time: P-20S 1330pm			Sample Condition: clear		
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a

Passive Diffusion Bag Sampler

₩WH				WELL I.	D.: <u>P-20D</u>
Project:	Former GE Patilla	ıs, Patillas, P.R.			
Job No:105010	55.010103				
Location:	Patillas				
PDB Sampler D	eployment				
Field Staff: Omar Negron, P.G.			Date & Time: 08/20/2012 130PM		
Felix Ocasio			Weather: Sunny	1	
Depth to Water (btoc): 4FT			Well Condition: New well.		
Total Well Depth (btoc): 20FT					
Sampling Interval(s) (btoc): 18ft					
PDB Sampler R	ecovery		•		
Field Staff: Omar Negron, P.G.			Date & Time: 08/27/12 1045am		
Felix Ocasio			Weather: Sunny		
Sample ID & Time: P-20D 1335pm			Sample Condition: clear		
Analyses	No. Bottles	Preservative	Duplicate	MS/MSD	Blank
8260B	3 (40ml) vials	HCL	n/a	n/a	n/a

APPENDIX B LABORATORY ANALYTICAL DATA

(INCLUDED ON CD)

APPENDIX C 1,1-DCE TREND GRAPHS

P-7A

P-10A

P-16S

P-17D

P-18S

P-18D

P-19S

P-19D

P-20S

P-20D

APPENDIX D

PROGRESS REPORT

The following sections contain the Progress Report for the reporting period from January 31, 2011 through September 30, 2012). The Progress Report was prepared in accordance with Section V.C. of the facility's Administrative Order on Consent (Order) dated March 29, 1988, and approved revisions (January 26, 2010).

i. Description and estimate of the percentage of the project completed

The project is approximately 70 percent complete. The following table outlines the status of the major project milestones.

Activity	Status
Preliminary Site Investigation	Complete (1986)
Closure of Drying Beds	Complete (1987); Approved (2005)
Interim Corrective Measures (French Sump Removal)	Complete (1990); Approved (1991)
RCRA Facility Investigation	Complete (1992); Approved (1992)
Corrective Measures Study	Complete (1993); Not Approved (1993)
Human Exposures Under Control (CA725)	Complete (2004)
Supplemental RCRA Facility Investigation	Complete (2005); Not Approved (2005)
Groundwater Contamination Under Control (CA750)	Pending
Corrective Measures Implementation	Pending
Site Closure	Pending

Following the closure of the Drying Beds and the French sump, GE performed a RCRA Facility Investigation (RFI) in 1992. The RFI was subsequently approved by the USEPA, and GE proceeded to perform a Corrective Measures Study (CMS) to address groundwater impacted by volatile organic compounds (VOCs) originating from the French sump. The results of the CMS indicated that monitored natural attenuation was an acceptable corrective measure for addressing impacted groundwater. In 1993, GE began monitoring groundwater as a self-implementation.

In 2000, the USEPA expressed concern that the CMS could not be approved due to insufficient groundwater characterization (e.g., the downgradient edge of the impacted groundwater had not been defined). In 2003, the USEPA and GE agreed that further investigation would be performed.

In 2005, GE performed a Supplemental RFI to further characterize the extent of impacted groundwater and to further evaluate the use of monitored natural attenuation as a corrective measure. The USEPA did not approve the Supplemental RFI as it felt further delineation was required. The USEPA and GE then agreed that GE would perform additional offsite groundwater sampling to address the data gaps identified in the Supplemental RFI. Subsequent to this agreement, GE was unable to

October 2012

secure site access from property owner(s) located southwest of the Site. Consequently, GE was unable to perform the requested groundwater sampling. A *Groundwater Modeling Work Plan* (2007) was then developed and submitted to the USEPA with the intent of delineating the extent of impacted groundwater by using a computer model. The information obtained from executing this work plan would also be used to document the remaining Environmental Indicator Determination (*Groundwater Contamination Under Control - CA750*), which is currently pending.

GE received approval from the USEPA to execute the Groundwater Modeling Work Plan in May 2009. GE initiated this work in June 2009 and submitted the draft results to the USEPA and EQB in September 2009. Subsequent to the fate and transport modeling and at the request of the USEPA, GE performed additional groundwater monitoring events (September 2009, December 2009, and March 2010 2010). The results of the September and December 2009 and March 2010 monitoring events were previously submitted to the USEPA.

A meeting between the USEPA and GE was held on April 22, 2010, to discuss the extent of impacted groundwater and the need for further downgradient characterization. During this meeting, GE agreed to the USEPA's request to continue groundwater monitoring on a quarterly basis for one additional year. Subsequent groundwater monitoring events were conducted in August and December of 2010. Sampling resumed in 2012 after approval of the revised Quality Assurance Project Plan (QAPP).

In June of 2010, GE ceased manufacturing operations at the Site, and in September of 2010, GE completed a Phase II Environmental Site Assessment (ESA) to document Site conditions prior to exiting the lease for the Site. The Phase II ESA included installation of 25 soil borings to an average depth of 15 feet' below ground surface, and soil sampling at several intervals within each of those 25 boring locations. The Phase II ESA also included installation of six temporary groundwater monitoring wells and four permanent monitoring wells at the Site, and their subsequent development and sampling. The results of the Phase II ESA are summarized in a separate document.

GE performed site closure and cleaning activities in March 2011, during which a 7-ft by 7-ft concrete vault was discovered northeast of the main building near the loading dock. The vault contained sediment and had several pipes entering and exiting the side walls. The sediment was removed and disposed of offsite during site closure and cleaning activities.

At the request of USEPA, in April 2011 GE agreed to evaluate whether VOC-impacted groundwater could be venting to the Rio Grande de Patillas. Surface water and pore-water sampling was proposed and approved along with the QAPP in May 2012. These sampling activities were conducted concurrently with the August 2012 groundwater monitoring event.

In September 2011, GE voluntarily collected soil and groundwater samples from the loading dock area to evaluate whether the presence of VOCs in sediment found in the concrete vault had resulted in environmental impacts. Soil and groundwater samples collected in the loading dock area indicated limited impacts to soil and groundwater associated with the vault. Based on the results of the investigation, GE

October 2012 Patillas, Puerto Rico

decided to permanently close the vault by filling it with clean backfill and topping it with a concrete cover. In August 2012, GE conducted concrete vault closure activities at the site. The vault was backfilled with clean backfill and topped with a concrete cover. Additionally, GE installed one monitoring well (P-23) during vault closure activities. The monitoring well was installed adjacent to the vault and is intended to be included in future routine groundwater monitoring events. Vault closure activities are summarized in a separate document.

After completing the groundwater delineation, GE plans to address the USEPA's comments on the CMS and Supplemental RFI. Following approval of these documents, GE will implement the final corrective measures for the Site with the intent of obtaining site closure.

ii. Summaries of all findings

Sludge drying beds were removed from the Site in 1989. To evaluate possible impacts to groundwater, monitoring was performed for three years following closure activities. Based on three years of post-closure groundwater monitoring, impacts were not identified, and the USEPA provided an Approval of Clean Closure for the sludge drying beds.

A French sump was formerly located onsite and used for waste disposal from 1977 until 1980. Wastes included treated wastewater sludge, waste oils, and spent solvents. In 1990, the French sump was removed as part of the Interim Measures. Completion of the Interim Corrective Measures was approved by the USEPA in 1991. Although the French sump was removed in 1990, residual groundwater impacts have been noted during the RFI (1992) and the Supplemental RFI (2005). The constituents of concern associated with the former French Sump include VOCs. The primary VOCs of concern include 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethene (1,1-DCE). The extent of groundwater impacted by 1,1,1-TCA does not extend off of GE's property. Historical sample results for 1,1,1-TCA range from non-detect to 586 micrograms per liter (µg/L). The extent of groundwater impacted by 1,1-DCE extends offsite (south-southwest) towards the Rio Chico and Rio Grande. Historical sample results for 1,1-DCE range from non-detect to 1,230 The highest offsite sample result for 1,1-DCE is 110 µg/L (located approximately 250 feet southwest of the Site). VOC concentrations in groundwater samples collected near the former French sump have decreased.

The results from the previous sampling events indicate that the highest VOC concentrations (primarily 1,1-DCA and 1,1-DCE) were detected in the sample collected from well P-8D, which is located onsite and downgradient of the former French sump. The 1,1-DCE concentration for the farthest downgradient monitoring well sampled (P-20D, approximately 1,300 feet southwest of the former French sump) is approximately 7 μ g/L. The extent of 1,1-DCE in the shallow zone is between P-9 and P-19S. For the deep zone, the extent is not defined by the downgradient monitoring wells, but based on groundwater modeling and recent surface water and pore-water sampling is between the Rio Grande and P-20D.

The most recent results from the August 2012 sampling event are enclosed and discussed in Section 4.0.

October 2012 Patillas, Puerto Rico

iii. Summaries of all changes made in the project during the reporting period

Progress reports are submitted with Groundwater Monitoring Reports (as appropriate).

GE performed site closure and cleaning activities in March 2011, during which a 7-ft by 7-ft concrete vault was discovered northeast of the main building near the loading dock. The vault contained sediment and had several pipes entering and exiting the side walls. The sediment was removed and disposed of offsite during site closure and cleaning activities.

At the request of USEPA, in April 2011 GE agreed to evaluate whether VOC-impacted groundwater could be venting to the Rio Grande de Patillas. Surface water and pore-water sampling was proposed and approved along with the QAPP in May 2012. These sampling activities were conducted concurrently with the August 2012 groundwater monitoring event.

In September 2011, GE voluntarily collected soil and groundwater samples from the loading dock area to evaluate whether the presence of VOCs in sediment found in the concrete vault had resulted in environmental impacts. Soil and groundwater samples collected in the loading dock area indicated limited impacts to soil and groundwater associated with the vault. Based on the results of the investigation, GE decided to permanently close the vault by filling it with clean backfill and topping it with a concrete cover. In August 2012, GE conducted concrete vault closure activities at the site. The vault was backfilled with clean backfill and topped with a concrete cover. Additionally, GE installed one monitoring well (P-23) during vault closure activities. The monitoring well was installed adjacent to the vault and is intended to be included in future routine groundwater monitoring events. Vault closure activities are summarized in a separate document.

iv. Summaries of all contacts with representatives of local community, public interest groups or State government during the reporting period

None.

v. Summaries of all problems or potential problems encountered during the reporting period

None.

vi. Actions being taken to rectify problems

None.

vii. Changes in personnel during the reporting period

None.

viii. Projected work for the next reporting period

Development of a groundwater monitoring plan and further negotiations with USEPA regarding characterization of impacted groundwater.

ix. Copies of daily reports, inspections reports, laboratory/monitoring data, etc.

Field data sheets and laboratory data for the August 2012 sampling event are enclosed.

GE plans to submit the information obtained during the vault closure activities as part of a separate document. This document is currently draft and will be finalized during the next reporting period.

October 2012 Patillas, Puerto Rico

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Type I Data Package

Prepared for:

MWH Americas, Inc. P.O. Box 6610 Broomfield CO 80021

Project: GE Patillas Puerto Rico Water Samples Collected on 08/27/12

SDG# PTL09

GROUP SAMPLE NUMBERS 1331673 6769183-6769204

PA Cert. # 36-00037 NY Cert. # 10670 NJ Cert. # PA011 NC Cert. # 521

TX Cert. # T104704194-08A-TX

Through our technical processes and second person review of data, we have established that our data/deliverables are in compliance with the methods and project requirements unless otherwise noted or previously resolved with the client.

Date: 09/19/2012

Authorized by: Kana m Kanffman

Dana M. Kauffman Manager

Any questions or concerns you might have regarding this data package should be directed to your client representative, Natalie Luciano at Ext. 1881.

Table of Contents for SDG# PTL09

1.	Sample Reference List
2.	Analysis Request, Field Chain-of-Custody Record
3.	Methodology Summary/Reference
4.	Analysis Reports
5.	Volatiles by GC/MS Data34
	a. Case Narrative/Conformance Summary
	b. Quality Control and Calibration Summary Forms39
	c. Sample Data71
	d. Standards Data
	e. Raw QC Data554

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Reference List for SDG Number PTL07 with a Data Package Type of I 12136 - MWH Americas, Inc.

Project: GE Patillas Puerto Rico

Lab	Lab	
Sample	Sample	
Number	Code	Client Sample Description
6766763	S1PAT	SW-01 Grab Water COC: 310619
6766764	P1PAT	PW-01 Grab Water COC: 310619
6766765	S2PAT	SW-02 Grab Water COC: 310619
6766766	P2PAT	PW-02 Grab Water COC: 310619
6766767	S3PAT	SW-03 Grab Water COC: 310619
6766768	P3PAT	PW-03 Grab Water COC: 310619

Environmental Analysis Request/Chain of Custody

			For La	For Lancaster Laboratories use only	atories use	only							
💸 eurofins Lancaster		Acct # 12136	Group #	# 13311A	ul sam	Sample # (2766763-68	7667	727		COC # 310619	1619		
Labor	ies	Please print. In	structions	Instructions on reverse side correspond with circled numbers	e correspor	d with circled	numbers			For Lah Haa Only			
						(5) An	Analyses Requested	equest	þe	FSC:		1	
(1) MUIT AMENIAS	12"	121.34	<u> </u>	Matrix /			Preservation Codes	Codes		SCR#;		}	Г
Client: 1 W / / Client	127	٦) <u> </u>					Preservation Codes	8		
Project Name/#: TOYMEY GE 1411111)	l	PWSID #:		nud tace	Ľ	/				-	T=Thiosulfate	<u>ဖ</u>)	$\overline{}$
Project Manager: DMAY	Negron P.O.#.	#		o) D	ziers "A			1		S=H ₂ SO ₄ O=Other	<u> </u>	Se	(pa)
1	MSW Que	Quote #:		iedit			_	THE STATE OF THE S				idwe	sdnes
Name of state where samples were collected:		very his	ete ete	S (99 003			<u>}</u>				s io ei	or h) to
			$\overline{}$	INE.					_			utene	iecei
(2)	Date		rab omi	lio Vate	lsto.	_				Remarks		qmə	uodr
Sample Identification	Collected	ted Collected	-+	۸	-+		$\frac{1}{1}$	1	7				1
10-M2	C11484	۲	X	X	3 X		\dashv						
10-Md	CHADO	7	X	×	3 X								
511.02	CHERO	7	×	X	$\frac{3}{\times}$								1
P.111-03	THE GO	17	X	×	3 X								1
20-112	CHEON	30	×	×	3 X								
011-03	CHORO	6 3	×	×	3 7								-
Sal		< /			<u>/</u>							!	İ
		/		,	-	_	1	7	4				
1	A.	1	1	Tr.			1	$ egthinspace{1mm} olimits_{i} = \frac{1}{2} \left(\frac{1}{2} \right) \left($					ļ
/	2					-		+	/				1
	1			_	<u> </u>	_		1	<u>'</u>			┢	_
Turnaround Time Requested (TAT) (please circle): Standard	(TAT) (please circle)	Standard Rush		Relinguished by:	Pingen)		Date J11/1	Time	Received by	Received by:	Date Office Offi	e Time (<u>"</u>
Carlosser In Subject to Carlosser L] (7	10101				Beceived by:		1		
ج ا	se circle): Phone	E-mail	<u> </u>	Kelinquished by:	· .		, Care						
Phone #:	ONEGION (OF JESONING, COM	NO. 34						j			ate C	a di	Τ,
dress:	7		<u>*</u>	Relinquished by:	: :		_ Date	ime	Кесегуед ру	/	<u> </u>		
Data Package Options (please circle if required)	circle if required)	ř	/					l		1	- 2	i i	T,
`	MA MCP CT RCP	Yes No	<u>æ</u>	Relinquished by	> /		Date	Time	Received by:	/			
Iype III (Reduced noll-CLT) The IV (CLD SOM)	Site-specific OC (MS/MSD/Dup)? Yes	SD/Dup)? Yes	2								16	1 i	T
July)	(if yes, indicate QC sample and submit triplicate	and submit triplical		Relinquished by:	/ ×		Date Date	Time	Received by	1, Wan 1	Z-7	- <u>-</u>	3
	sample volume)					/			2007		3		
	Lancaster Laborator	Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601	Inc., 2425	New Holland	Pike, Lanca ratories. Th	aster, PA 176 le yellow copy	01 717-6 / should b	717-656-2300 hould be retained	ries, Inc., 2425 New Holland Pike, Lancaster, PA 17601 717-656-2300 Camples to Jancaster Laboratories. The yellow copy should be retained by the client.	S	Issued by Dept. 40 Managemen 7044.01	40 Manag 7	044.01

1107 0002

eurofins Lancaster Laboratories

Environmental Sample Administration Receipt Documentation Log

Client/F	Project:	•	America	Shippin	g Containe	er Sealed: YÉ	S NO
Date of	Receipt:	\$	33.15	Custody	/ Seal Pres	sent*: (YE	S NO
Time of	Receipt: _		1005	* Custody	seal was inta	ct unless otherwise	e noted in the
Source	Code:		50-1	Package	iscrepancy se	Chilled	Not Chilled
	'		Temperature of	Shipping Contai	ners		
Cooler #	Thermometer ID	Temperature (°C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	Ice Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments
1	2737	0,3	TB	TB	W	Y	
2				#		•	
3							
4					/		
5							
6							
Number	of Trip Blank	s received <u>N</u>	OT listed on chain	of custody: <u></u>)		
Paperw	ork Discrepa	ncy/Unpack	ing Problems: 込る そのY	r Pwo	2	3 U	ials time
= \	1400 1	3	vials 1	410 n	<u>NISSIY</u>	ry Sc	200Z
Unpack	er Signature	/Emp#: <u>Bl</u>	M /m/	2 2 9 9 ot. 6042 Managem	_ Date/Tir	me: <u>8</u> 23	-15 1900

2174.06

GC/MS Volatiles pH Log Batch #: Y122472AA

<u> </u>			Initials/	
LLI#	рΗ	Date Checked	Employee #	Comments
6769939	<2	9/4/2012	ADS 1731	038a
6769616	<2	9/4/2012	ADS 1731	038a
6769617	<2	9/4/2012	ADS 1731	038a
6769618	<2	9/4/2012	ADS 1731	038a
6769619	<2	9/4/2012	ADS 1731	038a
6769620	<2	9/4/2012	ADS 1731	038a
6769621	<2	9/4/2012	ADS 1731	038a
6769936	<2	9/4/2012	ADS 1731	038b
6771415	<2	9/4/2012	ADS 1731	038b
6773615	<2	9/4/2012	ADS 1731	038a
6766763	<2	9/4/2012	ADS 1731	038a
6766764	<2	9/4/2012	ADS 1731	038a
6766765	<2	9/4/2012	ADS 1731	038a
6766766	<2	9/4/2012	ADS 1731	038a
6766767	<2	9/4/2012	ADS 1731	038a
6766768	<2	9/4/2012	ADS 1731	038a
6766769	<2	9/4/2012	ADS 1731	038a
	<u></u>			

Lancaster Laboratories

Method Summary/Reference for SDG# PTL07 I

Page 1 of 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 · 717-656-2300 Fax: 717-656-2681 · www.lancasterlabs.com

01163 GC/MS VOA Water Prep

An undiluted aliquot of the water sample or a dilution of the sample is purged with an inert gas and the volatiles are collected on an adsorbent trap that is subsequently desorbed onto a gas chromatographic column.

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 5030B, December 1996.

10903 8260 Std. Water Master

The water sample is purged and the volatile compounds are collected on a sorbent trap that is subsequently desorbed onto the GC/MS system for chromatographic and mass spectral analysis.

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 8260B, December 1996

Page 1 of 2

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 MWH Americas, Inc. P.O. Box 6610 Broomfield CO 80021

September 05, 2012

Project: GE Patillas Puerto Rico

Submittal Date: 08/23/2012 Group Number: 1331141 SDG: PTL07 PO Number: 10501055.010103 State of Sample Origin: PR

Client Sample Description	Lancaster Labs #	Collected
SW-01 Grab Water	6766763	08/21/2012 13:30
COC: 310619		
PW-01 Grab Water	6766764	08/21/2012 13:47
COC: 310619		
SW-02 Grab Water	6766765	08/21/2012 14:00
COC: 310619		
PW-02 Grab Water	6766766	08/21/2012 14:10
COC: 310619		
SW-03 Grab Water	6766767	08/21/2012 14:30
COC: 310619		
PW-03 Grab Water	6766768	08/21/2012 14:40
COC: 310619		

METHODOLOGY

The specified methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO 1 COPY TO

MWH Americas, Inc. Data Package Group Attn: Bradly Toth

ELECTRONIC COPY TO

MWH Americas, Inc.

Attn: Andy Ferenc

Respectfully Submitted,

Page 2 of 2

ANALYTICAL RESULTS

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Prepared for:

MWH Americas, Inc. P.O. Box 6610 Broomfield CO 80021

September 05, 2012

Natalie R. Luciano

Matalia E 2

Specialist

(717) 556-7258

Lancaster

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL.	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meg	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĽ	milliliter(s)	Ĺ	liter(s)
m3	cubic meter(s)	μL	microliter(s)
	• •	pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Inorganic Qualifiers

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
c	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
Ď	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ē	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
_	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	W	Post digestion spike out of control limits
•	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

3768.07

Page 1 of 3

MWH Americas, Inc.
Project: GE Patillas Puerto Rico
SDG: PTL07

Report Date: 9/5/2012 12:34 Submit Date: 8/23/2012 10:05

Analysis Name	Units	6766763 SW-01	MDL	6766764 PW-01	MDL	6766765 SW-02	MDL
Analysis Name	Offics	Result	IVIDL	Result	IVIDE	Result	WIDE
Acetone	ug/l	N.D.	- 6	N.D.	6	N.D.	6
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromoform	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Butanone	ug/l	N.D.	3	N.D.	3	N.D.	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Carbon Tetrachloride	ug/l	N.D.	1	N.D.	1	N.D.	1
Chlorobenzene	ug/l	N.D.	0.8	N.D.	0.8	. N.D.	0.8
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	N.D.	0.8	3 J	0.8	N.D.	0.8
Chloromethane	ບ <u>ສູ</u> /!	N.D.	1	N.D	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropropane	ug/l	N.D.	2	N.D.	2	N.D.	2
Dibromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromoethane	ug/l	N.D.	1	N.D.		N.D.	1
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1.1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	. N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
trans-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5

Page 2 of 3

	MWH America ct: GE Patillas SDG: PTL	Puerto Rico	,	•	ate: 9/5/2012 ate: 8/23/2012		
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Styrene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	i	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	i	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	i	. N.D.	1	. N.D.	1
Vinyl Chloride	ug/l	N.D.	i	N.D.	1	N.D.	1
m+p-Xylene	rig/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
	- 3						
•							
•		6766766		6766767		6766768	
Analysis Name	Units	6766766 PW-02		SW-03		6766768 PW-03	
Analysis Name	Units	PW-02 Result	MDL	SW-03 Result	MDL	PW-03 Result	MDL
Analysis Name Acetone	ug/l	PW-02 Result N.D.	6	SW-03 Result N.D.	6	PW-03 Result N.D.	6
		PW-02 Result		SW-03 Result		PW-03 Result N.D. N.D.	
Acetone	ug/l	PW-02 Result N.D.	6	SW-03 Result N.D.	6	PW-03 Result N.D. N.D. N.D.	6 . 0.5 1
Acetone Benzene	ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D.	6 0.5 1 1	SW-03 Result N.D. N.D.	6 0.5 1 1	PW-03 Result N.D. N.D. N.D. N.D.	6 . 0.5 1 1
Acetone Benzene Bromobenzene	ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D.	6 0.5 1	SW-03 Result N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1	PW-03 Result N.D. N.D. N.D. N.D. N.D. N.D.	6 . 0.5 1 1
Acetone Benzene Bromobenzene Bromochloromethane	ug/l ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1	SW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1	PW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 . 0.5 1 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1 1	SW-03 Result N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1 1	PW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 . 0.5 1 1 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1	SW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1	PW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 . 0.5 1 1 1 1 1 3
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1	SW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1	PW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 . 0.5 1 1 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone	ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 1 3	SW-03 Result N.D.	6 0.5 1 1 1 1 1 3	PW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 . 0.5 1 1 1 1 3 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 1 3	SW-03 Result N.D.	6 0.5 1 1 1 1 1 3	PW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 . 0.5 1 1 1 1 3 1 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 1 3 1	SW-03 Result N.D.	6 0.5 1 1 1 1 3 1	PW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 . 0.5 1 1 1 1 3 1 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1	SW-03 Result N.D.	6 0.5 1 1 1 1 3 1 1	PW-03 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 . 0.5 1 1 1 1 3 1 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1	SW-03 Result N.D.	6 0.5 1 1 1 1 3 1 1 1	PW-03 Result N.D.	6 . 0.5 1 1 1 1 3 1 1 1 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	SW-03 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	PW-03 Result N.D.	6 . 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroethane	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 1 0.8	SW-03 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 1 0.8	PW-03 Result N.D.	6 . 0.5 1 1 1 1 3 1 1 1 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	SW-03 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	PW-03 Result N.D.	6 .0.5 1 1 1 1 3 1 1 1 0.8 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	SW-03 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	PW-03 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	SW-03 Result N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	PW-03 Result N.D.	6 .0.5 1 1 1 1 3 1 1 1 0.8 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	PW-02 Result N.D. 6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	SW-03 Result N.D. 6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	PW-03 Result N.D. 6 .0.5 1 1 1 1 3 1 1 1 0.8 1 0.8 1			

Page 3 of 3

Pro	MWH Americas oject: GE Patillas P SDG: PTL07	uerto Rico		•	e: 9/5/2012 12 : 8/23/2012 1		
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1 .	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1.1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1.2-Dichloroethane	· ug/l	N.D.	1	N.D.	1	N.D.	1
1.1-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	. 1	N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
trans-1,3-Dichloropropene	ug/l	· N.D.	1	N.D.	1	N.D.	1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3 .	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Styrene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
•	-						

CAT No.	Analysis Name	Method	Trial ID Batch	Analysis Date/Time	Analyst	Dilution
NO.	Allalysis Name	Metriod	ib batcii	Date/Time	Allalyst	Dilation
6766763	3 SW-01 Grab Water					
10903	Volatiles by 8260	SW-846 8260B	1 Y122472AA	9/4/12 0726	Stephanie A	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 Y122472AA	9/4/12 0726	Selis Stephanie A Selis	1
676676	4 PW-01 Grab Water					
10903	Volatiles by 8260	SW-846 8260B	. 1 Y122472AA	9/4/12 0747	Stephanie A Selis	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 Y122472AA	9/4/12 0747	Stephanie A Selis	1
676676	5 SW-02 Grab Water	•				
10903	Volatiles by 8260	SW-846 8260B	1 Y122472AA	9/4/12 0807	Stephanie A Selis	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 Y122472AA	9/4/12 0807	Stephanie A Selis	1
6766760	6 PW-02 Grab Water					
10903	Volatiles by 8260	SW-846 8260B	1 Y122472AA	9/4/12 0828	Stephanie A Selis	1 .
01163	GC/MS VOA Water Prep	SW-846 5030B	1 Y122472AA	9/4/12 0828	Stephanie A Selis	1
6766767 10903	7 SW-03 Grab Water Volatiles by 8260	SW-846 8260B	1 Y122472AA	9/4/12 0849	Stephanie A	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 Y122472AA	9/4/12 0849	Selis Stephanie A Selis	1
					Sells	
	B PW-03 Grab Water					
10903	Volatiles by 8260	SW-846.8260B	1 Y122472AA	9/4/12 0909	Stephanie A Selis	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 Y122472AA	9/4/12 0909 ·	Stephanie A Selis	1

Volatiles by GC/MS Data

Case Narrative/Conformance Summary

Case Narrative/Conformance Summary

CLIENT: MWH Americas, Inc. SDG: PTL07

GC/MS Volatiles

Fraction: Volatiles by GC/MS

	Matrix					
Sample #	Client ID	Liquid	Solid	DF	<u>Comments</u>	
6766763	SW-01	X		1		
6766764	PW-01	X		1		
6766765	SW-02	X		1		
6766766	PW-02	X		1		
6766767	SW-03	X		1		
6766768	PW-03	X		1		

See QC Reference List for Associated Batch QC Samples

SAMPLE RECEIPT:

Samples were received in good condition and within temperature requirements.

HOLDING TIME:

All holding times were met.

PREPARATION/EXTRACTION/DIGESTION:

No problems were encountered.

CALIBRATION/STANDARDIZATION:

All criteria were met.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

MS/MSD

Matrix QC may not be included if site-specific QC were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, laboratory spike data (LCS) are provided.

SAMPLE ANALYSIS:

No problems were encountered with the analysis of the samples.

9/18/2012 8:03:13 AM Page 1 of 2

Lancaster Laboratories

Case Narrative/Conformance Summary

CLIENT: MWH Americas, Inc. SDG: PTL07

GC/MS Volatiles

Fraction: Volatiles by GC/MS

Abbreviation Key

UNSPK = Unspiked (for MS/MSD)	LOQ = Limit of Quantitation	
MS = Matrix Spike	MDL = Method Detection Limit	
MSD = Matrix Spike Duplicate	ND = Not Detected	
BKG = Background (for Duplicate)	J = Estimated Value	
D = Duplicate (DUP)	E= out of calibration range	
LCS = Lab Control Sample	RE = Repreparation/Reanalysis	
LCSD = Lab Control Sample Duplicate	* = Out of Specification	

Narrative Reviewed and Approved $\frac{9/18/12}{\text{(Date)}}$ by

Judi Brown Specialist

Page 2 of 2

GC/MS VOLATILES CALCULATIONS:

1. Relative response factor (RRF)

Where:

Ax = Area of the characteristic ion for the compound to be measured.

Ais = Area of the characteristic ion for the specific internal standard to be measured.

Cis = Concentration of the internal standard.

Cx = Concentration of the compound to be measured.

2. % Relative Standard Deviation (%RSD)

3. % Difference (%D)

Where

RRFc=Relative response factor from continuing calibration standard. RRFi = Mean relative response factor from the initial calibration.

4. Concentration

Where:

Ax, Ais, RRF are as given in 1. above.

Is = Concentration of internal standard added in parts per billion (ug/I)

Df = Dilution factor

5. % Recovery (%Rec)

Where:

SSR = Spiked sample result

SR = Sample result

SA = Spike added

6. Relative Percent Difference (RPD)

Where:

MSR = Matrix spike recovery

MSDR = Matrix spike duplicate recovery

Quality Control and Calibration Summary Forms

Lancaster Laboratories

Quality Control Reference List GC/MS Volatiles

CLIENT: MWH Americas, Inc.

SDG: PTL07

Analysis	Batch Number	Sample Number	Analysis Date
Volatiles by 8260	Y122472AA	VBLKY65	09/04/2012 00:39:00
•		LCSY65	09/04/2012 01:58:00
		LCDY65	09/04/2012 02:19:00
		6766763	09/04/2012 07:26:00
		6766764	09/04/2012 07:47:00
		6766765	09/04/2012 08:07:00
		6766766	09/04/2012 08:28:00
		6766767	09/04/2012 08:49:00
		6766768	09/04/2012 09:09:00

Quality Control Summary Method Blank GC/MS Volatiles SDG: PTL07 Matrix: LIQUID

Y122472AA / VBLKY65 Analyte	Analysis Date	Blank Results	Units	MDL	LOQ
Dichlorodifluoromethane	09/04/12	N.D.	ug/l	1	5
Chloromethane	09/04/12	N.D.	ug/l	1	5
Vinyl Chloride	09/04/12	N.D.	ug/l	1	5
Bromomethane	09/04/12	N.D.	ug/l	11	5
Chloroethane	09/04/12	N.D.	ug/l	1	5
Trichlorofluoromethane	09/04/12	N.D.	ug/l	1	5
1,1-Dichloroethene	09/04/12	N.D.	ug/l	0.8	5
Methyl Tertiary Butyl Ether	09/04/12	N.D.	ug/l	0.5	5
Acetone	09/04/12	N.D.	ug/l	6	20
Ethylbenzene	09/04/12	N.D.	ug/l	0.8	5
1,1,1,2-Tetrachloroethane	09/04/12	N.D.	ug/l	1	5
m+p-Xylene	09/04/12	N.D.	ug/l	0.8	5
Methylene Chloride	09/04/12	N.D.	ug/l	2	5
o-Xylene	09/04/12	N.D.	ug/l	0.8	5
trans-1,2-Dichloroethene	09/04/12	N.D.	ug/l	0.8	5
Styrene	09/04/12	N.D.	ug/l	1	5
Bromoform	09/04/12	N.D.	ug/l	1	_ 5
1,1-Dichloroethane	09/04/12	N.D.	ug/l	1	5
Isopropylbenzene	09/04/12	N.D.	ug/l	1	5
2-Butanone	09/04/12	N.D.	ug/l	3	10
1,1,2,2-Tetrachloroethane	09/04/12	N.D.	ug/l	1	5
Bromobenzene	09/04/12	N.D.	ug/l	1	5
cis-1,2-Dichloroethene	09/04/12	N.D.	ug/l	0.8	5
2,2-Dichloropropane	09/04/12	N.D.	ug/l	1	5
1,2,3-Trichloropropane	09/04/12	N.D.	ug/l	1	5
Bromochloromethane	09/04/12	N.D.	ug/l	1	5
n-Propylbenzene	09/04/12	N.D.	ug/l	1	5
Chloroform	09/04/12	N.D.	ug/l	0.8	5
2-Chlorotoluene	09/04/12	N.D.	ug/l	1	5
1,1,1-Trichloroethane	09/04/12	N.D.	ug/l	0.8	5
1,3,5-Trimethylbenzene	09/04/12	N.D.	ug/l	1	5
4-Chlorotoluene	09/04/12	N.D.	ug/l	1	5
1,1-Dichloropropene	09/04/12	N.D.	ug/l	1	5
Benzene	09/04/12	N.D.	ug/l	0.5	5
tert-Butylbenzene	09/04/12	N.D.	ug/l	1	5
Carbon Tetrachloride	09/04/12	N.D.	ug/l	l	5
1,2-Dichloroethane	09/04/12	N.D.	ug/l	1	5
Trichloroethene	09/04/12	N.D.	ug/l	1	5
1,2-Dichloropropane	09/04/12	N.D.	ug/l	1	5
1,2,4-Trimethylbenzene	09/04/12	N.D.	ug/l	1	5
sec-Butylbenzene	09/04/12	N.D.	ug/l	1	5
Dibromomethane	09/04/12	N.D.	ug/l	1	5
Bromodichloromethane	09/04/12	N.D.	ug/l	1	5
1,3-Dichlorobenzene	09/04/12	N.D.	ug/l	1	5
cis-1,3-Dichloropropene	09/04/12	N.D.	ug/l	1	5

Lancaster Laboratories

Quality Control Summary Method Blank GC/MS Volatiles SDG: PTL07

Matrix: LIQUID

Y122472AA / VBLKY65	1 1 5	DI	TI:4-	MDI	100
Analyte	Analysis Date	Blank Results	Units	MDL	LOQ
p-Isopropyltoluene	09/04/12	N.D.	ug/l	11	5
1,4-Dichlorobenzene	09/04/12	N.D.	ug/l	11	5
4-Methyl-2-pentanone	09/04/12	N.D.	ug/l	3	10
Toluene	09/04/12	N.D.	ug/l	0.7	5
n-Butylbenzene	09/04/12	N.D.	ug/l	1	5
trans-1,3-Dichloropropene	09/04/12	N.D.	ug/l	1	5
1,2-Dichlorobenzene	09/04/12	N.D.	ug/l	1	5
1,1,2-Trichloroethane	09/04/12	N.D.	ug/l	0.8	5
1,2-Dibromo-3-chloropropane	09/04/12	N.D.	ug/l	2	5
Tetrachloroethene	09/04/12	N.D.	ug/l	0.8	5
1,3-Dichloropropane	09/04/12	N.D.	ug/l	1	5
1,2,4-Trichlorobenzene	09/04/12	N.D.	ug/l	1	5
Hexachlorobutadiene	09/04/12	N.D.	ug/l	2	5
Naphthalene	09/04/12	N.D.	ug/l	1	5
Dibromochloromethane	09/04/12	N.D.	ug/l	1	5
1,2-Dibromoethane	09/04/12	N.D.	ug/l	1	5
1,2,3-Trichlorobenzene	09/04/12	N.D.	ug/l	1	5
Chlorobenzene	09/04/12	N.D.	ug/l	0.8	5

Lancaster Laboratories

Quality Control Summary Surrogates GC/MS Volatiles SDG: PTL07

Matrix: LIQUID

Y122472AA	Dibromoflu	oromethane	1,2-Dichlor	1,2-Dichloroethane-d4 T		Toluene-d8		orobenzene
İ	Spike		Spike		Spike		Spike	-
	Added	50 ug/l	Added	50 ug/l	Added	50 ug/l	Added	50 ug/l
	%		%		%		%	
Sample	Recovery	Limits	Recovery	Limits	Recovery	Limits	Recovery	Limits
VBLKY65	106	80 - 116	102	77 - 113	97	80 - 113	94	78 - 113
LCSY65	104	80 - 116	103	77 - 113	98	80 - 113	98	78 - 113
LCDY65	103	80 - 116	103	77 - 113	98	80 - 113	98	78 - 113
6766763	107	80 - 116	103	77 - 113	97	80 - 113	94	78 - 113
6766764	108	80 - 116	103	77 - 113	96	80 - 113	92	78 - 113
6766765	109	80 - 116	104	77 - 113	97	80 - 113	93	78 - 113
6766766	110	80 - 116	104	77 - 113	96	80 - 113	93	78 - 113
6766767	109	80 - 116	104	77 - 113	96	80 - 113	92	78 - 113
6766768	109	80 - 116	104	77 - 113	97	80 - 113	92	78 - 113

Lancaster Laboratories

Quality Control Summary Laboratory Control Standard (LCS) Laboratory Control Standard Duplicate(LCSD)

SDG: PTL07 Matrix: LIQUID

GC/MS Volatiles

LCS: LCSY65		72AA (Sample r		763-67667	68)			
LCSD: LCDY65	Spike	LCS	LCSD					
	Added	Conc	Conc	LCS	LCSD	%Rec		%RPD
Analyte	ug/l	ug/l	ug/l	%Rec	%Rec	Limits	%RPD	Limits
Dichlorodifluoromethane	20	15.29	15.11	76	76	47-120	11	30
Chloromethane	20	15.18	15.04	76	75	60-129	1	30
Vinyl Chloride	20	15.77	15.14	79	76	56-123	4	30
Bromomethane	20	16.91	16.57	85	83	44-120	2	30
Chloroethane	20	16.23	15.63	81	78	49-129	4	30
Trichlorofluoromethane	20	21.3	20.58	106	103	56-128	3	30
1,1-Dichloroethene	20	20.07	19.4	100	97	80-120	3	30
Methyl Tertiary Butyl Ether	20	18.99	18.76	95	94	68-121	1	30
1,1,1,2-Tetrachloroethane	20	19.89	19.67	99	98	79-120	11	30
Acetone	150	162.5	196.74	108	131	38-212	19	30
Ethylbenzene	20	18.44	18.15	92	91	79-120	2	30
m+p-Xylene	40	37.59	36.87	94	92	77-120	2	30
Methylene Chloride	20	19.1	18.97	96	95	80-126	1	30
o-Xylene	20	18.43	18.53	92	93	77-120	1	30
Styrene	20	17.21	17.07	86	85	77-120	1	30
trans-1,2-Dichloroethene	20	19.01	19.14	95	96	80-120	1	30
1,1-Dichloroethane	20	18.29	17.97	91	90	79-120	2	30
Bromoform	20	18.51	17.9	93	90	61-120	3	30
Isopropylbenzene	20	18.92	18.66	95	93	77-120	1	30
1,1,2,2-Tetrachloroethane	20	18.25	18.35	91	92	75-123	1	30
2-Butanone	150	133.93	146.25	89	97	53-155	9	30
Bromobenzene	20	18.23	18.46	91	92	80-120	1	30
cis-1,2-Dichloroethene	20	19.75	19.66	99	98	80-120	0	30
1,2,3-Trichloropropane	20	18.48	18.78	92	94	76-120	2	30
2,2-Dichloropropane	20	19.62	19.31	98	97	67-124	2	30
Bromochloromethane	20	19.69	19.38	98	97	77-130	2	30
n-Propylbenzene	20	18.24	18.28	91	91	77-130	0	30
2-Chlorotoluene	20	18.64	18.8	93	94	80-120	1	30
Chloroform	20	19.1	18.61	95	93	77-122	3	30
1,1,1-Trichloroethane	20	19.61	19.06	98	95	70-121	3	30
1,3,5-Trimethylbenzene	20	18.35	18.32	92	92	68-124	0	30
1,1-Dichloropropene	20	18.57	18.1	93	90	80-120	3	30
4-Chlorotoluene	20	18.23	18.42	91	92	80-120	1	30
1,2-Dichloroethane	20	19.35	18.53	97	93	64-130	4	30
Benzene	20	18.98	18.65	95	93	77-121	2	30
Carbon Tetrachloride	20	20.67	20.36	103	102	67-122	2	30
tert-Butylbenzene	20	18.09	18.3	90	91	80-120	1	30
Trichloroethene	20	19.36	18.97	97	95	80-120	2	30
1,2,4-Trimethylbenzene	20	18.05	18.21	90	91	69-122	1	30
1,2-Dichloropropane	20	17.66	17.33	88	87	80-120	2	30
Dibromomethane	20	19.16	18.73	96	94	80-120	2	30
sec-Butylbenzene	20	18.26	18.17	91	91	74-124	0	30

Lancaster Laboratories

Quality Control Summary Laboratory Control Standard (LCS) Laboratory Control Standard Duplicate(LCSD)

SDG: PTL07 Matrix: LIQUID

GC/MS Volatiles

LCS: LCSY65	Batch: Y1224	72AA (Sample n	umber(s): 6766	763-67667	68)			
LCSD: LCDY65	Spike	LCS	LCSD					
	Added	Conc	Conc	LCS	LCSD	%Rec		%RPD
Analyte	ug/l	ug/l	ug/l	%Rec	%Rec	Limits	%RPD	Limits
1,3-Dichlorobenzene	20	18.03	18	90	90	80-120	0	30
Bromodichloromethane	20	19.57	18.99	98	95	73-120	3	30
cis-1,3-Dichloropropene	20	19.88	19.62	99	98	78-120	1	30
p-Isopropyltoluene	20	18.16	18.01	91	90	77-121	1	30
1,4-Dichlorobenzene	20	18.8	19.05	94	95	80-120	1	30
4-Methyl-2-pentanone	100	81.54	80.72	82	81	58-133	1	30
Toluene	20	18.38	18.07	92	90	79-120	2	30
n-Butylbenzene	20	17.5	17.56	88	88	73-130	0	30
trans-1,3-Dichloropropene	20	18.13	17.81	91	89	79-120	2	30
1,1,2-Trichloroethane	20	19.42	18.89	97	94	80-120	3	30
1,2-Dichlorobenzene	20	19.31	19.2	97	96	80-120	1	30
1,2-Dibromo-3-chloropropane	20	16.72	17.28	84	86	56-126	3	30
Tetrachloroethene	20	18.98	18.91	95	95	79-120	0	30
1,2,4-Trichlorobenzene	20	18.5	18.42	93	92	72-120	0	30
1,3-Dichloropropane	20	18.38	18.02	92	90	80-120	2	30
Hexachlorobutadiene	20	17.61	17.57	88	88	58-120	0	30
Naphthalene	20	18.31	18.08	92	90	47-126	1	30
1.2,3-Trichlorobenzene	20	18.26	17.89	91	89	71-120	2	30
1,2-Dibromoethane	20	18.78	18.61	94	93	76-120	11	30
Dibromochloromethane	20	19.89	19.6	99	98	72-120	1	30
Chlorobenzene	20	19.04	18.96	95	95	80-120	0	30

5 A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	Lancaster	Laboratories	Contract:
-----	-------	-----------	--------------	-----------

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:_PTL07___

Lab File ID: yl10t01.d BFB Injection Date: 07/10/12

Instrument ID: HP09355 BFB Injection Time: 08:43

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

1		% RELATIVE	
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE	
=====		=======================================	
50	15.0 - 40.0% of mass 95	18.02	
75	30.0 - 60.0% of mass 95	48.08	
95	Base peak, 100% relative abundance	100.00	
96	5.0 - 9.0% of mass 95	6.22	
173	Less than 2.0% of mass 174	0.00 (0.00)1	
174	Greater than 50.0% of mass 95	88.48	
175	5.0 - 9.0% of mass 174	6.36 (7.19)1	
176	Greater than 95.0%, but less than 101.0% of mass 174	84.46 (95.46)1	
177	5.0 - 9.0% of mass 176	5.70 (6.75)2	
i i		1	

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	LAB	LAB	DATE	TIME
	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================		========	=======
01	VSTD300	yl10i01.d	07/10/12	09:00
02	VSTD100	yl10i02.d	07/10/12	09:21
03	VSTD50	yl10i03.d	07/10/12	09:42
04	VSTD20	yl10i04.d	07/10/12	10:02
05	VSTD10	yl10i05.d	07/10/12	10:23
06	VSTD4	yl10i06.d	07/10/12	10:44
07	VSTD300	yl10i11.d	07/10/12	11:58
08	VSTD100	yl10i12.d	07/10/12	12:19
09	VSTD50	yl10i13.d	07/10/12	12:41
10	VSTD20	yl10i14.d	07/10/12	13:07
11	VSTD10	yl10i15.d	07/10/12	13:28
12	VSTD4	yl10i16.d	07/10/12	13:50
13	VSTD1	yl10i17.d	07/10/12	14:10
		İ		

5 A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab 1	lame: Lancaster	ancaster Laboratories	Contract:	
Lab 1	lame: Lancaster	ancaster Laboratories		

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:_PTL07___

Lab File ID: ys03t05.d BFB Injection Date: 09/03/12

Instrument ID: HP09355 BFB Injection Time: 23:39

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		=======
50	15.0 - 40.0% of mass 95	18.09
75	30.0 - 60.0% of mass 95	50.44
95	Base peak, 100% relative abundance	100.00
96	5.0 - 9.0% of mass 95	6.82
173	Less than 2.0% of mass 174	0.22 (0.25)1
174	Greater than 50.0% of mass 95	88.09
175	5.0 - 9.0% of mass 174	6.56 (7.45)1
176	Greater than 95.0%, but less than 101.0% of mass 174	87.49 (99.32)1
177	5.0 - 9.0% of mass 176	5.83 (6.66)2
		[

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	LAB	LAB	DATE	TIME
	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=======================================	=======================================	======	======
01	VSTD50	ys03c01.d	09/04/12	00:19
02	VBLKY65	ys03b05.d	09/04/12	00:39
03	LCSY65	ys03131a.d	09/04/12	01:58
04	LCDY65	ys03132a.d	09/04/12	02:19
05	6769939	ys03s31.d	09/04/12	03:20
06	6769616	ys03s32.d	09/04/12	03:40
07	6769617	ys03s33.d	09/04/12	04:01
08	6769618	ys03s34.d	09/04/12	04:21
09	6769619	ys03s35.d	09/04/12	04:42
10	6769620	ys03s36.d	09/04/12	05:02
11	6769621	ys03s37.d	09/04/12	05:43
12	6769936DL	ys03s38.d	09/04/12	06:03
13	6771415DL2	ys03s39.d	09/04/12	06:24
14	6773615	ys03s40.d	09/04/12	06:45
15	6773615DL	ys03s41.d	09/04/12	07:05
16	6766763	ys03s42.d	09/04/12	07:26
17	6766764	ys03s43.d	09/04/12	07:47
18	6766765	ys03s44.d	09/04/12	08:07
19	6766766	ys03s45.d	09/04/12	08:28
20	6766767	ys03s46.d	09/04/12	08:49
21	6766768	ys03s47.d	09/04/12	09:09
22	6766769	ys03s48.d	09/04/12	09:30
Ì		-		İİ

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

_ab	Name:	Lancaster	Laboratories	Contract	

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Instrument ID: HP09355 Calibration Date(s): 07/10/12 07/10/12

Heated Purge: (Y/N) Y Calibration Times: 11:58 14:10

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

COMPOLIND	LAB FILE ID: RRF 1 =				y(1011			yt 1011:			
Dichlorodifluoromethane	RRF 20= yl10i14.d RRF 50=	yl 1011.	3.d I	RRF1UU=	yt1011	2.d (KKF3UU=	ytiuii	1.0		
Dichlorodif Luoromethane 0, 3008 0, 4256 0, 4571 0, 4259 0, 448 0, 4000 0, 3801 0, 4161 11 AVG Viryl Chloride 10, 3769 0, 4195 0, 4708 0, 4407 0, 3383 0, 3576 0, 4261 11 AVG Viryl Chloride 10, 3764 0, 2768 0, 2893 0, 2764 0, 2777 0, 2757 0, 2525 0, 2889 14 AVG Rommethane 10, 2481 0, 2615 0, 2917 0, 2429 0, 2328 0, 2525 0, 1991 0, 2431 12 AVG Chloroethane 0, 1935 0, 2260 0, 2520 0, 2072 0, 1979 0, 1659 0, 2063 13 AVG Chloroethane 0, 2481 0, 2615 0, 2979 0, 4461 0, 4000 0, 4588 0, 4280 0, 4863 7 AVG 14 0, 4000 0, 4588 0, 4280 0, 4863 7 AVG 14 AVG 0, 3867 0, 4588 0, 4280 0, 4863 7 AVG 14 AVG		l	<u> </u>	l		<u> </u>	Ï	i	l	-% T	CAL.
Dichlorodiftuuromethane	COMPOUND	RRF 1	RRF 4	RRF 10	RRF 20	RRF 50	RRF100	RRF300	RRF	RSD	METHOD
Chloromethane											
viryl Chloride											
1,3-Butadiene											
Brommethane	Vinyl Chloride	*0.3790	0.4195	0.4708	0.4047	0.3838	0.3745	0.3447	0.3907		
Chloroethane	1,3-Butadiene	0.3/64	0.2700	0.2093	0.2724	0.2777	0.2771	0.2525	0.2009		
Dichlorofluoromethane C1-5227 C1-5359 C1-760 C1-4822 C1-4895 C1-4895 C1-4896 C1-480		0.2401	0.2013	0.2917	0.2429	0.2320	n 1040	0.1551	0.2431		
Trichtoroftuoromethane n-Pentane n-Pentane n-Pentane n-Pentane chyl Ether n-Pentane n-Pe											
n-Pentane											
Ethyl Ether 0.2587 0.2796 0.2396 0.2532 0.2496 0.2489 8 AVG Acrolein 0.3540 0.3017 0.2990 0.2780 0.2783 0.2469 0.2932 11 AVG Acrolein 20.2581 1.7007 1.4991 1.7837 1.9663 1.7464 1.7124 10 AVG Acrolein 0.2586 0.2462 0.2222 0.22250 0.222										8	
Freon 125a										8	AVG
Acrolein			0.3540	0.3017	0.2900	0.2789	0.2733	0.2612	0.2932	11	AVG
Rectore	Acrolein		1.5781	1.7007	1.4991	1.7837	1.9663	1.7464	1.7124		
Acetone 0.0653 0.0653 0.0561 0.0562 0.0571 0.0483 0.0580 11 AVG AVG Carbon Disulfide 0.3913 0.4524 0.4429 0.4413 0.4459 0.4350 0.4576 0.5267 0.6270 13 AVG	-1,1-Dichloroethene	±0.2186	0.2462	0.2227	0.2176	0.2252	0.2250	0.2129	0.2240		
Methyl Iodide 2-Propanol 0.3913 0.4524 0.4429 0.4113 0.4395 0.4345 0.4112 0.4262 5 AVG Carbon Disulfide 0.7606 0.5763 0.5826 0.6270 0.6270 13 AVG AVG 0.6933 0.7720 0.6933 0.7720 0.7763 0.7246 0.6924 0.7055 3 AVG AVG AVG AVG 0.6933 0.6722 0.7763 0.7246 0.6924 0.7055 3 AVG AVG AVG AVG AVG 0.4933 0.6722 0.7263 0.7246 0.6924 0.7055 3 AVG AV										- 1	
Carbon Disulfide											
Carbon Disulfide	1	0.3913								1	
Allyl Chloride Methyl Acetate Methyl Acetate Methylene Chloride 1.2431 1.3520 1.4944 1.33810 0.3942 0.4001 0.3566 0.4242 5 AVG Methylene Chloride 1.2431 1.3520 1.4944 1.3386 1.4452 1.5212 1.5020 1.4095 8 AVG Acrylonitrile Linis-1,2-Dichloroethene Methyl Tertiary Butyl Ether N-Hexane 1,2-Dichloroethene (total) 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 2,2-Dichloroethane 3,3394 0.3499 0.3114 0.3349 0.3102 0.3081 0.2966 0.3336 6 AVG 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3198 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3198 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.322 0.3396 0.3396 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.3493 0.3499 0.3114 0.3439 0.3599 0.3062 0.3336 6 AVG 0.3493 0.											
Methyl Acetate 0.4943 0.4447 0.3810 0.3842 0.4001 0.3566 0.4118 12 AVG Methylene Chloride 0.3056 0.2925 0.2788 0.2576 0.2688 0.2682 0.2527 0.2750 7 AVG Avg Colorable 1.2431 1.3520 1.4944 1.3086 1.4452 1.5212 1.5020 1.4095 8 AVG Avg Avg Avg Avg 0.2638 0.2688 0.2682 0.2681 1.5212 1.5020 1.4095 8 AVG Avg Avg Avg Avg Avg Avg Avg Avg Avg 0.2638 0.2688 0.2682 0.2171 0.1945 0.2259 10 Avg											
Methylene Chloride 1.2431 1.3520 1.2944 1.3086 1.2452 1.5212 1.5020 1.4095 8 AVG Acrylonitrile 0.2623 0.2936 0.2132 0.2285 0.2171 0.1945 0.2259 10 AVG AvG	, ,		0.4529	0.4340	0.4097	0.4233	0.4200	0.3700	0.4242		
t-Butyl Alcohol Acrylonitrile Lians-1,2-Dichloroethene Methyl Tertiary Butyl Ether 1,2-Dichloroethane 1,2-Buthoroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dic		0 3056									
Acrytonitrile		1 2431	1 3520	1 4944	1.3086	1.4452	1.5212	1.5020	1.4095		
Comparison Com										10	
Methyl Tertiary Butyl Ether n-Hexane 0.9590 1.0223 1.0435 0.9363 0.9793 0.9624 0.9183 0.9744 5 AWG n-Hexane 0.5373 0.4572 0.4472 0.4571 0.4571 0.4776 7 AVG n-Hexane 1,2-Dichloroethene (total) 0.2663 0.3092 0.2949 0.2755 0.2933 0.2876 0.2777 0.2864 5 AWG n-Hexane 7 AVG n-Hexane 0.5404 n-Hexane 0.4632 n-Hexane 0.4647 n-Hexane 0.4647 n-Hexane 0.4647 n-Hexane 0.4648 n-Hexane 0.4648 n-Hexane 0.4648 n-Hexane 0.4476 n-Hexane 0.4476 n-Hexane 0.4476	trans-1.2-Dichloroethene	0.2507	0.2988	0.2739	0.2608	0.2764	0.2671	0.2592	0.2695	6	AVG
n-Hexane	Methyl Tertiary Butyl Ether	0.9590	1.0223	1.0435	0.9363	0.9793	0.9624	0.9183	0.9744		AVG
1,1-Dichloroethane #0.4762 0.5712 0.5448 0.5132 0.5467 0.5430 0.5210 0.5309 6 AVG di-Isopropyl Ether 1.0637 1.1567 1.0730 0.9994 1.0324 1.0179 0.9654 1.0441 6 AVG 0.5055 0.4764 0.4632 0.4814 0.4783 0.4584 0.4772 3 AVG 0.512 0.2906 0.3106 0.3196 0.3081 0.2966 0.3032 5 AVG 0.22-Dichloropropane 0.3668 0.4436 0.4478 0.4077 0.4324 0.4270 0.4124 0.4149 6 AVG 0.22-Dichloropropane 0.3668 0.4436 0.4478 0.4077 0.4324 0.4270 0.4124 0.4149 6 AVG 0.4149 0.2141 0.2323 0.2059 0.2156 0.2196 0.2088 0.2157 4 AVG 0.4149 0.1639 0.1639 0.1457 0.1588 0.1599 0.1519 0.1570 4 AVG 0.4171 0.2233 0.2059 0.2156 0.2196 0.2088 0.2157 4 AVG 0.4171 0.2523 0.2059 0.2156 0.2088 0.2157 4 AVG 0.4171 0.2523 0.2059 0.2156 0.2088 0.2157 4 AVG 0.4171 0.2523 0.2059 0.2156 0.2088 0.2157 4 AVG 0.4171 0.2523 0.2059 0.2156 0.2196 0.2088 0.2157 4 AVG 0.4171 0.2523 0.2059 0.2156 0.2088 0.2157 4 AVG 0.4171 0.2523 0.2059 0.2156 0.2088 0.2157 4 AVG 0.4172 0.4172 0.4173 0.4173 10 AVG 0.4172 0.4173 0.4173 0.4474 0.5107 4 AVG 0.4174 0.5107 4 AVG 0.4174 0.5107 4 AVG 0.4174 0.5107 4 AVG 0.4174 0.4874 0.5107 4 AVG 0.4779 0.4269 0.4237 0.4422 0.4445 0.4231 0.4391 4 AVG 0.4779 0.4269 0.4237 0.4422 0.4445 0.4231 0.4391 4 AVG 0.4779 0.4373 0.4374 0.4572 0.3923 0.4201 0.4451 0.4243 0.4250 5 AVG 0.4373 0.4374 0.4572 0.3923 0.4201 0.4451 0.4243 0.4250 5 AVG 0.4373 0.4374 0.4683 0.4410 0.4451 0.4243 0.4250 5 AVG 0.4373 0.4374 0.4683 0.4410 0.4451 0.4243 0.4250 5 AVG 0.4277 0.4373 0.4346 0.4683 0.4410 0.4451 0.4243 0.4250 5 AVG 0.4373 0.4346 0.4683 0.4410 0.4451 0.4243 0.4250 5 AVG 0.4374 0.4373 0.4346 0.4683 0.4410 0.4451 0.4243 0.4250 5 AVG 0.4374 0.4373 0.4346 0.4683 0.4410 0.4451 0.4451 0.4243 0.4250 5 AVG 0.4374 0.4374 0.4373 0.4346 0.4683 0.4410 0.4451 0.4453 0.4250 5 AVG 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.4374 0.	n-Hexane		0.5373	0.4572	0.4472	0.4571	0.4791	0.4577	0.4726		
di-Isopropyl Ether 1.0637 1.1567 1.0730 0.9994 1.0324 1.0179 0.9654 1.0441 6 AVG 2.5 1.0610 0.5055 0.4764 0.4632 0.4814 0.4783 0.4584 0.4772 3 AVG 0.5055 0.4764 0.4632 0.4814 0.4783 0.4584 0.4772 3 AVG 0.5555 0.4764 0.4632 0.4814 0.4783 0.4584 0.4772 3 AVG 0.5555 0.4764 0.4632 0.4814 0.4783 0.4584 0.4772 3 AVG 0.5555 0.4764 0.4632 0.4814 0.4783 0.4584 0.4772 3 AVG 0.9665 0.9881 5 AVG 0.3981 0.2966 0.3032 5 AVG 0.3394 0.3394 0.3399 0.3102 0.3081 0.2966 0.3032 5 AVG 0.3981 0.2965 0.3082 0.3336 6 AVG 0.2906 0.3081 0.2966 0.3082 0.3336 6 AVG 0.4761 0.4631	1,2-Dichloroethene (total)	0.2663	0.3092	0.2949	0.2755	0.2933	0.2876	0.2779	0.2864		
2-Chloro-1,3-Butadiene Ethyl t-Butyl Ether cis-1,2-Dichloroethene 2-Butanone 2,2-Dichloropropane Propionitrile Bromochloromethane Tetrahydrofuran Chloroform 1,1,1-Trichloroethane Cyclohexane(mz 84) Cyclohexane(mz 84) Cyclohexane(mz 84) Cyclohexane(mz 84) Cyclohexane(mz 84) Cyclohexane(mz 84) Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane(mz 84) Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane(mz 84) Cyclohexane		#0.4762	0.5712	0.5448	0.5132	0.5467	0.5430	0.5210	0.5309		
Ethyl t-Butyl Ether cis-1,2-Dichloroethene 0.9576 1.0418 1.0550 0.9704 0.9966 0.9892 0.9063 0.9881 5 AVG 0.3154 0.3497 0.3497 0.3497 0.3497 0.3497 0.3497 0.3497 0.3497 0.3497 0.3497 0.4123 0.4149 6 AVG AV		1.0637	1.1567	1.0730	0.9994	1.0324	1.0179	0.9654	1.0441		
cis-1,2-Dichloroethene 0.2820 0.3196 0.3158 0.2903 0.3102 0.3081 0.2966 0.3032 5 AVG 2-Butanone 0.3668 0.4436 0.4178 0.4047 0.4324 0.4270 0.4123 0.4149 6 AVG Propionitrile 1.3938 1.5662 1.3863 1.5235 1.6403 1.6431 1.5255 7 AVG Bromochloromethane 0.1619 0.1639 0.1457 0.1588 0.1599 0.1519 0.1570 4 AVG Tetrahydrofuran 1.2723 1.3707 1.2464 1.4799 1.5901 1.5087 1.4113 10 AVG Chloroform *0.5256 0.5338 0.5256 0.4809 0.5111 0.5971 1.5087 1.4113 10 AVG Cyclohexane 0.5995 0.5308 0.5256 0.4806 0.4568 0.4658 0.4644 0.4499 0.4754 7 AVG Cyclohexane(mz 84) 0.4739 0.4269 0.		0.0576	0.5055	0.4/64	0.4632	0.4814	0.4783	0.4204	0.4//2		
2-Butanone 2,2-Dichloropropane Propionitrile Methacrylonitrile Bromochloromethane Tetrahydrofuran Chloroform 1,1,1-Trichloroethane Cyclohexane(mz 84) Cyclohexane(mz 84) Cyclohexane(mz 69) 1,1-Dichloropropene Carbon Tetrachloride Isobutyl Alcohol Benzene 1,2-Dichloroethane 1,2-Di		0.9376	11.0418	11.0550	0.9704	0.7700	0.9092	0.9065	0.7001	- 1	
2,2-Dichloropropane		0.2020								-	
Propionitrile 1.3938 1.5662 1.3863 1.5235 1.6403 1.6431 1.5255 7 AVG Methacrylonitrile 0.2141 0.2323 0.2059 0.2156 0.2196 0.2068 0.2157 4 AVG Bromochloromethane 0.1619 0.1639 0.1457 0.1588 0.1599 0.1519 0.1570 4 AVG Tetrahydrofuran 1.2723 1.3707 1.2464 1.4799 1.5901 1.5087 1.4113 10 AVG Chloroform *0.5256 0.5338 0.5256 0.4809 0.5111 0.5104 0.4874 0.5107 4 AVG 1,1,1-Trichloroethane 0.5462 0.4806 0.4568 0.4658 0.4644 0.4499 0.4754 7 AVG Cyclohexane 0.5995 0.5306 0.5213 0.5414 0.5456 0.5170 0.5426 6 AVG O.4739 0.4269 0.4237 0.4422 0.4445 0.4231 0.4391 4 AVG Cyclohexane(mz 84) 0.4739 0.4269 0.4237 0.4422 0.4445 0.4231 0.4391 4 AVG Cyclohexane(mz 69) 0.1708 0.1573 0.1574 0.1633 0.1642 0.1570 0.1617 3 AVG 1,1-Dichloropropene 0.3494 0.4375 0.4037 0.3890 0.4148 0.4160 0.4015 0.4017 7 AVG Carbon Tetrachloride 0.2945 0.3571 0.3456 0.3391 0.3700 0.3753 0.3683 0.3500 8 AVG Isobutyl Alcohol 0.4112 0.4572 0.3923 0.4201 0.4451 0.4243 0.4250 5 AVG Benzene 1.1127 1.2592 1.2146 1.1362 1.2037 1.1931 1.1305 1.1786 5 AVG 1,2-Dichloroethane 0.4373 0.4546 0.4683 0.4160 0.4431 0.4483 0.	1	0 3668								- 1	
Methacrylonitrile 0.2141 0.2323 0.2059 0.2156 0.2196 0.2068 0.2157 4 AVG Bromochloromethane 0.1619 0.1639 0.1457 0.1588 0.1599 0.1519 0.1570 4 AVG Tetrahydrofuran *0.5256 0.5338 0.5256 0.4644 1.4799 1.5901 1.5087 1.4113 10 AVG Chloroform *0.5256 0.5338 0.5256 0.4809 0.5111 0.5104 0.4874 0.5107 4 AVG 1,1,1-Trichloroethane 0.5462 0.4806 0.4568 0.4658 0.4644 0.4879 0.4754 7 AVG Cyclohexane 0.5995 0.5306 0.5213 0.5444 0.5456 0.5170 0.5466 6 AVG Cyclohexane(mz 84) 0.4739 0.4269 0.4237 0.4422 0.4445 0.4231 0.4391 4 AVG Cyclohexane(mz 69) 0.1708 0.1573 0.1574 0.1633 0.1642										7	
Bromochloromethane										4	AVG
Chloroform			0.1619	0.1639	0.1457	0.1588	0.1599	0.1519	0.1570		
1,1,1-Trichloroethane 0.4643 0.5462 0.4806 0.4568 0.4658 0.4644 0.4499 0.4754 7 AVG Cyclohexane 0.5995 0.5306 0.5213 0.5414 0.5456 0.5170 0.5426 6 AVG Cyclohexane(mz 69) 0.4739 0.4269 0.4237 0.4422 0.4445 0.4231 0.4391 4 AVG 1,-Dichloropropene 0.3494 0.4375 0.4037 0.3890 0.4148 0.4160 0.4015 0.4017 7 AVG Carbon Tetrachloride 0.2945 0.3571 0.3456 0.3391 0.3700 0.3753 0.3683 0.3500 8 AVG Isobutyl Alcohol 0.4112 0.4572 0.3923 0.4201 0.4451 0.4243 0.4243 0.4250 5 AVG 1,2-Dichloroethane 0.4373 0.4546 0.4683 0.4160 0.4431 0.4483 0.4243 0.4417 4 AVG 1,2-Dichloroethane 0.8749 0.0300 0.0385 0.0401 0.0365 0.0386 0.0393 0.0378 <t< td=""><td>Tetrahydrofuran</td><td>İ</td><td>1.2723</td><td>1.3707</td><td>1.2464</td><td>1.4799</td><td>1.5901</td><td>1.5087</td><td>1.4113</td><td></td><td></td></t<>	Tetrahydrofuran	İ	1.2723	1.3707	1.2464	1.4799	1.5901	1.5087	1.4113		
Cyclohexane 0.5995 0.5306 0.5213 0.5414 0.5456 0.5170 0.5426 6 AVG Cyclohexane(mz 84) 0.4739 0.4269 0.4237 0.4422 0.4445 0.4231 0.4391 4 AVG Cyclohexane(mz 69) 0.1708 0.1573 0.1574 0.1633 0.1642 0.1570 0.1617 3 AVG 1,1-Dichloropropene 0.3494 0.4375 0.4037 0.3890 0.4148 0.4160 0.4015 0.4017 7 AVG Carbon Tetrachloride 0.2945 0.3571 0.3456 0.3391 0.3700 0.3753 0.3683 0.3500 8 AVG Isobutyl Alcohol 0.4112 0.4572 0.3923 0.4201 0.4451 0.4423 0.4243 0.4243 0.4243 0.4243 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451 0.4451	Chloroform '	0.5256	0.5338	0.5256	0.4809	0.5111	0.5104	0.4874	0.5107		
Cyclohexane(mz 84) 0.4739 0.4269 0.4237 0.4422 0.4445 0.4231 0.4391 4 AVG Cyclohexane(mz 69) 0.1708 0.1573 0.1574 0.1633 0.1642 0.1570 0.1617 3 AVG 1,1-Dichloropropene 0.3494 0.4375 0.4037 0.3890 0.4148 0.4160 0.4015 0.4017 7 AVG Carbon Tetrachloride 0.2945 0.3571 0.3456 0.3391 0.3700 0.3753 0.3683 0.3500 8 AVG I sobutyl Alcohol 0.4112 0.4572 0.3923 0.4201 0.4451 0.4243 0.4250 5 AVG Benzene 1.2127 1.2592 1.2146 1.1362 1.2037 1.1931 1.1305 1.1786 5 AVG 1,2-Dichloroethane 0.4373 0.4546 0.4683 0.4160 0.4431 0.4483 0.4243 0.4243 0.4477 4 AVG 1,2-Dichloroethane 0.0300 0.0385 0.0401 0.0365 0.0386 0.0393 0.0378 0.0373 9 </td <td></td> <td>0.4643</td> <td>0.5462</td> <td>0.4806</td> <td>0.4568</td> <td>0.4658</td> <td>0.4644</td> <td>0.4499</td> <td>0.4754</td> <td></td> <td></td>		0.4643	0.5462	0.4806	0.4568	0.4658	0.4644	0.4499	0.4754		
Cyclohexane(mz 69) 0.1708 0.1573 0.1574 0.1633 0.1642 0.1570 0.1617 3 AVG 1,1-Dichloropropene 0.3494 0.4375 0.4037 0.3890 0.4148 0.4160 0.4015 0.4017 7 AVG Carbon Tetrachloride 0.2945 0.3571 0.3456 0.3391 0.3700 0.3753 0.3683 0.3500 8 AVG Isobutyl Alcohol 0.4112 0.4572 0.3923 0.4201 0.4451 0.4243 0.4250 5 AVG Benzene 1.1127 1.2592 1.2146 1.1362 1.2037 1.1931 1.1305 1.1786 5 AVG 1,2-Dichloroethane 0.4373 0.4546 0.4683 0.4160 0.4431 0.4483 0.4243 0.4247 4 AVG 1,2-Dichloroethane(mz 98) 0.0300 0.0385 0.0401 0.0365 0.0386 0.0393 0.0378 0.0373 9 AVG t-Amyl Methyl Ether n-Heptane 0.8749 0.9483 0.9776 0.8738 0.9258 0.9510 0.8926 0.9206 4 AVG											
1,1-Dichloropropene											
Carbon Tetrachloride 0.2945 0.3571 0.3456 0.3391 0.3700 0.3753 0.3683 0.3500 8 AVG Isobutyl Alcohol 0.4112 0.4572 0.3923 0.4201 0.4451 0.4243 0.4250 5 AVG Benzene 1.1127 1.2592 1.2146 1.1362 1.2037 1.1931 1.1305 1.1786 5 AVG 1,2-Dichloroethane 0.4373 0.4546 0.4683 0.4160 0.4483 0.4243 0.4417 4 AVG 1,2-Dichloroethane(mz 98) 0.0300 0.0385 0.0401 0.0365 0.0386 0.0393 0.0378 0.0373 9 AVG t-Amyl Methyl Ether 0.8749 0.9483 0.9776 0.8738 0.9258 0.9510 0.8926 0.9206 4 AVG n-Heptane 0.6925 0.5436 0.5448 0.5226 0.5357 0.5384 0.5629 11 AVG		0.7/0/									
Isobutyl Alcohol 0.4112 0.4572 0.3923 0.4201 0.4451 0.4243 0.4250 5 AVG		0.3494	0.43/3	0.4037	0.3690	0.4140	0.4100	n 3683	0.4017		
Benzene 1.1127 1.2592 1.2146 1.1362 1.2037 1.1931 1.1305 1.1786 5 AVG 1,2-Dichloroethane 0.4373 0.4546 0.4683 0.4160 0.4431 0.4483 0.4243 0.4417 4 AVG 1,2-Dichloroethane(mz 98) 0.0300 0.0385 0.0401 0.0365 0.0386 0.0393 0.0378 0.0373 9 AVG 1-Amyl Methyl Ether 0.8749 0.9483 0.9776 0.8738 0.9258 0.9510 0.8926 0.9206 4 AVG 0-Heptane 0.6925 0.5436 0.5448 0.5226 0.5357 0.5384 0.5629 11 AVG		0.2745	0.3377	0.3430	0.3371	0.3700	0.3753	0.4243	0.4250	- 1	
1,2-Dichloroethane 0.4373 0.4546 0.4683 0.4160 0.4431 0.4483 0.4243 0.4417 4 AVG 1,2-Dichloroethane(mz 98) 0.0300 0.0385 0.0401 0.0365 0.0386 0.0393 0.0378 0.0373 9 AVG 1-Amyl Methyl Ether 0.8749 0.9483 0.9776 0.8738 0.9258 0.9510 0.8926 0.9206 4 AVG n-Heptane 0.6925 0.5436 0.5448 0.5226 0.5357 0.5384 0.5629 11 AVG	,	1.1127	1.2592	1.2146	1.1362	1.2037	1.1931	1.1305	1.1786	1	
1,2-Dichloroethane(mz 98) 0.0300 0.0385 0.0401 0.0365 0.0386 0.0393 0.0378 0.0373 9 AVG t-Amyl Methyl Ether 0.8749 0.9483 0.9776 0.8738 0.9258 0.9510 0.8926 0.9206 4 AVG n-Heptane 0.6925 0.5436 0.5448 0.5226 0.5357 0.5384 0.5629 11 AVG	1	0.4373	0.4546	0.4683	0.4160	0.4431	0.4483	0.4243	0.4417	4	
t-Amyl Methyl Ether 0.8749 0.9483 0.9776 0.8738 0.9258 0.9510 0.8926 0.9206 4 AVG 0.6925 0.5436 0.5448 0.5226 0.5357 0.5384 0.5629 11 AVG		0.0300	0.0385	0.0401	0.0365	0.0386	0.0393	0.0378	0.0373	9	
n-Heptane 0.6925 0.5436 0.5448 0.5226 0.5357 0.5384 0.5629 11 AVG		0.8749	0.9483	0.9776	0.8738	0.9258	0.9510	0.8926	0.9206	4	
n-Butanol 0.3553 0.4134 0.3596 0.3896 0.4052 0.3873 0.3851 6 AVG	n-Heptane		0.6925	0.5436	0.5448	0.5226	0.5357	0.5384	0.5629		
<u> </u>	n-Butanol		0.3553	0.4134	0.3596	0.3896	0.4052	0.3873	0.3851	6	AVG
		l	l	l	l	l	l	l	I	ll	

RRF 1 = vl10i17.d RRF 4 = vl10i16.d RRF 10= yl10i15.d

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

LAB FILE ID:

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Code: LANCAS Case No.:____ SAS No.:____ SDG No.:____

Instrument ID: HP09355 Calibration Date(s): 07/10/12

07/10/12

Heated Purge: (Y/N) Y

Calibration Times: 11:58

14:10

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

LAB FILE ID:	RRF 1 = yl10i17.d	RRF $4 = yl10i16.d$	RRF 10= yl10i15.d
RRF 20= yl10i14.d	RRF 50= yl10i13.d	RRF100= yl10i12.d	RRF300= yl10i11.d

RRF 20= yl10i14.d RRF 50=				yl 10 i 12			yl10i1				
COMPOUND	RRF 1	RRF 4	RRF 10	RRF 20	RRF 50	RRF100	RRF300	RRF	% RSD =====	CAL. METHOD	
======================================	0.2830	0.3208				0.3035	0.2949		·4	AVG	ı
	*0.2990								5	AVG	÷
Methylcyclohexane(mz98)	1	0.3330	0.2361	0.2299	0.2424	0.2475	0.2347	0.2387	. 3	AVG	1
Methylcyclohexane	1	0.5432	n 5358	0.5248	0.5387	0.5549	0.5197	0.5362	2	AVG	ı
Methyl Methacrylate		0.3451	0.3335	0.3203	0.3425	0.3498	0.3341	0.3435	5	AVG	ı
Dibromomethane	0 1855	0.3431	0.3073	0.1936	0.2068	0.2085	0.2003	0.2031	5	AVG	ŀ
1,4-Dioxane	0.1055	n no51	0.2172	AAON N	0.2000	0 0972	0.1100	0 1021	7	AVG	1
Bromodichloromethane	0 300%	0.0751	0.1100	0.0700	0.7031	0.3870	0.3790	0 3592	8	AVG	1
2-Nitropropane	0.3074	0.3330	0.307	n 1416	0 1674	0.1773	0.1599	0.1565	9	AVG	1
• •							0.2562		3	AVG	ı
2-Chloroethyl Vinyl Ether	0.3891						0.4867		8	AVG	
cis-1,3-Dichloropropene	0.3691	0.4730	0.4700	0.4332	0.4570	0.5050	0.5729	0.4700	6	AVG	ı
_4=Methyl=2=Pentanone	*0.9602	1 1191	1 0734	1 0006	1 0577	1 0500	1 0070	1 0305	5	AVG	*
Toluene							0.6750		10	AVG	1
trans-1,3-Dichloropropene	0.5220	0.0100	0.0720	0.0121	0.0177	0.0700	0.7307	0.0300	5	AVG	ı
Ethyl Methacrylate	0.7402	0./392	0.0013	0.7027	0.7373	0.7051	0.3890	0.1400	6	AVG	ı
1,1,2-Trichloroethane	0.3002	0.4122	0.4320	0.3/0/	0.4002	0.4000	0.3070	0.3771	6	AVG	ı
Tetrachloroethene	0.4297	0.5197	0.4022	0.4003	0.40/3	0.4007	0.4761 0.6944	0.4773	6	AVG	ı
1,3-Dichloropropane	0.6436	0.7399	0.7722	0.0733	0.7277	0.7327	0.0944	0.7111	6	AVG	ı
2-Hexanone	. 7007	0.7019	0.7297	0.0000	0./334	0.7492	0.6504	0.7030	11	AVG	ı
Dibromochloromethane	0.3283	0.3582	0.3985	0.3627	0.4154	0.4334	0.4327	0.3902		1	ı
1,2-Dibromoethane	0.3930	0.4358	0.4/6/	0.4182	0.4447	0.4517	0.4364	0.4307	6	AVG	#
	#1.1056	1.2234	1.2236	1.1217	1.1962	1.1983	1.1336	1.1718	4	AVG	#
1,1,1,2 Tetrachlorocthane	0.3358	0.3791	0.4012	0.3705	0.4067	0.4152	0.4022	0.3072	7	AVG	1
Ethylbenzene	*	2.1351	2.0672	1.9353	2.0664	2.0759	1.8998	2.0299	5	AVG	î
m+p-Xylene		0.8293	0.8095	0.7596	0.8036	0.8031	0.7390	0.7907	4	· AVG	1
Xylene (Total)	i	0.8207	0.8093	0.7561	0.8001	0.8016	0.7376	0.7875	. 4	AVG	1
o-Xylene		0.8034	0.8087	0.7491	0.7930	0.7988	0.7347	0.7813	4	AVG	1
Styrene		1.3560	1.3883	1.2680	1.3580	1.3663	1.2554	1.3320	' 4	AVG	Ţ
Bromoform	#	0.2663	0.3159	0.2888	0.3336	0.3604	0.3652	0.3217	12	AVG	#
1sopropylbenzene		2.1666	2.0792	1.9797	2.0855	2.0731	1.8288	2.0355	6	AVG	1
Cyclohexanone	0.4708	0.4858	0.4938	0.4727	0.5234	0.5020	0.5452	0.4991	5	AVG	
1,1,2,2-Tetrachloroethane	#1.1427	1.2078	1.2795	1.1298	1.1618	1.1792	1.1354	1.1766	5	AVG	#
trans-1,4-Dichloro-2-Butene	1	0.3769	0.4247	0.3841	0.4129	0.4161	0.4151	0.4050	. 5	AVG	
Bromobenzene		0.9616	0.9613	0.8697	0.9117	0.9148	0.8930	0.9187	4	AVG	١
1,2,3-Trichloropropane		0.4010	0.4099	0.3588	0.3693	0.3742	0.3666	0.3800	5	AVG	1
n-Propylbenzene		4.4103	4.2282	3.9626	4.1220	4.0926	3.4896	4.0509	8	AVG	1
2-Chlorotoluene		0.8708	0.8768	0.8123	0.8421	0.8539	0.8179	0.8456	3	AVG	1
1,3,5-Trimethylbenzene							2.6984		5	AVG	1
4-Chlorotoluene	1	0.9275	0.9224	0.8433	0.8845	0.8915	0.8399	0.8848	4	AVG	1
tert-Butylbenzene	1	0.7124	0.6796	0.6532	0.6818	0.7009	0.6415	0.6782	4	AVG	1
Pentachloroethane		0.4852	0.5240	0.4971	0.5547	0.6027	0.5390	0.5338	8	AVG	Т
1,2,4-Trimethylbenzene		3.2765	3.1903	3.0012	3.1154	3.1492	2.7717	3.0840	6	AVG	1
sec-Butylbenzene	1	4.0454	3.8760	3.6774	3.7688	3.7959	3.1967	3.7267	8	AVG	Т
p-Isopropyltoluene	1	3.5709	3,4798	3.2939	3.3891	3.4320	2.9091	3.3458	7	AVG	1
1,3-Dichlorobenzene		1.8689	1.8227	1.6829	1.7455	1.7541	1.6636	1.7563	4	AVG	Т
1,4-Dichlorobenzene							1.6824		5	AVG	1
1,2,3-Trimethylbenzene	i	3.2834	3.3194	3.0204	3.1818	3.2864	2.7098	3.1335	7	AVG	1
Benzyl Chloride	1	2.1867	2.5177	2.3217	2.5108	2.6206	2.4511	2.4348	6	AVG	
1,3-Diethylbenzene	1	2.0437	2,0862	1.9359	2.0319	2.0867	1.7975	1.9970	6	AVG	1
1,4-Diethylbenzene	1	2.1463	2.1562	2.0353	2.0977	2.1663	1.8178	2.0699	6	AVG	
n-Butylbenzene	l	1.7413	1.6844	1.6031	1.6298	1.6688	1.4879	1.6359	5	AVG	1
								1.6835	6	AVG	1
1,2-Dichlorobenzene											

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP09355 Calibration Date(s): 07/10/12 07/10/12

Heated Purge: (Y/N) Y Calibration Times: 11:58 14:10

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

LAB FILE ID: RRF 1 = RRF 20= yl10i14.d RRF 50=			RRF 4 = RRF100=			RRF 10= RRF300=	•			
	Ì	-							%	CAL.
COMPOUND	RRF 1					RRF100		RRF	RSD	METHOD
	=====	1 7575	1 757/	1 4110	1 6062	1 7522	1 5023	1.6788	6	AVG
1,2-Diethylbenzene 1,2-Dibromo-3-Chloropropane		0 3056	0 3380	0 3130	0.3270	0.3392	0.3304	0.3257	4	AVG
1,3,5-Trichlorobenzene		1.4736	1.4818	1.3698	1.3707	1.4260	1.2440	1.3943	6	AVG
1.2.4-Trichlorobenzene		1.4085	1.4011	1.2956	1.2907	1.3336	1.1389	1.3114	8	AVG
Hexachlorobutadiene	l	0.7299	0.6658	0.6436	0.6349	0.6697	0.5799	0.6540	8	AVG
Naphthalene		4.5515	4.7828	4.2956	4.2592	4.2975	3.2375	4.2373	13	AVG
1,2,3-Trichlorobenzene		1.4187	1.4022	1.2796	1.2563	1.2996	1.1020	1.2931	9	AVG
2-Methylnaphthalene								2.5937	13	AVG
	=====					======			4	AVG
Dibromofluoromethane	0.2297	0.2323	0.2280	0.2313	0.2323	0.2321	0.2314	0.2311	1	AVG
Dibromofluoromethane(mz111) 1,2-Dichloroethane-d4	0.2351	0.2356	0.2344	0.2331	0.23/1	0.2300	n n505	0.2300	,	AVG
1,2-Dichloroethane-d4(mz104	₩.₩₽.₩	0.0009	0.0396	0.0818	0.0383	n n384	0.0386	0.0384	1	AVG
1,2-Dichloroethane-d4(mz65)	10.0363 10.0363	0.0383	0.0300	0.3144	0.3038	0.3018	0.2989	0.3063	2	AVG
Toluene-d8(mz100)	10_8806	10.8885	10.8838	10.8943	10.9027	10.9150	[0.9993	10.9092	5	AVG
4-Bromofluorobenzene(mz174)	0.4399	0.4438	10.4399	0.4417	0.4399	0.4421	0.4425	0.4414	0	AVG
Toluene-d8	1.3562	11.3602	11.3546	11.3578	11.3677	11.3631	1.3689	11.3612	0	AVG
4-Bromofluorobenzene	0.5076	0.5127	0.5041	0.5121	0.5046	0.5098	0.5054	0.5080	1	AVG

Average %RSD

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

Internal Standard Area and Retention Time Summary

Initial Calibration Standards:

```
/chem2/HP09355.i/12jul10a.b/yl10i11.d VSTD300
/chem2/HP09355.i/12jul10a.b/yl10i12.d VSTD100
/chem2/HP09355.i/12jul10a.b/yl10i13.d VSTD050
/chem2/HP09355.i/12jul10a.b/yl10i14.d VSTD020
/chem2/HP09355.i/12jul10a.b/yl10i15.d VSTD010
/chem2/HP09355.i/12jul10a.b/yl10i16.d VSTD004
/chem2/HP09355.i/12jul10a.b/yl10i17.d VSTD001
```

Area Summary

File ID:

Internal	Standard Name	yl10i11.d	yl10i12.d	yl10i13.d	yl10i14.d	yl10i15.d	yl10i16.d	yl10i17.d	Avg. Area	%RS
								=======================================	.=========	-===
t-Butyl	Alcohol-d10	337961	355248	375285	403476	403302	417068	445533	391125	10
Fluorobe	nzene	1238196	1233663	1221798	1206833	1218727	1205608	1204616	1218492	1
Chlorobe	nzene-d5	896991	895892	888114	876837	883720	874337	872490	884054	1
1,4-Dich	lorobenzene-d4	515827	529426	523859	510087	512770	507838	510607	515773	2

RSD of internal standard area is flagged out of spec if greater than 30.

RT Summary

File ID:

Internal Standard Name	yl10i11.d	yl10i12.d	yl10i13.d	yl10i14.d	yl10i15.d	yl10i16.d	yl10i17.d	Avg. RT
020200000000000000000000000000000000000	=========			========	******	========		========
t-Butyl Alcohol-d10	2.036	2.042	2.042	2.042	2.042	2.042	2.054	2.043
Fluorobenzene	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147
Chlorobenzene-d5	7.335	7.328	7.329	7.329	7.328	7.329	7.329	7.329
1,4-Dichlorobenzene-d4	9.354	9.354	9.354	9.354	9.354	9.354	9.354	9.354

Report generated on 07/10/2012 at 14:41.

^{*} indicates the retention time is greater than 30 seconds from the average RT.

months a consistent and all the estimates and a consistence of consistence and a consistence of an estimates and a consistence of the estimates and a consistency of the estimates and a consis

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Lab File ID: yl10v02.d Init. Calib. Date(s): 07/10/12 07/10/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

			ACTUAL	TRUE	용
COMPOUND	RRF .		CONC.	CONC.	DRIFT
=======================================	=====	=====	======	======	======
Dichlorodifluoromethane	0.4017	0.2874		20	
# Chloromethane	0.4216	0.3378	16.03		
* Vinyl Chloride	0.3967	0.3357	16.92	20	-15
1,3-Butadiene	0.2889	0.2539	17.58	20	-12
Bromomethane	0.2431	0.1871	15.40	20	-23
Chloroethane	.02.0.6.3	01468.	14.22	2.0	
Dichlorofluoromethane	0.4863	0.5004	20.58	20	
Trichlorofluoromethane	0.4227	0.3952	18.70	20	-7
n-Pentane	0.4728	0.2457			-48
Ethyl Ether	0.2489	0.2045	16.43	20	-18
Freon 123a	0.2932	0.2964	20.22	20	1
Acrolein	1.7124	1.4015	122.77	150	-18
* 1,1-Dichloroethene	0.2240	0.2158	19.27	20	-4
Freon 113	0.2441	0.2250	18.44	20	-8
Acetone	0.0580	0.0498	128.67	150	-14
Methyl Iodide	0.4262	0.3974	18.65	20	-7
2-Propanol	0.6270	0.6514	155.84	150	4
Carbon Disulfide	0.7055	0.6151	17.44	20	-13
Allyl Chloride	0.4242	0.3779	17.82	20	-11
Methyl Acetate	0.4118	0.4332	21.04	20	5
Methylene Chloride	0.2750	0.2541	18.48	20	-8
t-Butyl Alcohol	1.4095	1.3599	192.96	200	-4
Acrylonitrile	0.2259	0.2150	95.19	100	-5
trans-1,2-Dichloroethene	0.2695	0.2651	19.67	20	-2
Methyl Tertiary Butyl Ether	0.9744	0.9402	19.30	20	-4
n-Hexane		0.4481		20	-5
1,2-Dichloroethene (total)	0.2864	0.2803	39.16	40	-2
# 1,1-Dichloroethane	1	0.5205		20	-2
di-Isopropyl Ether	1.0441	0.9800	18.77	20	-6
2-Chloro-1,3-Butadiene	0.4772	0.4616	19.34	20	-3
Ethyl t-Butyl Ether	•	0.9397	1	20	-5
cis-1,2-Dichloroethene	•	0.2954	:	j 20	-3
2-Butanone	•	0.3137		150	-6
2,2-Dichloropropane		0.3959		20	-5
Propionitrile	•	1.4978	:	j 150	-2
Methacrylonitrile		0.2077		150	-4
		i	i	İ	İ _

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

and the definition of intelligeness and bread one extended between the comment of management of management of management of the comment of th

Lab	Name:	Lancaster	Laboratories	Contract:	

Lab File ID: yl10v02.d Init. Calib. Date(s): 07/10/12 07/10/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

			ACTUAL	TRUE	૪
COMPOUND	RRF	RRF	CONC.	CONC.	DRIFT
	=====	=====	======	======	======
Bromochloromethane	0.1570	0.1489	18.97	20	-5
Tetrahydrofuran	1.4113	1.3603	96.39	100	-4
Chloroform	0.5107	0.4660	18.25	20	-9
1,1,1-Trichloroethane	0.4754	0.3983	16.76	20	-16
Cyclohexane	0.5426	0.5061	18.66	20	7
1,1-Dichloropropene	0.4017	0.3764	18.74	20	-6
Carbon Tetrachloride	•	0.3328		20	-5
Isobutyl Alcohol	,	0.3849		500	-9
Benzene	•	1.1279		20	-4
1.2-Dichloroethane	•	0.4229		20	-4
t-Amyl Methyl Ether	•	0.8708		20	-5
n-Heptane	•	0.5263	:	20	-7
n-Butanol	•	0.3497	:	1000	-9
Trichloroethene	0.2998	0.2851	19.02	20	-5
1,2-Dichloropropane	0.3216	0.3091	19.22	20	-4
Methylcyclohexane		0.5268	:	20	-2
Methyl Methacrylate		0.3176	:	20	-8
Dibromomethane		0.1932	:	20	-5
1.4-Dioxane	1	0.1006		500	-2
Bromodichloromethane	:	0.3325		20	-7
2-Nitropropane	1	0.1252	:	20	-20
2-Chloroethyl Vinyl Ether	!	0.2543	:	20	-6
cis-1,3-Dichloropropene	!	0.4877	i	20	4
4-Methyl-2-Pentanone	!	0.5829		100	-7
Toluene		0.9836	!	20	-5
trans-1,3-Dichloropropene		0.6010	:	20	-6
Ethyl Methacrylate		0.7076	•	20	-5
1,1,2-Trichloroethane		0.3810		20	-4
Tetrachloroethene		0.4567		20	- 4
1,3-Dichloropropane	!	0.6833	:	20	-4
2-Hexanone		0.6535		100	j -7
Dibromochloromethane	!	0.3644		!	!
1,2-Dibromoethane	!	0.4165	:	20	-5
Chlorobenzene	!	1.1208	!	!	!
1,1,1,2-Tetrachloroethane	!	0.3592	:	!	!
Ethylbenzene	!	1.9290	:	!	!
Hony IDenizone				i	İ

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

where a to the state of the sta

Lab	Name:	Lancaster	Laboratories	Contract:
-----	-------	-----------	--------------	-----------

Lab File ID: yl10v02.d Init. Calib. Date(s): 07/10/12 07/10/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

٦	1			ACTUAL	TRUE	. %
i	COMPOUND	RRF	RRF	CONC.	CONC.	DRIFT
i:		=====	=====	======	======	== == ===
i	m+p-Xylene	0.7907	0.7581	38.35	40	-4
i	Xylene (Total)	0.7875	0.5468	57.29	60	5
i	o-Xylene	0.7813	0.7397	18.93	20	-5
i	Styrene	1.3320	1.2540	18.83	20	-6
#	Bromoform	0.3217	0.2750	.17.10	20	15
1	Isopropylbenzene	2.0355	1.9500	19.16	20	-4
İ	Cyclohexanone	0.4991	0.4315	432.24	500	-14
#	1,1,2,2-Tetrachloroethane	1.1766	1.1157	18.96	20	-5
1	trans-1,4-Dichloro-2-Butene	0.4050	0.3970	98.03	100	-2
i	Bromobenzene	0.9187	0.8579	18.68	20	-7
i	1,2,3-Trichloropropane	0.3800	0.3443	18.12	. 20	-9
İ	n-Propylbenzene	4.0509	3.9162	19.33	20	-3
i	2-Chlorotoluene	0.8456	0.7913	18.71	20	•
i	1,3,5-Trimethylbenzene	2.9954	2.8406	18.97	20	•
İ	4-Chlorotoluene	0.8848	0.8206	18.55	20	•
i	tert-Butylbenzene	0.6782	0.6435	18.98	20	-5
İ	Pentachloroethane		0.4899		20	!
İ	1,2,4-Trimethylbenzene	3.0840	2.8745	18.64	20	
Ĺ	sec-Butylbenzene	3.7267	3.5486	19.04	20	-5
i	p-Isopropyltoluene	3.3458	3.2015	19.14	20	•
Ĺ	1,3-Dichlorobenzene	1.7563	1.6407	18.68	20	-7
İ	1,4-Dichlorobenzene	1.8042	1.6620	18.42	20	-8
İ	1,2,3-Trimethylbenzene	3.1335	3.1111	19.86	20	-1
İ	Benzyl Chloride	2.4348	2.1951	18.03	20	-10
İ	1,3-Diethylbenzene	1.9970	1.9538	19.57	•	•
Ì	1,4-Diethylbenzene	2.0699	2.0427	19.74	20	!
İ	n-Butylbenzene	1.6359	1.5299	18.70	20	-6
İ	1,2-Dichlorobenzene	1.6835	1.5844	18.82	20	!
İ	1,2-Diethylbenzene	1.6788	1.6309	19.43	20	-3
İ	1,2-Dibromo-3-Chloropropane	0.3257	0.2869	17.62	20	-12
İ	1,3,5-Trichlorobenzene	1.3943	1.2980	18.62	20	-7
İ	1,2,4-Trichlorobenzene	1.3114	1.2328	18.80	20	-6
İ	Hexachlorobutadiene	0.6540	0.5824		,	-11
i	Naphthalene	4.2373	4.0274	19.01	20	-5
i	1,2,3-Trichlorobenzene	1.2931	1.1795	18.24	20	-9
i	2-Methylnaphthalene	2.5937	2.4625	18.99	20	-5
İ.		l	l	l	l	

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

and the figure of the second s

Lab	Name:	Lancaster	Laboratories	Contract:
-----	-------	-----------	--------------	-----------

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab File ID: yl10v02.d Init. Calib. Date(s): 07/10/12 07/10/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

COMPOUND	RRF	RRF	ACTUAL CONC.		% DRIFT
=======================================	=====	=====	======	======	======
·	ļ				I
•					

Average %Drift

7

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

page 4 of 4

Laþ	Name:	Lancaster	Laborato	ries	Contract	:	* * .	· · · · · · · · · · · · · · · · · · ·
			. •					
I.ah	Code.	LANCAS	Cage No	•	CAC NO		SDG NO	

Instrument ID: HP09355 Calibration Date: 09/04/12 Time: 00:19

Lab File ID: ys03c01.d Init. Calib. Date(s): 07/10/12 07/10/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

1		'		ACTUAL	TRUE	8
ĺ	COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
İ	=======================================	=====	=====	======	======	======
ĺ	Dichlorodifluoromethane	0.4017	0.4178	52.01	50	4
#	Chloromethane	0.4216	0.3514	41.68	50	-17
*	Vinyl Chloride	0.3967	0.3239	40.82	50	-18
1	Bromomethane	0.2431	0.2261	46.51	50	-7
1	Chloroethane	0.2063	0.1753	42.47	50	-15
	Trichlorofluoromethane	0.4227	0.4861	57.50	50	15
1	Ethyl Ether	0.2489	0.1897	38.12	50	-24
1	Acrolein	1.7124	1.4089	411.38	500	-18
*	1,1-Dichloroethene	0.2240	0.2240	49.99	50	0
1	Freon 113	0.2441	0.2444	50.07	50	0
1	Acetone	0.0580	0.0508	87.59	100	-12
1	Methyl Iodide	0.4262	0.4519	53.01	50	6
1	2-Propanol	0.6270	0.6208	247.55	250	-1
Ì	Carbon Disulfide	0.7055	0.6769	47.98	50	-4
ĺ	Allyl Chloride	0.4242	0.3423	40.34	50	-19
1	Methyl Acetate	0.4118	0.3832	46.52	50	-7
١	Methylene Chloride	0.2750	0.2577	46.86	50	-6
1	t-Butyl Alcohol	1.4095	1.0381	184.12	250	-26
Ì	Acrylonitrile	0.2259	0.1814	40.16	50	-20
ĺ	trans-1,2-Dichloroethene	0.2695	0.2584	47.94	50	-4
1	Methyl Tertiary Butyl Ether	0.9744	0.9163	47.02	50	-6
ĺ	n-Hexane	0.4726	0.3295	34.86	50	-30
ĺ	1,2-Dichloroethene (total)	0.2864	0.2769	96.65	100	~3
#	1,1-Dichloroethane	0.5309	0.4881	45.97	50	-8
1	di-Isopropyl Ether	1.0441	0.8049	38.55	50	-23
ĺ	2-Chloro-1,3-Butadiene	0.4772	0.4332	45.39	50	-9
İ	Ethyl t-Butyl Ether	0.9881	0.8662	43.83	50	-12
Ì	cis-1,2-Dichloroethene	0.3032	0.2954	48.71	50	- 3
Ì	2-Butanone	0.3336	0.2663	79.82	100	-20
Ì	2,2-Dichloropropane	0.4149	0.4383	52.81	50	6
İ	Propionitrile	1.5255	1.3749	225.31	250	-10
İ	Methacrylonitrile	0.2157	0.1948	112.87	125	-10
İ	Bromochloromethane	0.1570	0.1591	50.68	50	1
ĺ	Tetrahydrofuran		1.3194		100	-7
*	Chloroform	0.5107	0.5315	52.04	50	4
1	1,1,1-Trichloroethane	0.4754	0.4661	49.02	50	-2
Ì						

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

page 1 of 4

Lab	Name:	Lancaster	Laboratories	Contract:	
			and the second section of		
*					•

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP09355 Calibration Date: 09/04/12 Time: 00:19

Lab File ID: ys03c01.d Init. Calib. Date(s): 07/10/12 07/10/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

		· · · · · · · · · · · · · · · · · · ·	ACTUAL	TRUE	용
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
************	=====	=====		======	======
Cyclohexane		0.4384			-19
Cyclohexane(mz 84)	0.4391	0.3935	44.81	50	-10
Cyclohexane(mz 69)	0.1617	0.1383	42.79	50	-14
1,1-Dichloropropene	0.4017	0.3939	49.03	50	-2
Carbon Tetrachloride	0.3500	0.4130	59.01	50	18
Isobutyl Alcohol	0.4250	0.3539	520.40	625	-17
Benzene	1.1786	1.1331	48.07	50	-4
1,2-Dichloroethane	0.4417	0.4646	52.59	50	5
1,2-Dichloroethane(mz 98)	0.0373	0.0369	49.58	50	-1
t-Amyl Methyl Ether	0:9206	0.8477	46.04	50	-8
n-Heptane	0.5629	0.3735	33.18	50	-34
n-Butanol	0.3851	0.3135	1017.55	1250	-19
Trichloroethene	0.2998	0.3031	50.56	50	1
* 1,2-Dichloropropane	0.3216	0.2911	45.26	50	- 9
Methylcyclohexane(mz98)	0.2387	0.2166	45.35	50	-9
Methylcyclohexane	0.5362	0.4698	43.81	50	-12
Methyl Methacrylate	0.3435	0.3023	43.99	50	-12
Dibromomethane	0.2031	0.2095	51.58	50	3
1,4-Dioxane	0.1021	0.0973	595.35	625	~ 5
Bromodichloromethane	0.3592	0.3894	54.21	50	8
2-Nitropropane	0.1565	0.1540	98.41	100	-2
2-Chloroethyl Vinyl Ether	0.2695	0.2369	43.95	50	-12
cis-1,3-Dichloropropene	0.4706	0.4665	49.56	50	-1
4-Methyl-2-Pentanone	0.6246	0.5343	85.54	100	-14
* Toluene	1.0395	0.9790	47.09	50	-6
trans-1,3-Dichloropropene	0.6380	0.6137	48.10	50	-4
Ethyl Methacrylate	0.7468	0.6052	40.52	50	-19
1,1,2-Trichloroethane	0.3971	0.3880	48.86	50	-2
Tetrachloroethene	0.4775	0.4785	50.10	50	0
1,3-Dichloropropane	0.7111	0.6685	47.00	50	-6
2-Hexanone	0.7038	0.5844	83.02	100	-17
Dibromochloromethane	0.3902	0.4265	54.66	50	9
1,2-Dibromoethane	0.4367	0.4332	49.60	50	-1
# Chlorobenzene	1.1718	1.1730	50.05	50	0
1,1,1,2-Tetrachloroethane	0.3872	0.4243	54.78	50	10
* Ethylbenzene	2.0299	1.9814	48.81	50	-2
		l	l	<u> </u>	l

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 2 of 4

.ah	Mame .	Lancaster.	Laboratories		Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP09355 Calibration Date: 09/04/12 Time: 00:19

Lab File ID: ys03c01.d Init. Calib. Date(s): 07/10/12 07/10/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

			ACTUAL	TRUE	%
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
	=====	=====	=====	======	======
m+p-Xylene	0.7907	0.7842	99.18	100	-1
Xylene (Total)	0.7875	0.7794	148.44	150	-1
o-Xylene	0.7813	0.7696	49.25	50	-1
Styrene	1.3320	1.2508	46.95	50	-6
# Bromoform	0.3217	0.3545	55.10	50	10 #
Isopropylbenzene	2.0355	2.0591	50.58	50	1
Cyclohexanone	0.4991	0.3339	418.12	625	-33
# 1,1,2,2-Tetrachloroethane	1.1766	1.0505	44.64	50	-11
trans-1,4-Dichloro-2-Butene	0.4050	0.3328	102.72	125	-18
Bromobenzene	0.9187	0:8727	47.50	50	-5
1,2,3-Trichloropropane	0.3800	0.3622	47.66	50	-5
n-Propylbenzene	4.0509	3.8154	47.09	50	-6
2-Chlorotoluene	0.8456	0.8132	48.08	50	-4
1,3,5-Trimethylbenzene	2.9954	2.8691	47.89	50	-4
4-Chlorotoluene	0.8848	0.8508	48.08	50	-4
tert-Butylbenzene	0.6782	0.6507	47.97	50	-4
Pentachloroethane	0.5338	0.5441	50.96	50	2
1,2,4-Trimethylbenzene	3.0840	2.9635	48.05	50	~4
sec-Butylbenzene	3.7267	3.5337	47.41	50	-5
p-Isopropyltoluene	3.3458	3.1952	47.75	50	-5
1,3-Dichlorobenzene	:	1.6722	:	50	-5
1,4-Dichlorobenzene	1.8042	1.7673	48.98	50	-2
1,2,3-Trimethylbenzene	•	2.9562	•	50	-6
Benzyl Chloride	2.4348	2.2288	45.77	50	-8
1,3-Diethylbenzene	1.9970	1.8240	45.67	50	-9
1,4-Diethylbenzene	•	1.8990	•	50	-8
n-Butylbenzene		1.5304		50	-6
1,2-Dichlorobenzene	•	1.6696	•	50	-1
1,2-Diethylbenzene	1	1.5785	:	50	-6
1,2-Dibromo-3-Chloropropane	0.3257	0.3181	48.83	50] -2
1,3,5-Trichlorobenzene	2	1.3812		50	-1
1,2,4-Trichlorobenzene	!	1.2552	*	50	-4
Hexachlorobutadiene	•	0.6033			:
Naphthalene	!	4.0965	:	•	:
1,2,3-Trichlorobenzene	!	1.2151	!	•	-6
2-Methylnaphthalene	•	2.0704	•	!	•
	İ	i	İ	ĺ	İ
·	•				

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 3 of 4

Lab	Name:	Lancaster	Laboratories	Contract:	:		

Case No.:_____ SAS No.:_ Lab Code: LANCAS

Instrument ID: HP09355

Calibration Date: 09/04/12

Lab File ID: ys03c01.d

Init. Calib. Date(s): 07/10/12 07/10/12

Time: 00:19

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .18

			ACTUAL	TRUE	8
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
_======================================	=====	=====	======	======	
	=====	=====	=====	======	======
Dibromofluoromethane	0.2311	0.2482	53.70	50	7
Dibromofluoromethane(mz111)	0.2360	0.2517	53.33	50	7
1,2-Dichloroethane-d4	0.0604	0.0630	52.10	50	4
1,2-Dichloroethane-d4(mz104)	0.0384	0.0389	50.73	50	1
Toluene-d8(mz100)	0.9092	0.8621	47.41	50	-5
1,2-Dichloroethane-d4(mz65)	0.3063	0.3481	56.83	50	14
4-Bromofluorobenzene(mz174)	0.4414	0.4711	53.37	50	7
Toluene-d8	1.3612	1.3197	48.47	50	- 3
4-Bromofluorobenzene	0.5080	0.5176	50.94	5.0	2
	İ				

Average %Drift

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 4 of 4

Lancaster Laboratories Continuing Calibration Internal Standard Check

Initial Calibration Standards:

```
/chem2/HP09355.i/12jul10i.b/yl10i17.d
/chem2/HP09355.i/12jul10i.b/yl10i16.d
/chem2/HP09355.i/12jul10i.b/yl10i15.d
/chem2/HP09355.i/12jul10i.b/yl10i14.d
/chem2/HP09355.i/12jul10i.b/yl10i13.d
/chem2/HP09355.i/12jul10i.b/yl10i12.d
/chem2/HP09355.i/12jul10i.b/yl10i11.d
```

File /chem2/HP09355.i/12jul10i.b/yl10i13.d is Mid Level Calibration Standard used for comparison.

Current Continuing Calibration Standard:

/chem2/HP09355.i/12sep03b.b/ys03c01.d

RT Summary

File ID:

ys03c01.d	ICAL RT	In Spec
========	=======	z======
2.048	2.042	Yes
4.153	4.147	Yes
7.335	7.329	Yes
9.354	9.354	Yes
	2.048 4.153 7.335	2.048 2.042 4.153 4.147 7.335 7.329

A "No" indicates the retention time is greater than 30 seconds from the referenced ICAL standard.

Area Summary

File ID:

Internal Standard Name	ys03c01.d	ICAL Area	Low Limit	High Limit	In Spec
	========	=======	========	=========	========
t-Butyl Alcohol-d10	264292	375285	187642	750570	Yes
Fluorobenzene	898772	1221798	610899	2443596	Yes
Chlorobenzene-d5	690476	888114	444057	1776228	Yes
1,4-Dichlorobenzene-d4	439913	523859	261930	1047718	Yes

A "No" indicates the internal standard area is outside acceptable QC limits.

~ .			
Comments:			
COMMETTED.		 	

report generated on 09/04/2012 at 00:47

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:_PTL07___

Lab File ID (Standard): ys03c01.d Date Analyzed: 09/04/12

Instrument ID: HP09355 Time Analyzed: 00:19

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

	.	IS1 (FBZ)		IS2 (CBZ)	-	IS3 (DCB)		IS4 (TBA)	
j	· ·	AREA #	RT #	AREA #	RT #	AREA #	RT #	AREA #	RT #
ĺ	=========	=======	======	========	======	=======	======	========	======
ĺ	12 HOUR STD	898772	4.153	690476	7.334	439913	9.354	264292	2.048
ĺ	UPPER LIMIT	1797544	4.653	1380952	7.834	879826	9.854	528584	2.548
ĺ	LOWER LIMIT	449386	3.653	345238	6.834	219956	8.854	132146	1.548
ĺ	=======================================	========	======		======	=======	==	=======	======
	LAB SAMPLE								
	ID								
	=======================================	========	======	=======	======	======	======	=======	======
01	VBLKY65	955740	4.147	702231	7.335	411322	9.354	333387	2.054
02	LCSY65	1043907	4.141	782398	7.328	480543	9.354	318863	2.036
03	LCDY65	1074643	4.147	799537	7.328	479927	9.354	299172	2.048
04	6769939	1065040	4.147	776265	7.335	461258	9.360	358325	2.048
05	6769616	1033664	4.147	753329	7.335	438368	9.354		
06	6769617	1001753	4.147	733387	7.329	427516	9.354		
07	6769618	973921	4.147	713009	7.328	416252	9.354		
08	6769619	959278	4.141	707041	7.328	414744	9.354		
09	6769620	920690	4.141	668056	7.328	392160	9.354		
10	6769621	643754	4.135	544611	7.328	369904	9.354		
11	6769936DL	888537	4.147	659068	7.328	383089	9.354	280877	2.054
12	6771415DL2	879459	4.147	651416	7.328	387782	9.354	276760	2.042
13	6773615	937191	4.147	649015	7.341	440513	9.354	298418	2.036
14	6773615DL	919613	4.141	678805	7.329	411448	9.354	293178	2.048
15	6766763	893306	4.135	660182	7.328	390493	9.354	295831	2.030
16	6766764	881899	4.135	648413	7.328	384409	9.354	306557	2.042
17	6766765	863599	4.141	635722	7.328	376119	9.354	282617	2.036
18	6766766	857004	4.141	630106	7.329	363068	9.354	288197	2.048
19	6766767	843169	4.141	618224	7.328	366144	9.354	280287	2.054
20	6766768	836349	4.135	621031	7.329	366927	9.354	288897	2.042
21	6766769	812250	4.141	602464	7.328	356532	9.354	266449	2.054
								l	l <u></u>

IS1 (FBZ)=Fluorobenzene

UPPER LIMIT = + 100%

(CBZ)=Chlorobenzene-d5

of internal standard area.

IS3 (DCB)=1,4-Dichlorobenzene-d4

LOWER LIMIT = - 50%

IS4 (TBA)=t-Butyl Alcohol-d10

of internal standard area.

page 1 of 1

 $[\]mbox{\#}$ Column used to flag values outside QC limits with an asterisk

^{*} Values outside of QC limits.

Sample Data

Lancaster Laboratories

LOQ/MDL Summary GC/MS Volatiles

SDG: PTL07

Fraction: Volatiles by GC/MS

10903: Volatiles by 8260 Analyte Name	Default MDL	Default LOQ	Units
Dichlorodifluoromethane	2	5	ug/l
Chloromethane	1	5	ug/l
Vinyl Chloride	1	5	ug/l
Bromomethane	1	5	ug/l
Chloroethane	1	5	ug/l
Trichlorofluoromethane	2	5	ug/l
1,1-Dichloroethene	0.8	5	ug/l
Acetone	6	20	ug/l
Methylene Chloride	2	5	ug/l
trans-1,2-Dichloroethene	0.8	5	ug/l
Methyl Tertiary Butyl Ether	0.5	5	ug/l
1,1-Dichloroethane	1	5	ug/l
2-Butanone	3	10	ug/l
cis-1,2-Dichloroethene	0.8	5	ug/l
2,2-Dichloropropane	1	5	ug/l
Bromochloromethane	1	5	ug/l
Chloroform	0.8	5	ug/l
1,1,1-Trichloroethane	0.8	5	ug/l
1,1-Dichloropropene	1	5	ug/l
Carbon Tetrachloride	1	5	ug/l
Benzene	0.5	5	ug/l
1,2-Dichloroethane	1	5	ug/l
Trichloroethene	1	5	ug/l
1,2-Dichloropropane	1	5	ug/l
Dibromomethane	1	5	ug/l
Bromodichloromethane	1	5	ug/l
cis-1,3-Dichloropropene	1	5	ug/l
4-Methyl-2-pentanone	3	10	ug/l
Toluene	0.7	5	ug/l
trans-1,3-Dichloropropene	1	5	ug/l
1,1,2-Trichloroethane	0.8	5	ug/l
Tetrachloroethene	0.8	5	ug/l
1,3-Dichloropropane	1	5	ug/l
Dibromochloromethane	1	5	ug/l
1,2-Dibromoethane	1	5	ug/l
Chlorobenzene	0.8	5	ug/l
1,1,1,2-Tetrachloroethane	1	5	ug/l
Ethylbenzene	0.8	- 5	ug/l
m+p-Xylene	0.8	5	ug/l
o-Xylene	0.8	5	ug/l
Styrene	1	5	ug/l
Bromoform	1	5	ug/l
Isopropylbenzene	1	5	ug/l
Bromobenzene	1	5	ug/l
1,1,2,2-Tetrachloroethane	1	5	ug/l
1,2,3-Trichloropropane	1	5	ug/l
n-Propylbenzene	1	5	ug/l

Lancaster Laboratories

LOQ/MDL Summary GC/MS Volatiles

SDG: PTL07

Fraction: Volatiles by GC/MS

10903: Volatiles by 8260	Default	Default	
Analyte Name	MDL	LOQ	Units
2-Chlorotoluene	1	5	ug/l
1,3,5-Trimethylbenzene	1	5	ug/l
4-Chlorotoluene	1	5	ug/l
tert-Butylbenzene	1	5	ug/l
1,2,4-Trimethylbenzene	1	5	ug/l
sec-Butylbenzene	1	5	ug/l
1,3-Dichlorobenzene	1	5	ug/l
p-lsopropyltoluene	1	5	ug/l
1,4-Dichlorobenzene	1	5	ug/l
n-Butylbenzene	1	5	ug/l
1,2-Dichlorobenzene	1	5	ug/l
1,2-Dibromo-3-chloropropane	2	5	ug/l
1,2,4-Trichlorobenzene	1	5	ug/l
Hexachlorobutadiene	2	5	ug/l
Naphthalene	1	5	ug/l
1,2,3-Trichlorobenzene	1	5	ug/l

EPA	SAMPLE	NO.	
-----	--------	-----	--

S	1	Ρ	Α	Т	

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6766763

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s42.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug,	/Kg) ug/L	Q
75-71-8	Dichlorodifluoromethane	1 5	lυ
	Chloromethane	5	ט ו
	Vinyl Chloride	5	ט ו
	Bromomethane	5	ט ו
	Chloroethane	5	ט ו
75-69-4	Trichlorofluoromethane	5	ט ו
	1,1-Dichloroethene	5	ט ו
	Acetone	20	 u
75-09-2	Methylene Chloride	5	ט ו
	trans-1,2-Dichloroethene	5	ָט ן
1634-04-4-	Methyl Tertiary Butyl Ether	r 5	ָי וֹ
	1,1-Dichloroethane	5	jυ
156-59-2	cis-1,2-Dichloroethene	5	י
78-93-3	2-Butanone	10	jυ
594-20-7	2,2-Dichloropropane	5	ָ ט
	Bromochloromethane	5	U
67-66-3	Chloroform	5	ט
71-55-6	1,1,1-Trichloroethane	5	ט
563-58-6	1,1-Dichloropropene	5	ט
56-23-5	Carbon Tetrachloride	5	ט
71-43-2	Benzene	5	ט
107-06-2	1,2-Dichloroethane	5	Ū
79-01-6	Trichloroethene	5	ט
78-87-5	1,2-Dichloropropane	. 5	Ū
74-95-3	Dibromomethane	5	U
75-27-4	Bromodichloromethane	5	U
10061-01-5	cis-1,3-Dichloropropene	5	U
108-10-1	4-Methyl-2-Pentanone	10	Ü
108-88-3	Toluene	5	Ü
	trans-1,3-Dichloropropene		

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6766763

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/12sep03b.b/ys03s42.d

Level: (low/med) LOW Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

G7 G 17G	~~~~~	CONCENTION ()		_	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/L	Q	
79-00-5	1,1,2-Trichloro	ethane	5	T	J
127-18-4-	Tetrachloroethe	ne	5	i t	J
142-28-9-	1,3-Dichloropro	pane	5	įt	ĭ
124-48-1-	Dibromochlorome	thane	5	;	J
106-93-4-	1,2-Dibromoetha	ne	9	; t	J
108-90-7-	Chlorobenzene			- t	J
630-20-6-	1,1,1,2-Tetrach	loroethane	5	jt	J
100-41-4-	Ethylbenzene	ĺ	5	ίτ	J
179601-23	-1m+p-Xylene	ĺ	5	įτ	J
95-47-6	O-Xylene	j	9	;	J
100-42-5-	Styrene	j	9	; t	J
75-25-2	Bromoform	ĺ	9	įί	J
98-82-8	Isopropylbenzen	e	5	ίίτ	J
108-86-1-	Bromobenzene	ĺ	5	ίİτ	J
79-34-5	1,1,2,2-Tetrach	loroethane	5	įι	J
96-18-4	1,2,3-Trichloro	propane	5	įίτ	J
103-65-1-	n-Propylbenzene		<u> </u>	ίίτ	J
95-49-8	2-Chlorotoluene		9	įτ	J
108-67-8-	1,3,5-Trimethyl	benzene	5	; t	J
106-43-4-	4-Chlorotoluene	i j	5	įį	3
98-06-6	tert-Butylbenze	ne	5	įίτ	J
95-63-6	1,2,4-Trimethyl	benzene	<u>c</u>	ίτ	J
135-98-8-	sec-Butylbenzen	e	Ģ	įτ	J
541-73-1-	1,3-Dichloroben	zene	9	iίτ	J
99-87-6	p-Isopropyltolu	ene	5	ίίτ	J
	1,4-Dichloroben		5	jt	J
	1,2-Dichloroben	•	5	ίτ	J
104-51-8-	n-Butylbenzene	j	9	ίίτ	J
96-12-8	1,2-Dibromo-3-C	hloropropane	5	ίτ	J
120-82-1-	1,2,4-Trichloro	henzene	9	it	7

EPA SAMPLE NO.

S	1	P	Į	7,	r

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SDG No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6766763

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s42.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 87-68-3-----Hexachlorobutadiene lυ 91-20-3-----Naphthalene 5 ΙU 87-61-6----1,2,3-Trichlorobenzene U

S1PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6766763

Injection date and time: 04-SEP-2012 07:26
Instrument ID: HP09355.i Batch: Y122472AA Data file: /chem2/HP09355.i/12sep03b.b/ys03s42.d Data file Sample Info. Line: S1PAT;6766763;1;0;;PTL07;PLM;;ys03b05; Inst Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Blank Data file reference: /chem2/HPO9355.i/12sep03b.b/ys03b05.d

Sublist used: 8732 Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A Matrix: WATER Level: Low

In Sample Concentration units: ug/L On-Column Amount units: ng

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Sample Volume (Vo): 5 ml Volume Purged (Vt): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.030(0.018)	197	65	295831 (12)	250.00	
71) Fluorobenzene	4.135(0.018)	543	96	893306 (-1)	50.00	
106) Chlorobenzene-d5	7.329(0.006)	1068	117	660182 (-4)	50.00	
136) 1,4-Dichlorobenzene-d4	9.354(0.000)	1401	152	390493 (-11)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52) Dibromofluoromethane	(1)	3.496(-0.001)	113	220628	53.427	107%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.806(-0.001)	102	55678	51.565	103%		77 - 113
93) Toluene-d8	(2)	5.765(0.000)	98	870433	48.430	97%		80 - 113
119) 4-Bromofluorobenzene	(2)	8.442(-0.001)	95	313872	46.790	94%		78 - 113

Tar	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ ample)
			=									
2)	Dichlorodifluoromethane	(1)				Not Detected					1	5
3)	Chloromethane	(1)				Not Detected					1	5
5)	Vinyl Chloride	(1)				Not Detected					1	5
7)	Bromomethane	(1)				Not Detected					1	5
8)	Chloroethane	(1)				Not Detected					1	5
10)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
17)	Acetone	(1)				Not Detected					6	20
26)	Methylene Chloride	(1)				Not Detected					2	5
31)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
32)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
34)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
41)	2-Butanone	(1)				Not Detected					3	10
42)	2,2-Dichloropropane	(1)				Not Detected					1	5
47)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
57)	1,1-Dichloropropene	(1)				Not Detected					1	5
58)	Carbon Tetrachloride	(1)				Not Detected					1	5
63)	Benzene	(1)				Not Detected					0.5	5
65)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
77)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
83)	Bromodichloromethane	(1)				Not Detected					1	5
87)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
89)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
94)	Toluene	(2)				Not Detected					0.7	5
95)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
97)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20. Target 3.5 esignature user ID: ads01731 page 1 of 2 S1PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6766763

Injection date and time: 04-SEP-2012 07:26
Instrument ID: HP09355.i Batch: Y122472AA Data file: /chem2/HP09355.i/12sep03b.b/ys03s42.d Inje
Data file Sample Info. Line: S1PAT;6766763;1;0;;PTL07;PLM;;ys03b05; Inst
Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in same	LOQ
98) Tetrachloroethene	(2)				Not Detected					0.8	5
99) 1,3-Dichloropropane	(2)				Not Detected					1	5
102) Dibromochloromethane	(2)				Not Detected					1	5
104) 1,2-Dibromoethane	(2)				Not Detected					1	5
107) Chlorobenzene	(2)				Not Detected					0.8	5
108) 1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
109) Ethylbenzene	(2)				Not Detected					0.8	5
110) m+p-Xylene	(2)				Not Detected					0.8	5
112) Xylene (Total)	(2)				Not Detected					0.8	5
113) o-Xylene	(2)				Not Detected					0.8	5
114) Styrene	(2)				Not Detected					1	5
115) Bromoform	(2)				Not Detected					1	5
116) Isopropylbenzene	(2)				Not Detected					1	5
122) 1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
121) Bromobenzene	(3)				Not Detected					1	5
123) 1,2,3-Trichloropropane	(3)				Not Detected					1	5
125) n-Propylbenzene	(3)				Not Detected					1	5
126) 2-Chlorotoluene	(3)				Not Detected					1	5
127) 1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
128) 4-Chlorotoluene	(3)				Not Detected					1	5
130) tert-Butylbenzene	(3)				Not Detected					1	5
132) 1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
133) sec-Butylbenzene	(3)				Not Detected					1	5
135) p-Isopropyltoluene	(3)				Not Detected					1	5
134) 1,3-Dichlorobenzene	(3)				Not Detected					1	5
138) 1,4-Dichlorobenzene	(3)				Not Detected					1	5
145) n-Butylbenzene	(3)				Not Detected					1	5
144) 1,2-Dichlorobenzene	(3)				Not Detected					1	5
148) 1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
150) 1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
151) Hexachlorobutadiene	(3)				Not Detected					2	5
152) Naphthalene	(3)				Not Detected					1	5
153) 1,2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 64

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20. Target 3.5 esignature user ID: ads01731

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412 page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s42.d Ins Injection date and time: 04-SEP-2012 07:26 Ana

Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Sample Name: S1PAT Lab Sample ID: 6766763

Digitally signed by Angela D. Sneeringer

on 09/04/2012 at 13:20.

Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s42.d Injection date and time: 04-SEP-2012 07:26 Ar

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Sample Name: S1PAT Lab Sample ID: 6766763

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20.

Target 3.5 esignature user ID: ads01731

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s42.d Injection date and time: 04-SEP-2012 07:26

Instrument ID: HP09355.i

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Sample Name: S1PAT

Lab Sample ID: 6766763

Compounds	I.S. Ref.	RT ======	QIon	Area =======	On-Column Amount (ng)
28) *t-Butyl Alcohol-d10	(4)	2.030	65	295831	250.000
52) \$Dibromofluoromethane	(1)	3.496	113	220628	53.427
62) \$1,2-Dichloroethane-d4	(1)	3.806	102	55678	51.565
71) *Fluorobenzene	(1)	4.135	. 96	893306	50.000
93) \$Toluene-d8	(2)	5.765	98	870433	48.430
106) *Chlorobenzene-d5	(2)	7.329	117	660182	50.000
119)\$4-Bromofluorobenzene	(2)	8.442	95	313872	46.790
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	390493	50.000

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20.
Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

Ρ	1	\mathbf{P}_{i}	A	T

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6766764

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s43.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	U
75-01-4Vinyl Chloride	5	ט
74-83-9Bromomethane	5	υ
75-00-3Chloroethane	5	ט
75-69-4Trichlorofluoromethane	5	ט
75-35-41,1-Dichloroethene	5	יט
_67-64-1Acetone	20-	_ U
75-09-2Methylene Chloride	5	ับ
156-60-5trans-1,2-Dichloroethene	5	Ū
1634-04-4Methyl Tertiary Butyl Ether	5	U
75-34-31,1-Dichloroethane	5	ט
156-59-2cis-1,2-Dichloroethene	5	U
78-93-32-Butanone	j 10	ָט l
594 20 72,2-Dichloropropane	5	I U
74-97-5Bromochloromethane	5	ָ ט
67-66-3Chloroform	3	J
71-55-61,1,1-Trichloroethane	5	ט
563-58-61,1-Dichloropropene	5	טו
56-23-5Carbon Tetrachloride	5	ט
71-43-2Benzene	j	โบ
107-06-21,2-Dichloroethane	5	U
79-01-6Trichloroethene	5	ָט l
78-87-51,2-Dichloropropane	5	U
74-95-3Dibromomethane	5	U
75-27-4Bromodichloromethane	5	υ
10061-01-5cis-1,3-Dichloropropene	5	ט
108-10-14-Methyl-2-Pentanone	10	ט !
108-88-3Toluene	5	ט
10061-02-6trans-1,3-Dichloropropene	5	ט
,		
	- I 	·

EPA SAMPLE NO.

Plpat	

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6766764

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s43.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

CAS NO. COMPOUND

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L

79-00-51,1,2-Trichloroethane 127-18-4Tetrachloroethene 142-28-91,3-Dichloropropane 124-48-1Dibromochloromethane 106-93-41,2-Dibromoethane 108-90-7Chlorobenzene 630-20-61,1,1,2-Tetrachloroethane 100-41-4Ethylbenzene 179601-23-1m+p-Xylene 95-47-6	5 5 5 5 5 5 5 5 5	U U U U U U U
142-28-91,3-Dichloropropane 124-48-1Dibromochloromethane 106-93-41,2-Dibromoethane 108-90-7Chlorobenzene 630-20-61,1,1,2-Tetrachloroethane 100-41-4Ethylbenzene 179601-23-1m+p-Xylene 95-47-6	5 5 5 5 5 5 5 5	U U U U U
124-48-1	5 5 5 5 5 5 5 5	U U U U U
106-93-41,2-Dibromoethane 108-90-7Chlorobenzene 630-20-61,1,1,2-Tetrachloroethane 100-41-4Ethylbenzene 179601-23-1m+p-Xylene 95-47-6	5 ·	บ บ บ บ
108-90-7Chlorobenzene 630-20-61,1,1,2-Tetrachloroethane 100-41-4Ethylbenzene 179601-23-1m+p-Xylene 95-47-6	5 5 5 5 5 5	U U U
630-20-61,1,1,2-Tetrachloroethane 100-41-4Ethylbenzene 179601-23-1m+p-Xylene 95-47-6	5 5 5 5 5	บ บ บ
100-41-4Ethylbenzene 179601-23-1m+p-Xylene 95-47-6	5 5 5 5	U
179601-23-1m+p-Xylene 95-47-6	5 5 5	ָט
95-47-6	5 5	ļ -
100-42-5Styrene 75-25-2Bromoform 98-82-8Isopropylbenzene	5	ט
75-25-2Bromoform 98-82-8Isopropylbenzene	_	
98-82-8Isopropylbenzene	5	U
~ ~-		U
100 0C 1 Promoborator	5	U
108-86-1Bromobenzene	5	U
79-34-51,1,2,2-Tetrachloroethane	5	ט
96-18-41,2,3-Trichloropropane	5	ט
103-65-1n-Propylbenzene	5	ט
95-49-82-Chlorotoluene	5	ָ ט
108-67-81,3,5-Trimethylbenzene	5	ָ ט
106-43-44-Chlorotoluene	5	Ü
98-06-6tert-Butylbenzene	5	Ü
95-63-61,2,4-Trimethylbenzene	5	Ü
135-98-8sec-Butylbenzene	5	U
541-73-11,3-Dichlorobenzene	5	ָׁ ט
99-87-6p-Isopropyltoluene	5	i U
106-46-71,4-Dichlorobenzene	5	ָ ט
95-50-11,2-Dichlorobenzene	5	ע
104-51-8n-Butylbenzene	5	ט
96-12-81,2-Dibromo-3-Chloropropane	5	ע
120-82-11,2,4-Trichlorobenzene	5	ט

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:_____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6766764

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/12sep03b.b/ys03s43.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

87-68-3Hexachlorobutadiene	5	υ
91-20-3Naphthalene	. 5	υ
87-61-61,2,3-Trichlorobenzene	5	ן ט
		· .

P1PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6766764

Data file: /chem2/HP09355.i/12sep03b.b/ys03s43.d Injection date and time: 04-SEP-2012 07:47
Data file Sample Info. Line: P1PAT;6766764;1;0;;PTL07;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.042(0.006)	199	65	306557 (16)	250.00	
71) Fluorobenzene	4.135(0.018)	543	96	881899 (-2)	50.00	
106) Chlorobenzene-d5	7.329(0.006)	1068	117	648413 (-6)	50.00	
136) 1,4-Dichlorobenzene-d4	9.354(0.000)	1401	152	384409 (-13)	50.00	

Su	rrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52)	Dibromofluoromethane	(1)	3.496(-0.001)	113	220365	54.053	108%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	3.806(-0.001)	102	54827	51.434	103%		77 - 113
93)	Toluene-d8	(2)	5.765 (0.000)	98	850086	48.156	96%		80 - 113
119)	4-Bromofluorobenzene	(2)	8.442 (-0.001)	95	304466	46.212	92%		78 - 113

Tar	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		LOQ ample)
	Dichlorodifluoromethane	(1)			=====	Not Detected			=======		1	5
-,	Chloromethane	(1)				Not Detected					1	5
	Vinvl Chloride	(1)				Not Detected					1	5
	Bromomethane	(1)				Not Detected					1	5
	Chloroethane	(1)				Not Detected					1	5
	Trichlorofluoromethane	(1)				Not Detected					1	5
	1,1-Dichloroethene	(1)				Not Detected					0.8	5
	Acetone	(1)				Not Detected					6	20
	Methylene Chloride	(1)				Not Detected					2	5
	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
	1,1-Dichloroethane	(1)				Not Detected					1	5
	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
	2-Butanone	(1)				Not Detected					3	10
	2,2-Dichloropropane	(1)				Not Detected					1	5
	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)	3.35	0(-0.000)	83	22739	2.524	2.52		J	0.8	5
	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
	1,1-Dichloropropene	(1)				Not Detected					1	5
	Carbon Tetrachloride	(1)				Not Detected					1	5
63)	Benzene	(1)				Not Detected					0.5	5
	1.2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
77)	1,2-Dichloropropane	(1)				Not Detected					1	5
		(1)				Not Detected					1	5
	Bromodichloromethane	(1)				Not Detected					1	5
87)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
	Toluene	(2)				Not Detected					0.7	5
	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20. Target 3.5 esignature user ID: ads01731 page 1 of 2

P1PAT Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6766764

Data file: /chem2/HP09355.i/12sep03b.b/ys03s43.d Injection date and time: 04-SEP-2012 07:47
Data file Sample Info. Line: P1PAT;6766764;1;0;;PTL07;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT (+/-RRT)	OIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sam	LOQ
rarget compounds		K1 (17 Idd1)	-					_		•
98) Tetrachloroethene	(2)			Not Detected	I				0.8	5
99) 1,3-Dichloropropane	(2)			Not Detected	l				1	5
102) Dibromochloromethane	(2)			Not Detected	I				1	5
104) 1,2-Dibromoethane	(2)			Not Detected	l				1	5
107) Chlorobenzene	(2)			Not Detected	l				0.8	5
108) 1,1,1,2-Tetrachloroethane	(2)			Not Detected	ì				1	5
109) Ethylbenzene	(2)			Not Detected	l				0.8	5
110) m+p-Xylene	(2)			Not Detected	l				0.8	5
112) Xylene (Total)	(2)			Not Detected	l				8.0	5
113) o-Xylene	(2)			Not Detected	l				0.8	5
114) Styrene	(2)			Not Detected	l				1	5
115) Bromoform	(2)			Not Detected	l				1	5
116) Isopropylbenzene	(2)			Not Detected	l				1	5
122) 1,1,2,2-Tetrachloroethane	(3)			Not Detected	l				1	5
121) Bromobenzene	(3)			Not Detected	l				1	5
123) 1,2,3-Trichloropropane	(3)			Not Detected	l				1	5
125) n-Propylbenzene	(3)			Not Detected	l				1	5
126) 2-Chlorotoluene	(3)			Not Detected	l				1	5
127) 1,3,5-Trimethylbenzene	(3)			Not Detected	1				1	5
128) 4-Chlorotoluene	(3)			Not Detected	l				1	5
130) tert-Butylbenzene	(3)			Not Detected	ì				1	5
132) 1,2,4-Trimethylbenzene	(3)			Not Detected	l				1	5
133) sec-Butylbenzene	(3)			Not Detected	l				1	5
135) p-Isopropyltoluene	(3)			Not Detected	i				1	5
134) 1,3-Dichlorobenzene	(3)			Not Detected	ì				1	5
138) 1,4-Dichlorobenzene	(3)			Not Detected	Ì				1	5
145) n-Butylbenzene	(3)			Not Detected	ì				1	5
144) 1,2-Dichlorobenzene	(3)	•		Not Detected	l				1	5
148) 1,2-Dibromo-3-Chloropropane	(3)			Not Detected	i				2	5
150) 1,2,4-Trichlorobenzene	(3)			Not Detected	l				1	5
151) Hexachlorobutadiene	(3)			Not Detected	ì				2	5
152) Naphthalene	(3)			Not Detected	l				1	5
153) 1,2,3-Trichlorobenzene	(3)			Not Detected	1				1	5

Total number of targets = 64

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20. Target 3.5 esignature user ID: ads01731

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412 page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s43.d Injection date and time: 04-SEP-2012 07:47

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Lab Sample ID: 6766764 Sample Name: P1PAT

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20.

page 1 of 2 Target 3.5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s43.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 07:47 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Sample Name: P1PAT Lab Sample ID: 6766764

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20.

Target 3.5 esignature user ID: ads01731

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s43.d Injection date and time: 04-SEP-2012 07:47

Instrument ID: HP09355.i

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Sample Name: P1PAT

Lab Sample ID: 6766764

I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
(4)	2.042	65	306557	250.000
(1)	3.350	83	22739	2.524
(1)	3.496	113	220365	54.053
(1)	3.806	102	54827	51.434
(1)	4.135	96	881899	50.000
(2)	5.765	98	850086	48.156
(2)	7.329	117	648413	50.000
(2)	8.442	95	304466	46.212
(3)	9.354	152	384409	50.000
	Ref. ====== (4) (1) (1) (1) (1) (2) (2) (2)	Ref. RT	Ref. RT QIon	Ref. RT QIon Area

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20. Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for Chloroform

Data File: /chem2/HP09355.i/12sep03b.b/ys03s43.d Injection date and time: 04-SEP-2012 07:47

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732 Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:14 ads01731

Sample Name: P1PAT Lab Sample ID: 6766764

Compound Number : 50

Compound Name : Chloroform

Scan Number : 414
Retention Time (minutes): 3.350
Relative Retention Time :-0.00063
Quant Ion : 83.00
Area (flag) : 22739
On-Column Amount (ng) : 2.5244

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:20. Target 3.5 esignature user ID: ads01731

EPA SAMPLE NO.

		S2PAT
Contract.	1	

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6766765

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/12sep03b.b/ys03s44.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

75-71-8		
75-01-4	5	ט
74-83-9	5	ן ט
75-00-3	5	υ
75-69-4	5	ש
75-35-4	5	ט
75-09-2	5	υ
75-09-2	5	ט
156-60-5trans-1,2-Dichloroethene 1634-04-4Methyl Tertiary Butyl Ether 75-34-31,1-Dichloroethane 156-59-2cis-1,2-Dichloroethene 78-93-32-Butanone 594-20-72,2-Dichloropropane 74-97-5Bromochloromethane 67-66-3Chloroform 71-55-61,1,1-Trichloroethane 563-58-61,1-Dichloropropene 56-23-5Carbon Tetrachloride 71-43-2Benzene 107-06-21,2-Dichloroethane 79-01-6Trichloroethene 78-87-51,2-Dichloropropane 74-95-3Dibromomethane 75-27-4	20	 U
1634-04-4Methyl Tertiary Butyl Ether 75-34-3	5	U
75-34-3	5	ט
156-59-2cis-1,2-Dichloroethene 78-93-32-Butanone 594-20-72,2-Dichloropropane 74-97-5Bromochloromethane 67-66-3Chloroform 71-55-61,1,1-Trichloroethane 563-58-61,1-Dichloropropene 56-23-5Carbon Tetrachloride 71-43-2Benzene 107-06-21,2-Dichloroethane 79-01-6Trichloroethene 78-87-51,2-Dichloropropane 74-95-3Dibromomethane 75-27-4	5	ט
78-93-32-Butanone 594-20-72,2-Dichloropropane 74-97-5Bromochloromethane 67-66-3Chloroform 71-55-61,1,1-Trichloroethane 563-58-61,1-Dichloropropene 56-23-5Carbon Tetrachloride 71-43-2Benzene 107-06-21,2-Dichloroethane 79-01-6Trichloroethane 78-87-51,2-Dichloropropane 74-95-3Dibromomethane 75-27-4Bromodichloromethane	5	ט
594-20-72, 2-Dichloropropane 74-97-5Bromochloromethane 67-66-3Chloroform 71-55-61, 1, 1-Trichloroethane 563-58-61, 1-Dichloropropene 56-23-5Carbon Tetrachloride 71-43-2Benzene 107-06-21, 2-Dichloroethane 79-01-6Trichloroethene 78-87-51, 2-Dichloropropane 74-95-3Dibromomethane 75-27-4Bromodichloromethane	5	U
74-97-5	10	ָ ט
67-66-3	5	ט
71-55-61,1,1-Trichloroethane 563-58-61,1-Dichloropropene 56-23-5Carbon Tetrachloride 71-43-2Benzene 107-06-21,2-Dichloroethane 79-01-6Trichloroethene 78-87-51,2-Dichloropropane 74-95-3Dibromomethane 75-27-4Bromodichloromethane	5	ט
563-58-6	5 [.]	ט
56-23-5Carbon Tetrachloride 71-43-2Benzene 107-06-21,2-Dichloroethane 79-01-6Trichloroethene 78-87-51,2-Dichloropropane 74-95-3Dibromomethane 75-27-4Bromodichloromethane	5	ט
71-43-2Benzene 107-06-21,2-Dichloroethane 79-01-6Trichloroethene 78-87-51,2-Dichloropropane 74-95-3Dibromomethane 75-27-4Bromodichloromethane	5	ט
107-06-21,2-Dichloroethane 79-01-6Trichloroethene 78-87-51,2-Dichloropropane 74-95-3Dibromomethane 75-27-4Bromodichloromethane	5	U
79-01-6Trichloroethene 78-87-51,2-Dichloropropane 74-95-3Dibromomethane 75-27-4Bromodichloromethane	5	ט
78-87-51,2-Dichloropropane 74-95-3Dibromomethane 75-27-4Bromodichloromethane	5	ע ן
74-95-3Dibromomethane 75-27-4Bromodichloromethane	5	ָ ט
75-27-4Bromodichloromethane	5	U
•	5	ָט <u> </u>
	5	ָ <u>ט</u>
10061-01-5cis-1,3-Dichloropropene	5	U
108-10-14-Methyl-2-Pentanone	10	U
108-88-3Toluene	5	ָ <u>ט</u>
10061-02-6trans-1,3-Dichloropropene	5	ָוֹ ט

EPA SAMPLE NO.

S2PAT

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6766765

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s44.d

Level: (low/med) LOW Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

	CONCI	ENTRATION UNITS:		
CAS NO.	COMPOUND (ug/L o	or ug/Kg) ug/L		Q ·
	1,1,2-Trichloroethane		5	U
	Tetrachloroethene		5	U
142-28-9	1,3-Dichloropropane		5	บ
124-48-1	Dibromochloromethane		5	ט
106-93-4	1,2-Dibromoethane		5	์ บ
108-90-7	Chlorobenzene		5	ט ו
630-20-6	1,1,1,2-Tetrachloroeth	nane	5	ט
100-41-4	Ethylbenzene		5	ט
179601-23-1-	m+p-Xylene	j	5	17
95-47-6	o-Xylene	j	5	ט
100-42-5	Styrene	. j	5	Ü
75-25-2	Bromoform	j	5	יט l
98-82-8	Isopropylbenzene	İ	5	ָ ט
	Bromobenzene	i	5	ĺυ
79-34-5	1,1,2,2-Tetrachloroeth	nane	5	ט
	1,2,3-Trichloropropane		5	U
	n-Propylbenzene	i	5	U
95-49-8	2-Chlorotoluene	j	5	ָ ט
108-67-8	1,3,5-Trimethylbenzene	.	5	ប
	4-Chlorotoluene	i	5	ט
98-06-6	tert-Butylbenzene	i i	5	ָ ט
95-63-6	1,2,4-Trimethylbenzene	į	5	ָ ט
135-98-8	sec-Butylbenzene	j	5	יט
541-73-1	1,3-Dichlorobenzene	i	5	טו
	p-Isopropyltoluene	i	5	ט
	1,4-Dichlorobenzene	j	5	υ
	1,2-Dichlorobenzene	j	5	U
	Butylbenzene		5	υ
	1,2-Dibromo-3-Chlorop	copane	5	י ט
	1,2,4-Trichlorobenzene	-	5	י טו

EPA	SAMPLE	NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6766765

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s44.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec.

Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

87-68-3Hexachlorobutadiene	5	Ū
91-20-3Naphthalene	5	U
87-61-61,2,3-Trichlorobenzene	5	ט
		l i

S2PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6766765

Data file: /chem2/HP09355.i/12sep03b.b/ys03s44.d Injection date and time: 04-SEP-2012 08:07
Data file Sample Info. Line: S2PAT;6766765;1;0;;PTL07;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.036(0.012)	198	65	282617 (7)	250.00	
71) Fluorobenzene	4.141 (0.012)	544	96	863599 (-4)	50.00	
106) Chlorobenzene-d5	7.328 (0.006)	1068	117	635722 (-8)	50.00	
136) 1,4-Dichlorobenzene-d4	9.354(0.000)	1401	152	376119 (-15)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52) Dibromofluoromethane	(1)	3.496(0.000)	113	217539	54.491	109%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.806(0.000)	102	54184	51.908	104%		77 - 113
93) Toluene-d8	(2)	5.765(0.000)	98	838355	48.440	97%		80 - 113
119) 4-Bromofluorobenzene	(2)	8.442 (-0.001)	95	300216	46.477	93%		78 - 113

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ ample)
										1	====== 5
Dichlorodifluoromethane Chloromethane	(1)				Not Detected Not Detected					1	5
	(1)				Not Detected					1	5
5) Vinyl Chloride 7) Bromomethane	(1) (1)				Not Detected					1	5
8) Chloroethane	(1)				Not Detected					1	5
10) Trichlorofluoromethane					Not Detected					1	5
	(1)				Not Detected					0.8	5
16) 1,1-Dichloroethene	(1)				Not Detected					6	20
17) Acetone	(1) (1)				Not Detected					2	5
26) Methylene Chloride					Not Detected					0.8	5
31) trans-1,2-Dichloroethene	(1)				Not Detected					0.5	5
32) Methyl Tertiary Butyl Ether	(1)				Not Detected					1	5
34) 1,1-Dichloroethane	(1)				Not Detected					0.8	5
40) cis-1,2-Dichloroethene	(1)				Not Detected					3	10
41) 2-Butanone	(1)									1	5
42) 2,2-Dichloropropane	(1)				Not Detected					1	5
47) Bromochloromethane	(1)				Not Detected					0.8	5
50) Chloroform	(1)				Not Detected					0.8	5
53) 1,1,1-Trichloroethane	(1)				Not Detected					1	5
57) 1,1-Dichloropropene	(1)				Not Detected					1	5
58) Carbon Tetrachloride	(1)				Not Detected					0.5	5
63) Benzene	(1)				Not Detected						5
65) 1,2-Dichloroethane	(1)				Not Detected					1	5
74) Trichloroethene	(1)				Not Detected					1	5 5
77) 1,2-Dichloropropane	(1)				Not Detected					1	5 5
78) Dibromomethane	(1)				Not Detected					1	5 5
83) Bromodichloromethane	(1)				Not Detected					1	-
87) cis-1,3-Dichloropropene	(1)				Not Detected					1	5
89) 4-Methyl-2-Pentanone	(1)				Not Detected					3	10
94) Toluene	(2)				Not Detected					0.7	5
95) trans-1,3-Dichloropropene	(2)				Not Detected					1	5
97) 1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731 page 1 of 2

S2PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6766765

Data file: /chem2/HP09355.i/12sep03b.b/ys03s44.d Injection date and time: 04-SEP-2012 08:07
Data file Sample Info. Line: S2PAT;6766765;1;0;;PTL07;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A Matrix: WATER

trix: WATER Level: Lo

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

98) Tetrachloroethene (2) Not Detected 0.8 99) 1,3-Dichloropropane (2) Not Detected 1 102) Dibromochloromethane (2) Not Detected 1 104) 1,2-Dibromoethane (2) Not Detected 1 107) Chlorobenzene (2) Not Detected 0.8 108) 1,1,1,2-Tetrachloroethane (2) Not Detected 1 109) Ethylbenzene (2) Not Detected 1 109) Ethylbenzene (2) Not Detected 0.8 110) m+p-Xylene (2) Not Detected 0.8 1110 Xylene (Total) (2) Not Detected 0.8 112) Xylene (Total) (2) Not Detected 0.8 113) o-Xylene (2) Not Detected 0.8 114) Styrene (2) Not Detected 0.8 115) Bromoform (2) Not Detected 1 116) Isopropylbenzene (2) Not Detected 1 117) Isopropylbenzene (2) Not Detected 1 118) Isopropylbenzene (2) Not Detected 1	LOQ mple)
99) 1,3-Dichloropropane (2) Not Detected 1 102) Dibromochloromethane (2) Not Detected 1 104) 1,2-Dibromochlane (2) Not Detected 1 107) Chlorobenzene (2) Not Detected 0.8 108) 1,1,2-Tetrachloroethane (2) Not Detected 1 109) Ethylbenzene (2) Not Detected 1 100) m+p-Xylene (2) Not Detected 0.8 110) m+p-Xylene (2) Not Detected 0.8 1110 Xylene (Total) (2) Not Detected 0.8 113) o-Xylene (2) Not Detected 0.8 114) Styrene (2) Not Detected 0.8 115) Bromoform (2) Not Detected 1	5
102) Dibromochloromethane (2) Not Detected 1 104) 1,2-Dibromoethane (2) Not Detected 1 107) Chlorobenzene (2) Not Detected 0.8 108) 1,1,2-Tetrachloroethane (2) Not Detected 1 109) Ethylbenzene (2) Not Detected 0.8 110) m+p-Xylene (2) Not Detected 0.8 112) Xylene (Total) (2) Not Detected 0.8 113) o-Xylene (2) Not Detected 0.8 114) Styrene (2) Not Detected 1 115) Bromoform (2) Not Detected 1	5
107 Chlorobenzene (2)	5
108	5
109) Ethylbenzene (2) Not Detected 0.8 110) m+p-Xylene (2) Not Detected 0.8 112) Xylene (Total) (2) Not Detected 0.8 113) o-Xylene (2) Not Detected 0.8 114) Styrene (2) Not Detected 1 115) Bromoform (2) Not Detected 1	5
110	5
112) Xylene (Total) (2) Not Detected 0.8 113) o-Xylene (2) Not Detected 0.8 114) Styrene (2) Not Detected 1 115) Bromoform (2) Not Detected 1	5
113) o-Xylene (2) Not Detected 0.8 114) Styrene (2) Not Detected 1 115) Bromoform (2) Not Detected 1	5
114) Styrene (2) Not Detected 1 115) Bromoform (2) Not Detected 1	5
115) Bromoform (2) Not Detected 1	5
113) 510,1101011111	5
116) Isopropylbenzene (2) Not Detected 1	5
	5
122) 1,1,2,2-Tetrachloroethane (3) Not Detected 1	5
121) Bromobenzene (3) Not Detected 1	5
123) 1,2,3-Trichloropropane (3) Not Detected 1	5
125) n-Propylbenzene (3) Not Detected 1	5
126) 2-Chlorotoluene (3) Not Detected 1	5
127) 1,3,5-Trimethylbenzene (3) Not Detected 1	5
128) 4-Chlorotoluene (3) Not Detected 1	5
130) tert-Butylbenzene (3) Not Detected 1	5
132) 1,2,4-Trimethylbenzene (3) Not Detected 1	5
133) sec-Butylbenzene (3) Not Detected 1	5
135) p-Isopropyltoluene (3) Not Detected 1	5
134) 1,3-Dichlorobenzene (3) Not Detected 1	5
138) 1,4-Dichlorobenzene (3) Not Detected 1	5
145) n-Butylbenzene (3) Not Detected 1	5
144) 1,2-Dichlorobenzene (3) Not Detected 1	5
148) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2	5
150) 1,2,4-Trichlorobenzene (3) Not Detected 1	5
151) Hexachlorobutadiene (3) Not Detected 2	5
152) Naphthalene (3) Not Detected 1	5
153) 1,2,3-Trichlorobenzene (3) Not Detected 1	5

Total number of targets = 64

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412 page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s44.d Injection date and time: 04-SEP-2012 08:07

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Sample Name: S2PAT

Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Lab Sample ID: 6766765

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.

Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s44.d I Injection date and time: 04-SEP-2012 08:07 A

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Sample Name: S2PAT Lab Sample ID: 6766765

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.
Target 3.5 esignature user ID: ads01731

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s44.d Injection date and time: 04-SEP-2012 08:07

Instrument ID: HP09355.i

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Sample Name: S2PAT

Lab Sample ID: 6766765

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
28) *t-Butyl Alcohol-d10	(4)	2.036	65	282617	250.000
52) \$Dibromofluoromethane	(1)	3.496	113	217539	54.491
62) \$1,2-Dichloroethane-d4	(1)	3.806	102	54184	51.908
71)*Fluorobenzene	(1)	4.141	96	863599	50.000
93) \$Toluene-d8	(2)	5.765	98	838355	48.440
106) *Chlorobenzene-d5	(2)	7.328	117	635722	50.000
119) \$4-Bromofluorobenzene	(2)	8.442	95	300216	46.477
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	376119	50.000

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.
Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories	Contract:

P2PAT

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:___

Matrix: (soil/water) WATER Lab Sample ID: 6766766

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/l2sep03b.b/ys03s45.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/K	g) ug/L	Q
75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	ע
75-01-4Vinyl Chloride	5	U
74-83-9Bromomethane	5	ן ט
75-00-3Chloroethane	5	U
75-69-4Trichlorofluoromethane	5	Ü
75-35-41,1-Dichloroethene	5	U
67-64-1Acetone	20	U
75-09-2Methylene Chloride	5	υ
156-60-5trans-1,2-Dichloroethene	5	Ü
1634-04-4Methyl Tertiary Butyl Ether	5	U
75-34-31,1-Dichloroethane	5	ט
156-59-2cis-1,2-Dichloroethene	5	ט
78-93-32-Butanone	10	ָ ט
594-20-72,2-Dichloropropane	5	ָוֹ ט
74-97-5Bromochloromethane	5	ָט [
67-66-3Chloroform	j 5	ָט ן
71-55-61,1,1-Trichloroethane	5	ָט ן
563-58-61,1-Dichloropropene	5	ָט ן
56-23-5Carbon Tetrachloride	5	ן ט
71-43-2Benzene	5	ָט
107-06-21,2-Dichloroethane	j 5	ָ ט
79-01-6Trichloroethene	5	Ū
78-87-51,2-Dichloropropane	j 5	ĺυ
74-95-3Dibromomethane	5	σ
75-27-4Bromodichloromethane	5	Üυ
10061-01-5cis-1,3-Dichloropropene	5	ָט ן
108-10-14-Methyl-2-Pentanone	10	ט
108-88-3Toluene	5	ָט ן
10061-02-6trans-1,3-Dichloropropene	5	ָ ט
~ ~	i	i

EPA SAMPLE NO.

|--|

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6766766

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s45.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

CAS NO. COMPOUND (ug/L of ug/l	kg, kg,b	Q
79-00-51,1,2-Trichloroethane	5	U
127-18-4Tetrachloroethene	5	ט
142-28-91,3-Dichloropropane	5	ט
124-48-1Dibromochloromethane	5	ָ U
106-93-41,2-Dibromoethane	5	ט
-108-90-7Chlorobenzene	5	יט
630-20-61,1,1,2-Tetrachloroethane	5	υ
100-41-4Ethylbenzene	5	U
179601-23-1m+p-Xylene	5	U
95-47-6o-Xylene	5	U
100-42-5Styrene	5	ָ <u>'</u>
75-25-2Bromoform	5	ט
98-82-81sopropylbenzene	5	U
108-86-1Bromobenzene	5	ับ
79-34-51,1,2,2-Tetrachloroethane	5	ט
96-18-41,2,3-Trichloropropane	5	ט
103-65-1n-Propylbenzene	5	ט
95-49-82-Chlorotoluene	5	ט [
108-67-81,3,5-Trimethylbenzene	5	ט
106-43-44-Chlorotoluene	5	ט
98-06-6tert-Butylbenzene	5	ט
95-63-61,2,4-Trimethylbenzene	5	ט
135-98-8sec-Butylbenzene	5	ן ט
541-73-11,3-Dichlorobenzene	5	Ū
99-87-6p-Isopropyltoluene	5	Ü
106-46-71,4-Dichlorobenzene	5	Ü
95-50-11,2-Dichlorobenzene	5	υ
104-51-8n-Butylbenzene	5	U
96-12-81,2-Dibromo-3-Chloropropane	5	U
120-82-11,2,4-Trichlorobenzene	5	U
		1

EPA	SAMPLE	NO.
$\nu_{\rm L}$		IVO.

P2PAT	

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6766766

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s45.d

Level: (low/med) LOW Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or	ug/Kg) ug/L		Q
87-68-3	Hexachlorob	outadiene	1	5	ע
91-20-3	Naphthalene	:		5	U
87-61-6	1,2,3-Trich	lorobenzene		5	ן ט
					1

P2PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6766766

Data file: /chem2/HP09355.i/12sep03b.b/ys03s45.d Injection date and time: 04-SEP-2012 08:28
Data file Sample Info. Line: P2PAT;6766766;1;0;;PTL07;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33
Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.048(0.000)	200	65	288197 (9)	250.00	
71) Fluorobenzene	4.141 (0.012)	544 .	96	857004 (-5)	50.00	
106) Chlorobenzene-d5	7.329(0.006)	1068	117	630106 (-9)	50.00	
136) 1,4-Dichlorobenzene-d4	9.354(0.000)	1401	152	363068 (-17)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52) Dibromofluoromethane	(1)	3.496(0.000)	113	217144	54.810	110%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.806(0.000)	102	53720	51.859	104%		77 - 113
93) Toluene-d8	(2)	5.765(0.000)	98	820380	47.824	96%		80 - 113
119) 4-Bromofluorobenzene	(2)	8.436(0.000)	95	297593	46.481	93%		78 - 113

		I.S.					Conc.	Conc.	Blank		Reporting Limit	-
Tar	get Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	ample)
=====					=====				=======			
2)	Dichlorodifluoromethane	(1)				Not Detected					1	5
3)	Chloromethane	(1)				Not Detected					1	5
5)	Vinyl Chloride	(1)				Not Detected					1	5
7)	Bromomethane	(1)				Not Detected					1	5
8)	Chloroethane	(1)				Not Detected	·				1	5
10)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
17)	Acetone	(1)				Not Detected					6	20
26)	Methylene Chloride	(1)				Not Detected					2	5
31)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
32)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
41)	2-Butanone	(1)				Not Detected					3	10
42)	2,2-Dichloropropane	(1)				Not Detected					1	5
47)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
57)	1,1-Dichloropropene	(1)				Not Detected					1	5
58)	Carbon Tetrachloride	(1)				Not Detected					1	5
	Benzene	(1)				Not Detected					0.5	5
65)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
77)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
83)	Bromodichloromethane	(1)				Not Detected					1	5
87)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
89)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
94)	Toluene	(2)				Not Detected					0.7	5
95)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
97)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731

P2PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6766766

Data file: /chem2/HP09355.i/12sep03b.b/ys03s45.d Injection date and time: 04-SEP-2012 08:28
Data file Sample Info. Line: P2PAT;6766766;1;0;;PTL07;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	I.S.				Conc.	Conc.	Blank		Reporting	LOQ
Target Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	-
98) Tetrachloroethene	(2)			Not Detected					0.8	5
99) 1,3-Dichloropropane	(2)			Not Detected					1	5
102) Dibromochloromethane	(2)			Not Detected					1	5
104) 1,2-Dibromoethane	(2)			Not Detected					1	5
107) Chlorobenzene	(2)			Not Detected					0.8	5
108) 1,1,1,2-Tetrachloroeth				Not Detected					1	5
109) Ethylbenzene	(2)			Not Detected					0.8	5
110) m+p-Xylene	(2)			Not Detected					0.8	5
112) Xylene (Total)	(2)			Not Detected	ĺ				0.8	5
113) o-Xylene	(2)			Not Detected	l				0.8	5
114) Styrene	(2)			Not Detected	[1	5
115) Bromoform	(2)			Not Detected	!				1	5
116) Isopropylbenzene	(2)			Not Detected	l				1	5
122) 1,1,2,2-Tetrachloroetha	ane (3)			Not Detected	1				1	5
121) Bromobenzene	(3)			Not Detected	1				1	5
123) 1,2,3-Trichloropropane	(3)			Not Detected					1	5
125) n-Propylbenzene	(3)			Not Detected	l				1	5
126) 2-Chlorotoluene	(3)			Not Detected	l				1	5
127) 1,3,5-Trimethylbenzene	(3)			Not Detected					1	5
128) 4-Chlorotoluene	(3)			Not Detected					1	5
130) tert-Butylbenzene	(3)			Not Detected					1	5
132) 1,2,4-Trimethylbenzene	(3)			Not Detected					1	5
133) sec-Butylbenzene	(3)			Not Detected					1	5
135) p-Isopropyltoluene	(3)			Not Detected					1	5
134) 1,3-Dichlorobenzene	(3)			Not Detected					1	5
138) 1,4-Dichlorobenzene	(3)			Not Detected					1	5
145) n-Butylbenzene	(3)			Not Detected					1	5
144) 1,2-Dichlorobenzene	(3)			Not Detected					1	5
148) 1,2-Dibromo-3-Chloropro				Not Detected					2	5
150) 1,2,4-Trichlorobenzene	(3)			Not Detected					1	5
151) Hexachlorobutadiene	(3)			Not Detected					2	5
152) Naphthalene	(3)			Not Detected					1	5
153) 1,2,3-Trichlorobenzene	(3)			Not Detected					1	5

Total number of targets = 64

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12sep03b.b/ys03s45.d Injection date and time: 04-SEP-2012 08:28

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Lab Sample ID: 6766766 Sample Name: P2PAT

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.

Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12sep03b.b/ys03s45.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 08:28 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Sample Name: P2PAT Lab Sample ID: 6766766

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.
Target 3.5 esignature user ID: ads01731

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s45.d

Instrument ID: HP09355.i

Injection date and time: 04-SEP-2012 08:28

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33 Date, time and analyst ID of latest file update: 04-Sep-2012 13:15 ads01731

Sample Name: P2PAT

Lab Sample ID: 6766766

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
28)*t-Butyl Alcohol-d10	(4)	2.048	65	288197	250.000
52) \$Dibromofluoromethane	(1)	3.496	113	217144	54.810
62) \$1,2-Dichloroethane-d4	(1)	3.806	102	53720	51.859
71) *Fluorobenzene	(1)	4.141	96	857004	50.000
93) \$Toluene-d8	(2)	5.765	98	820380	47.824
106) *Chlorobenzene-d5	(2)	7.329	117	630106	50.000
119) \$4-Bromofluorobenzene	(2)	8.436	95	297593	46.481
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	363068	50.000

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: ____ SDG No.: ____

Matrix: (soil/water) WATER Lab Sample ID: 6766767

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s46.d

Level: (low/med) LOW Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L	Q
75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	υ
75-01-4Vinyl Chloride	5	ט
74-83-9Bromomethane	5	Ū
75-00-3Chloroethane	5	Ū
75-69-4Trichlorofluoromethane	5	U
75-35-41,1-Dichloroethene	5	U
67-64-1Acetone	20	U
75-09-2Methylene Chloride	5	ן ט
156-60-5trans-1,2-Dichloroethene	5	ן ט
1634-04-4Methyl Tertiary Butyl Ether	5	11
75-34-31,1-Dichloroethane	5	ט
156-59-2cis-1,2-Dichloroethene	5	ש
78-93-32-Butanone	10	U
594-20-72,2-Dichloropropane	5	U
74-97-5Bromochloromethane	5	U
67-66-3Chloroform	5	U
71-55-61,1,1-Trichloroethane	5	U
563-58-61,1-Dichloropropene	5	ן ט
56-23-5Carbon Tetrachloride	5	ן ט
71-43-2Benzene	5	ן ט
107-06-21, 2-Dichloroethane	5	ט
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	U
74-95-3Dibromomethane	5	ט
75-27-4Bromodichloromethane	5	ן ט
10061-01-5cis-1,3-Dichloropropene	5	ן ט
108-10-14-Methyl-2-Pentanone	10	U
108-88-3Toluene	5	ן ט
10061-02-6trans-1,3-Dichloropropene	5	ן ט

EPA SAMPLE NO.

S3PAT

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6766767

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s46.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec.

Date Analyzed: 09/04/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(ug/L or ug	/Kg) ug/L		Q	
		1,1,2-Trichlore			5	ע	İ
	•	Tetrachloroeth			5	ט	Ì
	142-28-9	1,3-Dichloropro	opane	Ì	5	ט	Ĺ
	124-48-1	Dibromochlorom	ethane		5	ט	İ
	106-93-4	1,2-Dibromoetha	ane	•	5	ט	ĺ
_	,	Chlorobenzene			5	ן ט	1
	630-20-6	1,1,1,2-Tetrac	nloroethane		5	U	ĺ
	100-41-4	Ethylbenzene		ĺ	5	ט	İ
	179601-23-1	m+p-Xylene			5	υ	İ
	95-47-6	o-Xylene			5	ט	ĺ
	100-42-5	Styrene		ĺ	5	ט	Ì
	75-25-2	Bromoform			5	ט [İ
	98-82-8	Isopropylbenze	ne	İ	5	ט	İ
	108 86-1	Bromobenzene		ĺ	5	ĺυ	İ
	79-34-5	1,1,2,2-Tetracl	nloroethane	ĺ	5	υ	İ
	96-18-4	1,2,3-Trichlore	opropane	ĺ	5	ับ	İ
	103-65-1	n-Propylbenzene	2	Í	5	ָ ט	İ
	95-49-8	2-Chlorotoluene	2	į	5	ט	i
	108-67-8	1,3,5-Trimethy	lbenzene	İ	5	ט	İ
	106-43-4	4-Chlorotoluene	2	j	5	ָ ט	İ
	98-06-6	tert-Butylbenze	ene	j	5	ប	i
	95-63-6	1,2,4-Trimethy	lbenzene	j	5	บ	i
	135-98-8	sec-Butylbenzer	ne	j	5	ប	i
	541-73-1	1,3-Dichlorober	nzene ·	i	5	ប	i
	99-87-6	p-Isopropyltol	ıene	j	5	ט	İ
		1,4-Dichlorober		i	5	ប	İ
		1,2-Dichlorober		i	5	U	İ
	104-51-8	n-Butylbenzene		i	5	บ	į
		1,2-Dibromo-3-0	Chloropropan	e İ	5	U	i
		1,2,4-Trichlore		i	5	υ	i
				i		ĺ	i
						·	

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS

Case No.: _____ SAS No.: ____ SDG No.: ____

Matrix: (soil/water) WATER

Lab Sample ID: 6766767

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/12sep03b.b/ys03s46.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____

Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/LCAS NO. COMPOUND 87-68-3------Hexachlorobutadiene U 91-20-3-----Naphthalene 5 U 87-61-6-----1,2,3-Trichlorobenzene 5 U

S3PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6766767

Data file: /chem2/HP09355.i/12sep03b.b/ys03s46.d Inje
Data file Sample Info. Line: S3PAT;6766767;1;0;;PTL07;PLM;;ys03b05; Inst
Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731 Injection date and time: 04-SEP-2012 08:49 Instrument ID: HP09355.i Batch: Y122472AA

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.054(-0.006)	201	65	280287 (6)	250.00	
71) Fluorobenzene	4.141 (0.012)	544	96	843169 (-6)	50.00	
106) Chlorobenzene-d5	7.329(0.006)	1068	117	618224 (-10)	50.00	
136) 1,4-Dichlorobenzene-d4	9.354(0.000)	1401	152	366144 (-17)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	QC %Rec. flags	QC Limits
52) Dibromofluoromethane	(1)	3.502(-0.001)	113	212664	54.560	109%	80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.812(-0.001)	102	52998	52.002	104%	77 - 113
93) Toluene-d8	(2)	5.765(0.000)	98	810236	48.140	96%	80 - 113
119) 4-Bromofluorobenzene	(2)	8.442 (-0.001)	95	288241	45.886	92%	78 - 113

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ
	Dichlorodifluoromethane	(1)				Not Detected					1	5
	Chloromethane	(1)				Not Detected					1	5
	Vinyl Chloride	(1)				Not Detected					1	5
-	Bromomethane	(1)				Not Detected					ī	5
	Chloroethane	(1)				Not Detected					ī	5
	Trichlorofluoromethane	(1)				Not Detected					ī	5
	1,1-Dichloroethene	(1)				Not Detected					0.8	5
	Acetone	(1)				Not Detected					6	20
	Methylene Chloride	(1)				Not Detected					2	5
	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
	Methyl Tertiary Butyl Ether	(1)				Not Detected	l				0.5	5
	1,1-Dichloroethane	(1)				Not Detected	1				1	5
	cis-1,2-Dichloroethene	(1)				Not Detected	I				0.8	5
	2-Butanone	(1)				Not Detected	1				3	10
	2,2-Dichloropropane	(1)				Not Detected	I				1	5
	Bromochloromethane	(1)				Not Detected	1				1	5
50)	Chloroform	(1)				Not Detected	1				0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected	l				0.8	5
57)	1,1-Dichloropropene	(1)				Not Detected	1				1	5
58)	Carbon Tetrachloride	(1)				Not Detected	l				1	5
63)	Benzene	(1)				Not Detected	l				0.5	5
65)	1,2-Dichloroethane	(1)				Not Detected	l				1	5
74)	Trichloroethene	(1)				Not Detected	1				1	5
77)	1,2-Dichloropropane	(1)				Not Detected	I				1	5
78)	Dibromomethane	(1)				Not Detected					1	5
83)	Bromodichloromethane	(1)				Not Detected	l				1	5
87)	cis-1,3-Dichloropropene	(1)				Not Detected	1				1	5
89)	4-Methyl-2-Pentanone	(1)				Not Detected	l				3	10
94)	Toluene	(2)				Not Detected	I				0.7	5
95)	trans-1,3-Dichloropropene	(2)				Not Detected	1				1	5
97)	1,1,2-Trichloroethane	(2)				Not Detected	l				0.8	5

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731 page 1 of 2 S3PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6

6766767

Data file: /chem2/HP09355.i/12sep03b.b/ys03s46.d Injection date and time: 04-SEP-2012 08:49
Data file Sample Info. Line: S3PAT;6766767;1;0;;PTL07;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A Matr

Matrix: WATER Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ ample)
98) Tetrachloroethene	(2)			Not Detected		=======================================	=======	======	0.8	5
99) 1,3-Dichloropropane	(2)			Not Detected					1	5
102) Dibromochloromethane	(2)			Not Detected					1	5
104) 1,2-Dibromoethane	(2)			Not Detected					1	5
107) Chlorobenzene	(2)			Not Detected					0.8	5
108) 1,1,1,2-Tetrachloroethane	(2)			Not Detected					1	5
109) Ethylbenzene	(2)			Not Detected					0.8	5
110) m+p-Xylene	(2)			Not Detected					0.8	5
112) Xylene (Total)	(2)			Not Detected					0.8	5
113) o-Xylene	(2)			Not Detected					0.8	5
114) Styrene	(2)			Not Detected					1	5
115) Bromoform	(2)			Not Detected					1	5
116) Isopropylbenzene	(2)			Not Detected					1	5
122) 1,1,2,2-Tetrachloroethane	(3)			Not Detected					1	5
121) Bromobenzene	(3)			Not Detected					1	5
123) 1,2,3-Trichloropropane	(3)			Not Detected					1	5
125) n-Propylbenzene	(3)			Not Detected					1	5
126) 2-Chlorotoluene	(3)			Not Detected					1	5
127) 1,3,5-Trimethylbenzene	(3)			Not Detected					1	5
128) 4-Chlorotoluene	(3)			Not Detected					1	5
130) tert-Butylbenzene	(3)			Not Detected					1	5
132) 1,2,4-Trimethylbenzene	(3)			Not Detected					1	5
133) sec-Butylbenzene	(3)			Not Detected					1	5
135) p-Isopropyltoluene	(3)			Not Detected					1	5
134) 1,3-Dichlorobenzene	(3)			Not Detected					1	5
138) 1,4-Dichlorobenzene	(3)			Not Detected					1	5
145) n-Butylbenzene	(3)			Not Detected					1	5
144) 1,2-Dichlorobenzene	(3)			Not Detected					1	5
148) 1,2-Dibromo-3-Chloropropane	(3)			Not Detected					2	5
150) 1,2,4-Trichlorobenzene	(3)			Not Detected					1	5
151) Hexachlorobutadiene	(3)			Not Detected					2	5
152) Naphthalene	(3)			Not Detected					1	5
153) 1,2,3-Trichlorobenzene	(3)			Not Detected					1	5

Total number of targets = 64

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12sep03b.b/ys03s46.d Injection date and time: 04-SEP-2012 08:49

Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731

Sample Name: S3PAT Lab Sample ID: 6766767

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.
Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12sep03b.b/ys03s46.d Instrumentation date and time: 04-SEP-2012 08:49 Analys

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731

Sample Name: S3PAT Lab Sample ID: 6766767

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.

Target 3.5 esignature user ID: ads01731

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s46.d Injection date and time: 04-SEP-2012 08:49

Instrument ID: HP09355.i

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731

Sample Name: S3PAT

Lab Sample ID: 6766767

I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
(4)	2.054	65	280287	250.000
(1)	3.502	113	212664	54.560
(1)	3.812	102	52998	52.002
(1)	4.141	96	843169	50.000
(2)	5.765	98	810236	48.140
(2)	7.329	117	618224	50.000
(2)	8.442	95	288241	45.886
(3)	9.354	152	366144	50.000
	Ref. ====== (4) (1) (1) (1) (2) (2) (2)	Ref. RT (4) 2.054 (1) 3.502 (1) 3.812 (1) 4.141 (2) 5.765 (2) 7.329 (2) 8.442	Ref. RT QION	Ref. RT QIon Area (4) 2.054 65 280287 (1) 3.502 113 212664 (1) 3.812 102 52998 (1) 4.141 96 843169 (2) 5.765 98 810236 (2) 7.329 117 618224 (2) 8.442 95 288241

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.
Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

EPA	SAMPLE	NO.

	,	
i	E	3 PA7

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER Lab Sample ID: 6766768

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s47.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

	COMPOUND (ug/L or	ug/Kg) ug/L		Q
	Dichlorodifluoromethane		5	U
	Chloromethane	ĺ	5	ΰ .
	Vinyl Chloride	ĺ	5	ט
74-83-9	Bromomethane	j	5	U
75-00-3	Chloroethane	į	5	ט
75-69-4	Trichlorofluoromethane		5	ט
75-35-4	1,1-Dichloroethene	į	5	ט
67-64-1	Acetone	i	20	Ū
75-09-2	Methylene Chloride	İ	5	ט
	trans-1,2-Dichloroethene	∍	5	ָט [
1634-04-4	Methyl Tertiary Butyl E	her	5	ָ ט
	1,1-Dichloroethane	j	5	ט
156-59-2	cis-1,2-Dichloroethene	j	5	U
	2-Butanone	į	10	ט ו
594-20-7	2,2-Dichloropropane	j	5	ט
	-Bromochloromethane	i	5	ĺυ
67-66-3	Chloroform	i	5	ט
71-55-6	1,1,1-Trichloroethane	Ì	5	ט ו
	1,1-Dichloropropene	i	5	ט
	Carbon Tetrachloride	i	5	ָ ו ט
71-43-2		i	5	ָ ט
107-06-2	1,2-Dichloroethane	i	5	ט ו
	Trichloroethene		5	ט l
	1,2-Dichloropropane	i	5	l ti
	Dibromomethane	i	5	ָ ט
	Bromodichloromethane	i	5	U
	cis-1,3-Dichloropropene	i	5	U
	4-Methyl-2-Pentanone	· [10	l u
108-88-3		Í	5	ט I
	trans-1,3-Dichloroproper	!	5	l U

EPA SAMPLE NO.

P3 F	PΑT	

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6766768

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s47.d

Level: (low/med) LOW Date Received: 08/23/12

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

CAS NO. COMPOUND

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L Q

•	79-00-51,1,2-Trichloroethane	5	ע
	127-18-4Tetrachloroethene	5	ט
	142-28-91,3-Dichloropropane	5	U
	124-48-1Dibromochloromethane	5	U
	106-93-41,2-Dibromoethane	5	U
+	108-90-7Chlorobenzene	5	 U
	630-20-61,1,1,2-Tetrachloroethane	. 5	U
	100-41-4Ethylbenzene	5	U
Ì	179601-23-1m+p-Xylene	5	ט [
1	95-47-6o-Xylene	5	ט [
	100-42-5Styrene	5	U
1	75-25-2Bromoform	5	ָט [
1	98-82-8Isopropylbenzene	5	ָ ט
	1.08-86-1Bromobenzene	5	์ ซ
ĺ	79-34-51,1,2,2-Tetrachloroethane	5	υ
	96-18-41,2,3-Trichloropropane	5	ט
	103-65-1n-Propylbenzene	. 5	ָט
Ì	95-49-82-Chlorotoluene	5	υ
Ì	108-67-81,3,5-Trimethylbenzene	5	ט
Ì	106-43-44-Chlorotoluene	5	์ บ
1	98-06-6tert-Butylbenzene	5	ប
1	95-63-61,2,4-Trimethylbenzene	5	ט
ļ	135-98-8sec-Butylbenzene	5	ט [
1	541-73-11,3-Dichlorobenzene	5	ט
1	99-87-6p-Isopropyltoluene	5	ט [
1	106-46-71,4-Dichlorobenzene	5	ט
İ	95-50-11,2-Dichlorobenzene	5	ט
ĺ	104-51-8n-Butylbenzene	5	Ü
İ	96-12-81,2-Dibromo-3-Chloropropane	5	ע
Ì	120-82-11,2,4-Trichlorobenzene	5	ט
ĺ			Ì
			·

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____.

Lab Code: LANCAS Case No.: SDG No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6766768

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03s47.d

Level: (low/med) LOW

Date Received: 08/23/12

Moisture: not dec. _____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

87-68-3Hexachlorobutadiene	5	U
91-20-3Naphthalene	5	υ
87-61-61,2,3-Trichlorobenzene	5	U
	ĺ	

P3PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6766768

Data file: /chem2/HP09355.i/12sep03b.b/ys03s47.d Injection date and time: 04-SEP-2012 09:09
Data file Sample Info. Line: P3PAT;6766768;1;0;;PTL07;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 04-SEP-2012 09:33

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.042(0.006)	199	65	288897 (9)	250.00	
71) Fluorobenzene	4.135(0.018)	543	96	836349 (-7)	50.00	
106) Chlorobenzene-d5	7.329(0.006)	1068	117	621031 (-10)	50.00	
136) 1,4-Dichlorobenzene-d4	9.354(0.000)	1401	152	366927 (-17)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52) Dibromofluoromethane	(1)	3.496(-0.001)	113	211561	54.720	109%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.806(-0.001)	102	52352	51.787	104%		77 - 113
93) Toluene-d8	(2)	5.765(0.000)	98	816235	48.277	97%		80 - 113
119) 4-Bromofluorobenzene	(2)	8.442(-0.001)	95	291237	46.153	92%		78 - 113

							_	_	5 1 . 1		Reportir Limit	
		I.S.		(. (ppm)	0.7		Conc.	Conc.	Blank	Oual	(in sa	-
	get Compounds	Ref	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.		-
2)		(1)				Not Detecte	d				1	5
3)	***************************************	(1)				Not Detecte	đ				1	5
	Vinyl Chloride	(1)				Not Detecte	rl .				1	5
•	Bromomethane	(1)				Not Detecte	đ				1	5
8)	Chloroethane	(1)				Not Detecte	d				1	5
10)	Trichlorofluoromethane	(1)				Not Detecte	d				1	5
16)	1,1-Dichloroethene	(1)				Not Detecte	d				0.8	5
17)	Acetone	(1)				Not Detecte	d				6	20
26)	Methylene Chloride	(1)				Not Detected	d				2	5
31)	-	(1)				Not Detecte	d				0.8	5
32)		(1)				Not Detecte	d				0.5	5
34)	1,1-Dichloroethane	(1)				Not Detecte	d				1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detecte	d				0.8	5
41)	2-Butanone	(1)				Not Detecte	d				3	10
42)	2,2-Dichloropropane	(1)				Not Detecte	d				1	5
47)	Bromochloromethane	(1)				Not Detecte	d				1	5
50)	Chloroform	(1)				Not Detecte	d				0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detecte	d				0.8	5
	1,1-Dichloropropene	(1)				Not Detecte	d				1	5
58)	Carbon Tetrachloride	(1)				Not Detecte	d				1	5
63)	Benzene	(1)				Not Detecte	d				0.5	5
65)	1,2-Dichloroethane	(1)				Not Detecte	đ				1	5
74)	Trichloroethene	(1)				Not Detecte	đ				1	5
77)	1,2-Dichloropropane	(1)				Not Detecte	d				1	5
78)	Dibromomethane	(1)				Not Detecte	d				1	5
83)	Bromodichloromethane	(1)				Not Detecte	d				1	5
87)	cis-1,3-Dichloropropene	(1)				Not Detecte	d				1	5
89)	4-Methyl-2-Pentanone	(1)				Not Detecte	d				3	10
94)	Toluene ·	(2)				Not Detecte	d				0.7	5
95)	trans-1,3-Dichloropropene	(2)				Not Detecte	d				1	5
97)	1,1,2-Trichloroethane	(2)				Not Detecte	d				0.8	5

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731 page 1 of 2

P3PAT

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6766768

Data file: /chem2/HP09355.i/12sep03b.b/ys03s47.d Injection Data file Sample Info. Line: P3PAT;6766768;1;0;;PTL07;PLM;;ys03b05; Instruction Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731 Injection date and time: 04-SEP-2012 09:09 Instrument ID: HP09355.i Batch: Y122472AA

Blank Data file reference: /chem2/HPO9355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732 Calibration date and time (Last Method Edit): 04-SEP-2012 09:33 Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code: 038A Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

-	Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sam	LOQ
	trachloroethene	(2)				Not Detected					0.8	5
,	3-Dichloropropane	(2)		•		Not Detected					1	5
	bromochloromethane	(2)				Not Detected					1	5
	2-Dibromoethane	(2)				Not Detected					1	5
	lorobenzene	(2)				Not Detected					0.8	5
,	1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
	hylbenzene	(2)				Not Detected					0.8	5
	p-Xylene	(2)				Not Detected					0.8	5
	lene (Total)	(2)				Not Detected					0.8	5
113) o-		(2)				Not Detected					0.8	5
114) St		(2)				Not Detected					1	5
115) Br	omoform	(2)				Not Detected					1	5
116) Is	opropylbenzene	(2)				Not Detected					1	5
122) 1,	1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
121) Br	omobenzene	(3)				Not Detected					1	5
123) 1,	2,3-Trichloropropane	(3)				Not Detected					1	5
125) n-	Propylbenzene	(3)				Not Detected					1	5
126) 2-	Chlorotoluene	(3)				Not Detected					1	5
127) 1,	3,5-Trimethylbenzene	(3)				Not Detected					1	5
128) 4-	Chlorotoluene	(3)				Not Detected					1	5
130) te	rt-Butylbenzene	(3)				Not Detected					1	5
132) 1,	2,4-Trimethylbenzene	(3)				Not Detected					1	5
133) se	c-Butylbenzene	(3)				Not Detected					1	5
135) p-	Isopropyltoluene	(3)				Not Detected					1	5
134) 1,	3-Dichlorobenzene	(3)				Not Detected					1	5
138) 1,	4-Dichlorobenzene	(3)				Not Detected					1	5
145) n-	Butylbenzene	(3)				Not Detected					1	5
144) 1,	2-Dichlorobenzene	(3)				Not Detected					1	5
148) 1,	2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
	2,4-Trichlorobenzene	(3)				Not Detected					1	5
	xachlorobutadiene	(3)				Not Detected					2	5
	phthalene	(3)				Not Detected					1	5
153) 1,	2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 64

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412 page 2 of 2

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12sep03b.b/ys03s47.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 09:09 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731

Sample Name: P3PAT Lab Sample ID: 6766768

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.

Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12sep03b.b/ys03s47.d Injection date and time: 04-SEP-2012 09:09

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731

Sample Name: P3PAT Lab Sample ID: 6766768

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21.
Target 3.5 esignature user ID: ads01731

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03s47.d

Instrument ID: HP09355.i

Injection date and time: 04-SEP-2012 09:09

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8732

Calibration date and time: 04-SEP-2012 09:33

Date, time and analyst ID of latest file update: 04-Sep-2012 13:16 ads01731

Sample Name: P3PAT

Lab Sample ID: 6766768

Compounds	I.S. Ref.	RT ======	QIon =====	Area =======	On-Column Amount (ng)
28) *t-Butyl Alcohol-d10	(4)	2.042	65	288897	250.000
52) \$Dibromofluoromethane	(1)	3.496	113	211561	54.720
62) \$1,2-Dichloroethane-d4	(1)	3.806	102	52352	51.787
71) *Fluorobenzene	(1)	4.135	96	836349	50.000
93) \$Toluene-d8	(2)	5.765	98	816235	48.277
106) *Chlorobenzene-d5	(2)	7.329	117	621031	50.000
119) \$4-Bromofluorobenzene	(2)	8.442	95	291237	46.153
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	366927	50.000

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Angela D. Sneeringer on 09/04/2012 at 13:21. Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

Standards Data

Lancaster Laboratories Runlog for Hewelet Packard GC/MS System HP09355 **HP #20**

were an a control of the property of the approximation of the control of the cont

**	Shift #1 Analyst	t:_	_ADS	S** Shift #2 Analyst:			** Shift #3 Analyst:	r
	Comment Code:	R	==	Reinjection necessary	X	=	Sample sent to be reextracted	
		S	=	Surrogate problem	I	=	Internal Standard problem	
		NU	=	Not used	F	=	Further dilution required	
		MR	=	Meets requirements	ino	=	Internal use only	
		Cz	=	Confirms z, $(z = S, I \text{ or } X)$	T	=	Injected outside valid tune period	
	Other problems	or	COI	nments are as follows:				
·								*
٠ <u> </u>								*
-								٠
Ļ.								*

Data Directory Path is - C:\msdchem\1\12JUL10A\

FILE	SAMPLE	LLI#	DATE	TIME	BATCH	D.F.	NOTES
YL10T01.D	50NG BFB MA	R28-12	10 Jul 2	012 08:43			MR
YL10101.D	VSTD300	VSTD300	10 Jul 2	012 09:00			MR
YL10I02.D	VSTD100	VSTD100	10 Jul 2	012 09:21			MR
YL10I03.D	VSTD050	VSTD050	10 Jul 2	012 09:42			MR
YL10I04.D	VSTD020	VSTD020	10 Jul 2	012 10:02			MR
YL10I05.D	VSTD010	VSTD010	10 Jul 2	012 10:23			MR
YL10I06.D	VSTD004	VSTD004	10 Jul 2	012 10:44			MR
YL10M01.D	MDL001	MDL001	10 Jul 2	012 11:06			MR
YL10V01.D	YSMICV	YSMICV	10 Jul 2	012 11:27	•		MR
YL10I11.D	VSTD300	VSTD300	10 Jul 2	012 11:58			MR
YL10I12.D	VSTD100	VSTD100	10 Jul 2	012 12:19			MR
YL10I13.D	VSTD050	VSTD050	10 Jul 2	012 12:41			MR
YL10I14.D	VSTD020	VSTD020	10 Jul 2	012 13:07			MR
YL10I15.D	VSTD010	VSTD010	10 Jul 2	012 13:28		•	MR
YL10I16.D	VSTD004	VSTD004	10 Jul 2	012 13:50			MR
YL10I17.D	VSTD001	VSTD001	10 Jul 2	012 14:10			MR
YL10M02.D	MDL0.5	MDL0.5	10 Jul 2	012 14:34			MR
YL10V02.D	YLGICV	YLGICV	10 Jul 2	012 14:55			MR

Lancaster Laboratories Runlog for Hewelet Packard GC/MS System HP09355 **HP #20**

**	Shift #1 Analyst:	ADS	** Shift #2 Analy	st:	** Shift #3 <i>P</i>	nalyst:	_SAS*
			法国委员会 化氯化铁 医发光电影	100000000000000000000000000000000000000			a tak
•	Comment Code: R	= Rein	njection necessary	X = S	ample sent to b	e reextrac	ted
	s	= Suri	ogate problem	I = I	nternal Standar	d problem	
	И	U = · Not	used	$\mathbf{F} = \mathbf{F}$	urther dilution	required	• •
	. м	R = Meet	s requirements	IUO = I	nternal use onl	У	
	С	z = Cont	firms z , $(z = S, I)$	(x) T = I	njected outside	valid tun	e period
	Other problems o	r comment	s are as follows:				
*					14.1.30		*
*						<u>.</u>	*
*_							*
*			**LINE MANUALLY	EDITED			*

Data Directory Path is - $C:\msdchem\1\12SEP03B\$

FILE	SAMPLE ============	LLI#	DATE	TIME	BATCH	D.F.	NOTES
	50NG BFB MAR28-12		03 Sep 2012				MR
YS03X05.D		VBLKY65	03 Sep 2012	23:58	Y122472AA		NÜ
YS03C01.D	VSTD050	VSTD050	04 Sep 2012	00:19	Y122472AA		MR
YS03B05.D	VBLKY65	VBLKY65	04 Sep 2012	00:39	Y122472AA		MR
YS03L31.D	LCSY65	LCSY65	04 Sep 2012	01:00	Y122472AA		NU
YS03L32.D	LCDY65	LCDY65	04 Sep 2012		Y122472AA		NU
YSO3L31A.D		LCSY65	04 Sep 2012		Y122472AA		MR
YS03L32A.D		LCDY65	04 Sep 2012		Y122472AA		MR
YS03S31.D		6769939	04 Sep 2012		Y122472AA		MR
YS03S32.D	GW-15	6769616	04 Sep 2012		Y122472AA		MR
YS03S33.D	GW-11	6769617	04 Sep 2012		Y122472AA		F
YS03S34.D	GW-3-	6769618	04 Sep 2012	04:21	Y122472AA		MR
YS03S35.D	GW-16	6769619	04 Sep 2012		Y122472AA		MR
YS03S36.D	FB828	6769620	04 Sep 2012		Y122472AA		MR
YS03S37,D	FD828	6769621	04 Sep 2012		Y122472AA		MR
YS03S38.D	MW38CDL	6769936DL **	04 Sep 2012		Y122472AA	500	MR
YS03S39.D	GS38BDL2	6771415DL2	04 Sep 2012		Y122472AA	1000	MR
YS03S40.D	ACU3B	6773615	04 Sep 2012		Y122472AA	10	F
YS03S41.D	ACU3BDL	6773615DL	04 Sep 2012		Y122472AA	100	F
YS03S42.D	S1PAT	6766763	04 Sep 2012		Y122472AA		MR
YS03S43.D	PlPAT	6766764	04 Sep 2012		Y122472AA		MR
YS03S44.D	S2PAT	6766765	04 Sep 2012		Y122472AA		MR
YS03S45.D	P2PAT	6766766	04 Sep 2012		Y122472AA		MR
YS03S46.D	S3PAT	6766767	04 Sep 2012		Y122472AA		MR
YS03S47.D	P3PAT	6766768	04 Sep 2012		Y122472AA		MR
YS03S48.D	TBPAT	6766769	04 Sep 2012	09:30	Y122472AA		MR

Data File: /chem2/HP09355.i/12jul10a.b/yl10t01.d

Page 1

Date : 10-JUL-2012 08:43 Client ID: 50NG BFB MAR28-12

Instrument: HP09355.i

ANALOGO CONTRACTOR CON

Sample Info: 50NG BFB HAR28-12

Operator: ADS01731

Column phase: DB-624

Column diameter: 0.18

Digitally signed by Angela D: Sneeringer on 07/10/2012 at 12:04. Target:3.5 esignature user ID: ads01731

Page 2

Data File: /chem2/HP09355.i/12jul10a,b/yl10t01.d

Date: 10-JUL-2012 08:43 Client ID: 50NG BFB HAR28-12

Instrument: HP09355.i

THE REPORT OF THE PROPERTY OF

Sample Info: 50NG BFB HAR28-12

Operator: ADS01731

Column phase: DB-624

Column diameter: 0.18

1 bfb

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 12:04. Target 3.5 esignature user ID: ads01731

Page 3

and the state of the second control of the second s

Data File: /chem2/HP09355.i/12jul10a.b/yl10t01.d

Date: 10-JUL-2012 08:43 Client ID: 50NG BFB MAR28-12

Instrument: HP09355.i

Sample Info: 50NG BFB MAR28-12

Operator: ADS01731

Column phase: DB-624

Column diameter: 0.18

Data File: yl10t01.d

Spectrum: Avg. Scans 19-21 (3,70), Background Scan 15

A CONTRACTOR OF THE CONTRACTOR

Location of Maximum: 95.00 Number of points: 64

	Y	m/z	Υ .	m/z		Y	m/z		Y	m/z	
1	402	119.00	558	80.00	- 1 -	785	60.00	1	890	36.00	1
١	264	128,00	1691 I	81,00	1	3702	61.00	ī	3936	37,00	1
ŧ	230	130,00	495	82,00	1	3381	62,00	1	3576	38,00	i
ı	87	137.00	3256 1	87.00	t	2512	63.00	ı	1240	39.00	ı
ı	801	141.00	3255 I	88.00	1	234	64.00	1	75	40,00	1
-+			+		-+-			+-			+-
i	788	143,00	286 I	91.00	1	274	67,00	ı	2	41.00	ı
ŀ	185	148.00	2144 I	92,00	1	8058	68.00	ı	270	44.00	ı
1	189	155.00	3300 I	93.00	1	8147	69,00	ı	813	45.00	ı
ı	86	157.00	9436 I	94,00	1	726	70,00	ı	1014	47.00	ı
1	75904	174.00	85792 I	95.00	1	396	72.00	ı	494	48.00	ı
+			+		-+-			+-			+-
ı	5454	175.00	5339	96.00	1	3474	73.00	ļ	3297	49.00	ı
١	72456	176,00	193 I	97.00	I	13580	74.00	1	15461	50.00	ı
ı	4889	177.00	265 I	104.00	1	41240	75.00	1	4821	51.00	1
ı			· 319 I	106.00	ı	3299	76.00	ı	195	52.00	ı
1			205	116.00	ı	577	77,00	1	321	55.00	1
1		~~~~	 उट्टंब ।	117,00	i	363	78.00	1	1262	56.00	+- !
ı			265	118.00	ı	1723	79.00	1	2083	57,00	1

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 12:04. Target 3:5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Lab Sample ID: VSTD300 Sample Name: VSTD300

Digitally signed by Angela D Sneeringer on 07/10/2012 at 14.39: Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

•

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39: Target 3.5 esignature user ID: ads01731

page 2 of 2

THE NAME OF THE PROPERTY OF TH

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 11:58 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 11-JUL-2012 18:07

Date, time and analyst ID of latest file update: 11-Jul-2012 18:07 sej02002

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compounds		I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
=======================================	====				=========	· • ·
Dichlorodifl	uoromethane	(1)	1.014	85	2823627	283.846
Chloromethan	ie	(1)	1.075	50	2730610M	261.566
4) 1,3-Butadien	ie	(1)	1.129	39	1876039	262.236
5) Vinyl Chlori	.de	(1)	1.142	62	2560637	260.640
7) Bromomethane	;	(1)	1.288	94	1479029	245.715
8) Chloroethane	!	(1)	1.318	64	1232802	241.245
9) Dichlorofluo	romethane	(1)	1.427	67	3179606	264.031
11) n-Pentane		(1)	1.470	43	3004196M	256.562
10) Trichloroflu	oromethane	(1)	1.488	101	2871410	274.320
13) Ethyl Ether		(1)	1.580	59	1593275	258.529
14) Freon 123a		(1)	1.598	67	1940142A	267,245
15) Acrolein		(4)	1.653	56	7082577	3059.619
16) 1,1-Dichloro	ethene	(1)	1.726	96	1581406	285.056
17) Acetone		(1)	1.744	58	718091	499.529
18) Freon 113		(1)	1.750	101	1730624	286.343
20) Methyl Iodid	le	(1)	1.823	142	3054992	289.479
21) 2-Propanol		(4)	1.823	45	1067962M	1260.011
22) Carbon Disul	fide	(1)	1.872	76	5143677	294.430
24) Allyl Chlori		(1)	1.938	41	2946732	280.508
25) Methyl Aceta	ite	(1)	1.945	43	2649027	259.756
26) Methylene Ch	loride	(1)	2.024	84	1877191	275.611
28) *t-Butyl Alco	hol-d10	(4)	2.036	65	337961	250.000
29) t-Butyl Alco		(4)	2.103	59	3045768M	1598.478
30) Acrylonitril		$(1\cdot)$	2.188	53	1445023	258.350
31) trans-1,2-Di	chloroethene	(1)	2.218	96	1925732	288.501
32) Methyl Terti	ary Butyl Ether		2.237	73	6822416	282.728
33) n-Hexane		(1)	2.437	57	3400362	290.547
34) 1,1-Dichloro	ethane	(1)	2.553	63	3870681	294.417
36) di-Isopropyl	Ether	(1)	2.632	45	7172341	277.400
37) 2-Chloro-1,3	-Butadiene	(1)	2.632	53	3405631	288.182
39) Ethyl t-Buty	l Ether	(1)	2.954	59	6732965	275.155
40) cis-1,2-Dich	loroethene	(1)	3.058	96	2203197	293.404
41) 2-Butanone		(1)	3.070		4549209	550.687
42) 2,2-Dichloro	propane	(1)	3.082	77	3062821	298.077
43) Propionitril		(4)	3.119	54	3331806	1615.584
46) Methacryloni	trile	(1)	3.265	.67	3840528	718.904
47) Bromochlorom	ethane	(1)	3.277	128	1128348	290.223
48) Tetrahydrofu	ran.	(4)	3.319	71	1223744	641.403

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:08.
Target 3.5 esignature user ID: sej02002

page 1 of 4

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

CONTROL OF THE PROPERTY OF THE

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 11:58 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	=====	3.356	83	3621178	290.729
50) Chloroform	(1)	3.502	113	+	49.835
52) \$Dibromofluoromethane	(1)			295196	50.260
51) \$Dibromofluoromethane(mz111)	(1)	3.502	111 97	3342540	293.413
53) 1,1,1-Trichloroethane	(1)	3.532		3143443	290.730
54) Cyclohexane (mz 84)	(1)	3.593 3.593	84 56	3840962M	290.730
56) Cyclohexane	(1)			1166380	291.684
55) Cyclohexane (mz 69)	(1)	3.593	. 69 96	4128929	582.349
45) 1,2-Dichloroethene (total)	(1)	2 670	75	2983142	293.261
57) 1,1-Dichloropropene	(1)	3.678 3.691	117	2736401	297.672
58) Carbon Tetrachloride	(1)			370104	49.569
61) \$1,2-Dichloroethane-d4 (mz65)	(1)	3.812 3.812	104	47843	50.257
60) \$1, 2-Dichloroethane-d4 (mz104) (1)	3.812	104	73702	49.866
62) \$1,2-Dichloroethane-d4	(1) (4)	3.824	41	2151130	3702.001
59) Isobutyl Alcohol	(1)	3.824	78	8398793	288.451
63) Benzene	(1)	3.885	98	280998	294.247
64) 1,2-Dichloroethane (mz 98)	(1)	3.885	. 62	3152538	290.272
65) 1,2-Dichloroethane	(1)	4.013	73	6631548	290.083
69) t-Amyl Methyl Ether 71)*Fluorobenzene	(1)	4.147	96	1238196	50.000
71) "Finoropenzene 72) n-Heptane	(1)	4.165	43	3999664	303.476
73) n-Butanol	$(\frac{1}{4})$	4.481	56	3926366	7370.945
74) Trichloroethene	(1)	$\frac{4.512}{4.512}$	95	2191041	293.548
75) Methylcyclohexane (mz98)	(1)	4.713	98	1743265	291.497
76) Methylcyclohexane (M250)	(1)	4.713	83	3860739	289.910
77) 1,2-Dichloropropane	$(\widehat{1})$	4.725	63	2316371	288.890
78) Dibromomethane	(1)	4.840	93	1488203	292.853
79) 1,4-Dioxane	$(\frac{1}{4})$	4.871	88	557687	3988.540
80) Methyl Methacrylate	(1)	4.889	69	2482084	292.954
83) Bromodichloromethane	(1)	5.017	83	2815789	298.399
85) 2-Nitropropane	(1)	5.248	41	2375351	570.270
86) 2-Chloroethyl Vinyl Ether	(1)	5.357	63	1903358	287.875
87) cis-1,3-Dichloropropene	(1)	5.491	75	3615524	294.234
89) 4-Methyl-2-Pentanone	(1)	5.680	43	8511986	542.617
93) \$Toluene-d8	(2)	5.771	98	1227880	50.085
92) \$Toluene-d8 (mz100)		5.771	100	896356	53.210
94) Toluene	(2)	5.844	92	5419557	290.051
95) trans-1,3-Dichloropropene	(2)	6.094	· 75	3632713	296.732
96) Ethyl Methacrylate	(2)	6.240	69	3932407	293.879

M = Compound was manually integrated.

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39. Target 3.5 esignature user ID: ads01731 page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 11:58 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

was groups and the first of the control of the cont

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

	T 0		•		On-Column
Compounda	I.S. Ref.	RT .	QIon	Area	Amount (ng)
Compounds		EEEEEE			(119)
97) 1,1,2-Trichloroethane	(2)	6.282	97	2093508	292.767
98) Tetrachloroethene	(2)	6.434	166	2562229	295.439
99) 1,3-Dichloropropane	(2)	6.459		3737259	290.847
101) 2-Hexanone	(2)	6.592	43	7000349	548.838
102) Dibromochloromethane	(2)	6.702	129	2328905	303.422
104) 1,2-Dibromoethane	$(\overline{2})$	6.805	107	2348897	294.706
106) *Chlorobenzene-d5	(2)	7.335	117	896991	50.000
107) Chlorobenzene	(2)	7.365	112	6101210	289.181
108) 1,1,1,2-Tetrachloroethane	(2)	7.462	131	2164671	295.732
109) Ethylbenzene	(2)	7.499	91	10224597	282.984
110) m+p-Xylene	(2)	7.627	106	7954750	567.096
113) o-Xylene	(2)	7.992	106	3954366	284.237
114) Styrene	(2)	8.004	104	6756492	283.906
115) Bromoform	(2)	8.144	173	1965423	310.320
112) Xylene (Total)	(2)		106	11909116	851.333
116) Isopropylbenzene	(2)	8.332	105	9842317	274.894
118) Cyclohexanone	(4)	8.375	55	2763960	3905.281
120) \$4-Bromofluorobenzene(mz174)	(2)	8.442	174	396959	50.117
119)\$4-Bromofluorobenzene	(2)	8.442	95	453311	49.880
121) Bromobenzene	(3)	8.551	156	2763713	295.524
122) 1,1,2,2-Tetrachloroethane	(3)	8.588	83	3514122	293.945
123) 1,2,3-Trichloropropane	(3)	8.606	110	1134726	297.236
124) trans-1,4-Dichloro-2-Butene	(3)	8.636	53	3211519	750.652
125) n-Propylbenzene	(3)	8.679	91	10800179	268.335
126) 2-Chlorotoluene	(3)	8.728	126	25313.35	292.808
128) 4-Chlorotoluene	(3)	8.819	126	2599355	288.967
127) 1,3,5-Trimethylbenzene	(3)	8.825	105	8351507	276.140
130) tert-Butylbenzene	(3)	9.075	134	1985400	285.224
131) Pentachloroethane	(3)	9.075	167	1668029	285.935
132) 1,2,4-Trimethylbenzene	(3)	9.111	105	8578448	276.060
133) sec-Butylbenzene	(3)	9.245	105	9893777	267.351
134) 1,3-Dichlorobenzene	(3)	9.306	146	5148875	289.985
136)*1,4-Dichlorobenzene-d4	(3)	9.354	152	515827	50.000 269.083
135) p-Isopropyltoluene	(3)	9.360	119	9003672	286.699
138) 1,4-Dichlorobenzene	(3)	9.373 9.421	146 105	5206935 8386598	265.720
139) 1,2,3-Trimethylbenzene	(3)	9.421	91	7585952	290.928
141) Benzyl Chloride	(3)		119	5563214	273.446
142) 1,3-Diethylbenzene	(3)	9.579	113	7707CT#	2/3.440

^{* =} Compound is an internal standard.

page 3 of 4

indicates the contraction of the

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39 Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i

Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD300

Lab Sample ID: VSTD300

	I.S.				On-Column Amount
Compounds	Ref.	RT	OIon	Area	(ng)
======================================	=====	======	=====	========	===========
144) 1,2-Dichlorobenzene	(3)	9.640	146	4687234	278.861
143) 1,4-Diethylbenzene	(3)	9.640	119	5626031	269.002
145) n-Butylbenzene	(3)	9.652	92	4605116	279.771
146) 1,2-Diethylbenzene	(3)	9.719	119	4649702	273.112
148) 1,2-Dibromo-3-Chloropropane	(3)	10.182	75	1022579	298.356
149) 1,3,5-Trichlorobenzene	(3)	10.340	180	3850014	277.069
150) 1.2.4-Trichlorobenzene	(3)	10.748	180	3524890	272.380
151) Hexachlorobutadiene	(3)	10.869	225	1794767	276.940
152) Naphthalene	(3)	10.900	128	10020061	227.020
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	3410504	271.131
154) 2-Methylnaphthalene	(3)	11.624	142	6062473	241.696

page 4 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39. Target 3.5 esignature user ID: ads01731 Sample Spectrum (Background Subtracted)

Manually Integrated Quant Ion HP MS y110:11.d, Ion 50.00 1.6-1.2 1.0 0.8 0.6-0.4 0.2 1.12 1,02 1,05 1,10 0,94 0.96

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

and the second of the confidence of the second of the seco

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Lab Sample ID: VSTD300 Sample Name: VSTD300

3 Compound Number

Chloromethane Compound Name

: 40 Scan Number Retention Time (minutes): 1.075 50.00 Quant Ion 2730610M Area (flag) On-Column Amount (ng) : 286.4370

45 Integration stop scan: Integration start scan 31 Y at integration end: 0 Y at integration start

improper integration Reason for manual integration:

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14.39.

Target 3.5 esignature user ID: ads01731

GC/MS audit/management approval:

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Lab Sample ID: VSTD300 Sample Name: VSTD300

Compound Number

: Chloromethane Compound Name

Scan Number

Retention Time (minutes): 1.075 : 50.00 Quant Ion : 2867413 Area

: 286.3182 On-column Amount (ng)

Integration stop scan: 45 13 Integration start scan Y at integration end: 0 Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14.39 Target 3.5 esignature user ID: ads01731

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 11

Compound Name : n-Pentane

Scan Number : 105
Retention Time (minutes): 1.470
Quant Ion : 43.00
Area (flag) : 3004196M
On-Column Amount (ng) : 271.1671

Integration start scan : 84 Integration stop scan: 117 Y at integration start : 1410 Y at integration end: 1410

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:39

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58 Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 11

Compound Name : n-Pentane

Scan Number : 105

Retention Time (minutes): 1.470

Quant Ion : 43.00

Area : 3368228 On-column Amount (ng) : 293.3166

Integration start scan : 84 Integration stop scan: 137 Y at integration start : 1410 Y at integration end: 1410

Digitally signed by Angela D. Sheeringer on 07/10/2012 at 14:39 Target 3.5 esignature user ID: ads01731

A CONTRACTOR DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR

Manually Integrated Quant Ion HP MS y110i11.d, Ion 67.00 6.5 6.0 5.5 5,0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1.65 1.77 1.89 1.56 1,59 1,62 1.80 1.86 1,47

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

- 1948年1987年1948年1949日 - 1950日 -

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Lab Sample ID: VSTD300 Sample Name: VSTD300

: 14 Compound Number

: Freon 123a Compound Name

: 126 Scan Number Retention Time (minutes): 1.598 : 67.00 Quant Ion : 1940142A Area (flag) : 288.9896 On-Column Amount (ng)

Integration stop scan: 164 112 Integration start scan : 788 Y at integration end: 1313 Y at integration start

improper integration Reason for manual integration:

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:39

Target 3 5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Register of the contract of the c

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 14

Compound Name : Freon 123a

Scan Number : 195
Retention Time (minutes): 2.018
Quant Ion : 67.00
Area : 1066
On-column Amount (ng) : 20.6172

Integration start scan : 187 Integration stop scan: 199 Y at integration start : 837 Y at integration end: 848

Digitally signed by Angela D. Sneeringer on 07/1072012 at 14:39 Target 3.5 esignature user ID: ads01731

modeline and a second control of the

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 11-JUL-2012 18:07

Date, time and analyst ID of latest file update: 11-Jul-2012 18:07 sej02002

Lab Sample ID: VSTD300 Sample Name: VSTD300

21 Compound Number

Compound Name 2-Propanol

163 Scan Number 1.823 Retention Time (minutes): 45.00 Quant Ion 1067962M Area (flag) : 1260.0107 On-Column Amount (ng)

180 Integration start scan 142 Integration stop scan: : 396 Y at integration end: Y at integration start 396

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson Analyst responsible for change: on 07/11/2012 at 18:08.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12jul10a.b/yl10il1.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 21

Compound Name : 2-Propanol

Scan Number : 163

Retention Time (minutes): 1.823
Quant Ion : 45.00

Area : 1485439 . On-column Amount (ng) : 1401.9076

Integration start scan : 142 Integration stop scan: 218 Y at integration start : 396 Y at integration end: 396

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:08. Target 3.5 esignature user ID: sej02002

AUGMENTAL THE AMERICANTESIS OF ANTIQUES IN THE SERVICE OF A SERVICE OF

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

more or an institution to an include the continue of the second of

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 209
Retention Time (minutes): 2.103
Quant Ion : 59.00
Area (flag) : 3045768M
On-Column Amount (ng) : 1512.6289

Integration start scan : 194 Integration stop scan: 276 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Angela D. Sheeringer

Analyst responsible for change: on 07/10/2012 at 14:39

Target 3.5 esignature user ID: ads01731

150

140

170

160

180

190

200

Instrument ID: HP09355.i Data File: /chem2/HP09355.i/12jul10a.b/yl10il1.d Analyst ID: ADS01731 Injection date and time: 10-JUL-2012 11:58

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Lab Sample ID: VSTD300 Sample Name: VSTD300

100

110

Compound Number : 29

AND CONTRACTOR AND ARCTION AS

Compound Name : t-Butyl Alcohol

: 209 Scan Number Retention Time (minutes): 2.103 : 59.00 Quant Ion : 2513943 Area : 1472.9593 On-column Amount (ng)

237. 194 Integration stop scan: Integration start scan 0 Y at integration end: Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39. Target 3.5 esignature user ID: ads01731

Manually Integrated Quant Ion HP MS y110111.d. Ion 56.00 1.4 1.3 1.2 1.1-1.0-0.8 0.7 0.6 0.5 0.4 0.3 0.2 0,1-3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 Time (Min)

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-MM,-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

The professional contract for the contract of

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 56

Compound Name : Cyclohexane

Scan Number : 454
Retention Time (minutes): 3.593
Quant Ion : 56.00
Area (flag) : 3840962M
On-Column Amount (ng) : 290.1008

Integration start scan : 436 Integration stop scan: 482 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:39.

Target 3.5 esignature user ID: ads01731

GC/MS audit/management approval: (M) 4 //// Z

Data File: /chem2/HP09355.i/12jul10a.b/yl10i11.d Injection date and time: 10-JUL-2012 11:58

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jull10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 56

Compound Name : Cyclohexane

Scan Number : 454

Retention Time (minutes): 3.593
Quant Ion : 56.00
Area : 1959025

On-column Amount (ng) : 175.7122 Integration start scan : 435 Integration

Integration start scan : 435 Integration stop scan: 453 Y at integration start : 371 Y at integration end: 371

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39. Target 3.5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

Contraction of the contraction o

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39.
Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39 Target 3.5 esignature user ID: ads01731

page 2 of 2

CONTROL OF THE PROPERTY OF THE

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 12:19 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 11-JUL-2012 18:07

Date, time and analyst ID of latest file update: 11-Jul-2012 18:07 sej02002

Sample Name: VSTD100 Lab Sample ID: VSTD100

	Commounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
=====	Compounds			-		
	Dichlorodifluoromethane	(1)	1.014	85	986934	99.576
	Chloromethane	(1)	1.068	50	956778M	91.987
4	1,3-Butadiene	(1)	1.129	39	683724	95.923
	Vinyl Chloride	(1)	1.141	62	923996	94.397
7		(1)	1.287	94	555754	92.668
8)	Chloroethane	(1)	1.324	64	480989	94.470
9	Dichlorofluoromethane	(1)	1,433	67	1159108	96.605
11)	n-Pentane	(1)	1.476	43	1144308	98.085
10)	Trichlorofluoromethane	(1)	1.494	101	1016053	97.425
13)	Ethyl Ether	(1)	1.586	59	615739	100.279
14)	Freon 123a	(1)	1.604	67	674324MA	93.226
15)	Acrolein	(4)	1.659	56	2794113	1148.299
16)	1,1-Dichloroethene	(1)	1.732	96	555130	100.433
17)	Acetone	(1)	1.744	58	281630	196.632
18	Freon 113	(1)	1.756	101	619077	102.807
21	2-Propanol.	(4)	1.823	45	409909M	460.088
20	Methyl Iodide	(1)	1.829	142	1071937	101.946
22		(1)	1.878	76	1787853	102.715
24	Allyl Chloride	(1)	1.944	41	1052611	100.569
25	Methyl Acetate	(1)	1.951	43	987103	97.148
	Methylene Chloride	(1)	2.030	84	661673	97.504
	*t-Butyl Alcohol-d10	(4)	2.042	65	355248	250.000
	t-Butyl Alcohol	(4)	2.103	59	1080830M	539.638
	Acrylonitrile	(1)	2.188	53	535553	96.101
	trans-1,2-Dichloroethene	(1)	2.224	96	659056	99.098
32)		(1)	2.243	73	2374510	98.764
	n-Hexane	(1)	2.443	57	1182109	101.378
	1,1-Dichloroethane	(1)	2.553	63	1339858	102.289
	di-Isopropyl Ether	(1)	2.632	45	2511544	97.494
37	2-Chloro-1,3-Butadiene	(1)	2.638	53	1180180	100.233
39)	Ethyl t-Butyl Ether	(1)	2.954	59	2440684	100.110
40)	cis-1,2-Dichloroethene	(1)	3.064	96	760250	101.616
41)	2-Butanone	(1)	3.070	43	1731327	210.349
42)	2,2-Dichloropropane	(1)	3.076	77	1053456	102.900
43)	Propionitrile	(4)	3.119	54	1165415	537.608
46)	Methacrylonitrile	(1)	3.265	67	1354740	254.524
	Bromochloromethane	(1)	3.277	128	394418	101.821
48)	Tetrahydrofuran	(4)	3.325	71	451911	225.335

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:08.
Target 3.5 esignature user ID: sej02002

page 1 of 4

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 12:19 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

	I.S.	D.III	OT an	7.400	On-Column Amount
			-	•	· • ·
Compounds ===================================	Ref. ====== (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	RT ===== 3.356 3.502 3.502 3.593 3.593 3.593 3.678 3.690 3.812 3.812 3.812 3.812 3.812 4.712 4.712 4.712 4.712 4.725	QION ====== 83 113 111 97 84 56 96 75 117 65 104 102 41 78 98 62 73 96 43 56 95 98 83 63	Area ====================================	Amount (ng) ====================================
78) Dibromomethane 79) 1,4-Dioxane 80) Methyl Methacrylate 83) Bromodichloromethane 85) 2-Nitropropane 86) 2-Chloroethyl Vinyl Ether 87) cis-1,3-Dichloropropene 89) 4-Methyl-2-Pentanone 93)\$Toluene-d8 92)\$Toluene-d8(mz100) 94) Toluene 95) trans-1,3-Dichloropropene 96) Ethyl Methacrylate	(1) (4) (1) (1) (1) (1) (2) (2) (2) (2)	4.840 4.865 4.883 5.017 5.248 5.357 5.491 5.674 5.771 5.838 6.093 6.239	93 88 69 83 41 63 75 43 98 100 92 75	514343 172683 863008 954820 874931 671156 1245954 3315203 1221189 819734 1899171 1248536 1378010	101.586 1174.919 102.233 101.557 210.824 101.769 212.112 49.873 48.721 101.767 102.110 103.109

M = Compound was manually integrated.

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39 Target 3.5 esignature user ID: ads01731 page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

The Confedence of the Confeden

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 12:19 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

CONTRACTOR CONTRACTOR CONTRACTOR

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

in a section was remainded in Approximate

	T 0			•	On-Column Amount
Compounds	I.S. Ref.	RT	QIon	Area	(ng)
	======			========	
97) 1,1,2-Trichloroethane	(2)	6.282	97	728533	102.007
98) Tetrachloroethene	(2)	6.428	166	872361	100.711
99) 1,3-Dichloropropane	(2)	6.458	76	1312790	102.291
101) 2-Hexanone	(2)	6.586	43	2684761	210.748
102) Dibromochloromethane	(2)	6.696	129	780146	101.766
104) 1,2-Dibromoethane	(2)	6.799	107	809289	101.663
106) *Chlorobenzene-d5	(2)	7.328	117	895892	50.000
107) Chlorobenzene	(2)	7.359	112	2147078 .	101.890
108) 1,1,1,2-Tetrachloroethane	(2)	7.462	131	743889	101.753
109) Ethylbenzene	(2)	7.499	91	3719486	103.070
110) m+p-Xylene	(2)	7.620	106	2877833	205.413
113) o-Xylene	(2)	7.992	106	1431217	103.001
114) Styrene	(2)	8.004	104	2448036	102.992
115) Bromoform	(2)	8.144	173	645691	102.073
112) Xylene (Total)	(2)		106	4309050	308.414
116) Isopropylbenzene	(2)	8.326	105	3714539	103.874
118) Cyclohexanone	(4)	8.375	55	891673	1198.564
120) \$4-Bromofluorobenzene (mz174)		8.442	174	396099	50.069
119)\$4-Bromofluorobenzene	(2)	8.442	95	456701	50.315
121) Bromobenzene	(3)	8.551	156	968608	100.913
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	1248646	101.763
123) 1,2,3-Trichloropropane	(3)	8.600	110	396181	101.112
124) trans-1,4-Dichloro-2-Butene		8.630	53 ·	1101525	250.854
125) n-Propylbenzene	(3)	8.673	91	4333466	104.901
126) 2-Chlorotoluene	(3)	8.728	126	904206	101.906
128) 4-Chlorotoluene	(3)	8.813	126	943920	102.239
127) 1,3,5-Trimethylbenzene	(3)	8.825	105	3239353	104.357
130) tert-Butylbenzene	(3)	9.074	134	742117	103.875
131) Pentachloroethane	(3)	9.074	167	638217	106.594
132) 1,2,4-Trimethylbenzene	(3)	9.111	105	3334487	104.550
133) sec-Butylbenzene	(3)	9.239	105	4019251	105.819
134) 1,3-Dichlorobenzene	(3)	9.306	146	1857338	101.918
135) p-Isopropyltoluene	(3)	9.354	119	3633928	105.814
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	529426	50.000
138) 1,4-Dichlorobenzene	(3)	9.373	146	1911033	102.521
139) 1,2,3-Trimethylbenzene	(3)	9.421	105	3479819	107.422
141) Benzyl Chloride	(3)	9.476	91	2774876	.103.686
142) 1,3-Diethylbenzene	(3)	9.579	119	2209540	105.815

^{* =} Compound is an internal standard.

page 3 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39: Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19 Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Calibration date and time: 10-JUL-2012 13:20 Sublist used: 8260WI

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Lab Sample ID: VSTD100 Sample Name: VSTD100

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	======	======	=====	========	=========
143) 1,4-Diethylbenzene	(3)	9.634	119	2293820	106.859
144) 1,2-Dichlorobenzene	(3)	9.640	146	1803139	104.520
145) n-Butylbenzene	(3)	9.652	92	1767019	104.593
146) 1,2-Diethylbenzene	(3)	9.713	119	1855344	106.179
148) 1,2-Dibromo-3-Chloropropane	(3)	10.182	75	359181	102.106
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	1509963	105.874
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	1412109	106.315
151) Hexachlorobutadiene	(3)	10.863	225	709123	106.610
152) Naphthalene	(3)	10.899	128	4550384	100.448
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	1376117	106.590
154) 2-Methylnaphthalene	(3)	11.623	142	2918343	113.359

page 4 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39. Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Lab Sample ID: VSTD100 Sample Name: VSTD100

Compound Number

: Chloromethane Compound Name

: 39 Scan Number Retention Time (minutes): 1.068 : 50.00 Ouant Ion Area (flag) : 956778M : 100.7334 On-Column Amount (ng)

Integration stop scan: 31 Integration start scan : Y at integration end: 0 Y at integration start

improper integration Reason for manual integration:

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14 39

Target 3.5 esignature user ID: ads01731

Contraction for the contraction of the contraction

80

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

104

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Lab Sample ID: VSTD100 Sample Name: VSTD100

60

Compound Number

: Chloromethane Compound Name

: 39 Scan Number Retention Time (minutes): 1.068 : 50.00 Quant Ion : 1004369 Area

: 100.6572 On-column Amount (ng)

Integration stop scan: 19 Integration start scan 0 Y at integration end: Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39 Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

SENSON PROPERTY OF THE PROPERT

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 14

Compound Name : Freon 123a

Scan Number : 127
Retention Time (minutes): 1.604
Quant Ion : 67.00
Area (flag) : 674324MA
On-Column Amount (ng) : 100.8115

Integration start scan : 113 Integration stop scan: 147 Y at integration start : 2468 Y at integration end: 2468

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:39. Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Lab Sample ID: VSTD100 Sample Name: VSTD100

Compound Number

: Freon 123a Compound Name

: 198 Scan Number Retention Time (minutes): 2.036 Quant Ion : 67.00 Area : 3037 : 56.1091

On-column Amount (ng) Integration stop scan: .205 180 Integration start scan 256 Y at integration end: 387 Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:39 Target 3.5 esignature user ID: ads01731

Consistency of the comment of the Control of the Co

endifferences pitte on over out of the standard of the end of standard to the standard and the standard of the

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 11-JUL-2012 18:07

Date, time and analyst ID of latest file update: 11-Jul-2012 18:07 sej02002

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 21

Compound Name : 2-Propanol

Scan Number : 163
Retention Time (minutes): 1.823
Quant Ion : 45.00
Area (flag) : 409909M
On-Column Amount (ng) : 460.0879

Integration start scan : 142 Integration stop scan: 180 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 07/11/2012 at 18:08.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 21

Compound Name : 2-Propanol

Scan Number : 163

Retention Time (minutes): 1.823 Quant Ion : 45.00 Area : 575971

On-column Amount (ng) : 517.1298
Integration start scan : 142 Integration stop scan: 218

Y at integration start: 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:08. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-AUI-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 209
Retention Time (minutes): 2.103
Quant Ion : 59.00
Area (flag) : 1080830M
On-Column Amount (ng) : 510.6554

Integration start scan : 193 Integration stop scan: 274 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:39.

Target 3.5 esignature user ID: ads01731

。 《新聞歌歌》如《中華·李麗歌歌》(中華·李麗歌歌》(中華·李麗歌歌》(中華·李麗歌歌歌》)(中華·李麗歌歌》)

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

The transfer of the first of the second of t

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 209
Retention Time (minutes): 2.103
Quant Ion : 59.00
Area : 923017
On-column Amount (ng) : 514.4929

Integration start scan : 193 Integration stop scan: 237 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sheeringer on 07/10/2012 at 14:39. Target 3.5 esignature user ID: ads01731

Manually Integrated Quant Ion HP MS y110112.d. Ion 98.00 5,2 4.8 4.4 4.0-3.6 3.2 2.8 2.4 2.0 1.5 1.2 0.B 0.4 0.0 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 64

Compound Name : 1,2-Dichloroethane (mz 98)

Scan Number : 502
Retention Time (minutes): 3.885
Quant Ion : 98.00
Area (flag) : 96920M
On-Column Amount (ng) : 101.8628

Integration start scan : 491 Integration stop scan: 530 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:39.

Target 3.5 esignature user ID. ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i12.d Injection date and time: 10-JUL-2012 12:19

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 64

Compound Name : 1,2-Dichloroethane (mz 98)

Scan Number : 502
Retention Time (minutes): 3.885
Quant Ion : 98.00
Area : 99936
On-column Amount (ng) : 103.9349

Integration start scan : 491 Integration stop scan: 552 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 0.7/10/2012 at 14:39. Target 3.5 esignature user ID: ads01.731

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Continued and the second of the second of

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40.
Target 3:5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 12:41 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40.
Target 3.5 esignature user TD: ads01731

page 2 of 2

AND THE PROPERTY OF THE PROPER

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 12:41 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 11-JUL-2012 18:07

to become the exercise experience to a switch recognization of the commencement where the

Date, time and analyst ID of latest file update: 11-Jul-2012 18:07 sej02002

Sample Name: VSTD050 Lab Sample ID: VSTD050

	I.S.			·	On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
2) Dichlorodifluoromethane	(1)	1.014	85	511220	52.080
3) Chloromethane	(1)	1.063	50	488153M	47.388
4) 1,3-Butadiene	(1)	1.129	39 .	339260	48.059
5) Vinyl Chloride	(1)	1.136	62	468902	48.369
7) Bromomethane	(1)	1.288	94	284468	47.894
8) Chloroethane	(1)	1.324	64	247887	49.160
Dichlorofluoromethane	(1)	1.434	67	598047	50.328
11) n-Pentane	(1)	1.476	43	579087	50.119
10) Trichlorofluoromethane	(1)	1.488	101	529036	51.220
13) Ethyl Ether	(1)	1.586		309401	50.878
14) Freon 123a	(1)	1.604	67	340700MA	47.560
15) Acrolein	(4)	1.659	56	1338770	520.820
<pre>16) 1,1-Dichloroethene</pre>	(1)	1.732	96	275172	50.267
17) Acetone	(1)	1.750	58	137319	96.806
18) Freon 113	(1)	1.756	101	305204	51.176
21) 2-Propanol	(4)	1.823	45	248279M	263.793
20) Methyl Iodide	(1)	1.829	142	536991	51.566
22) Carbon Disulfide	(1)	1.878	76	887394	51.477
24) Allyl Chloride	(1)	1.945	41	519686	50.134
25) Methyl Acetate	(1)	1.951	10	481686	47.867
26) Methylene Chloride	(1)	2.030	84	328479	48.875
28)*t-Butyl Alcohol-d10	(4)	2.042	65	375285 542365M	250.000
29) t-Butyl Alcohol	(4)	2.109	59		256.334
30) Acrylonitrile	(1)	2.188	53	279183M	50.584
31) trans-1,2-Dichloroethene	(1)	2.224	96	337689	51.269
32) Methyl Tertiary Butyl Ether		2.237	73	1196522	50.251
33) n-Hexane	(1)	2.444	57	558443	48.357
34) 1,1-Dichloroethane	(1)	2.559	63	667967	51.490
36) di-Isopropyl Ether	(1)	2.632	45	1261394	49.441
37) 2-Chloro-1,3-Butadiene	(1)	2.638	53	588196	50.441
39) Ethyl t-Butyl Ether	(1)	2.955	59	1217669	50.430
40) cis-1,2-Dichloroethene	(1)	3.064	96	379054	51.157
41) 2-Butanone	(1)	3.070	43	840340	103.089
42) 2,2-Dichloropropane	(1)	3.076	77	528261	52.101
43) Propionitrile	(4)	3.119	54	571757	249.670
46) Methacrylonitrile	(1)	3.259	67	658662	124.949
47) Bromochloromethane	(1)	3.277	128	193999	50.568
48) Tetrahydrofuran	(4)	3.320	71	222148	104.855

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:08.

Target 3.5 esignature user ID: sej02002

page 1 of 4

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

and the second control of the second section of the second section of the second section is the second seco

Target Revision 3.5

Instrument ID: HP09355.i Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20
Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Lab Sample ID: VSTD050 Sample Name: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
=======================================				=========	· -
50) Chloroform	(1)	3.356	83	624456	50.808
52) \$Dibromofluoromethane	(1)	3.502	113	284043	50.058
51) \$Dibromofluoromethane (mz111)		3.502	111	289659	49.979
53) 1,1,1-Trichloroethane	(1)	3.532	97	569068	50.624
55) Cyclohexane (mz 69)	(1)	3.587	69	199469	50.552
56) Cyclohexane	(1)	3.587	56	661473	50.630
54) Cyclohexane (mz 84)	(1)	3.593	84	540254	50.638
45) 1,2-Dichloroethene (total)	(1)		96	716743	102.511
57) 1,1-Dichloropropene	. (1)	3.678	75	506767	50.487
58) Carbon Tetrachloride	(1)	3.691	117	452072	49.838
60) \$1,2-Dichloroethane-d4 (mz104	.) (1)	3.812	104	46814	49.836
61) \$1,2-Dichloroethane-d4 (mz65)	(1)	3.812	65	371228	50.387
59) Isobutyl Alcohol	(4)	3.812	41	394157	610.864
62)\$1,2-Dichloroethane-d4	(1)	3.812	102	72623	49.796
63) Benzene	(1)	3.873	78	1470700	51.188
65) 1,2-Dichloroethane	(1)	3.885	62	541365	50.516
64) 1,2-Dichloroethane (mz 98)	(1)	3.891	98	47142	50.027
69) t-Amyl Methyl Ether	(1)	4.007	73	1131121	50.143
71)*Fluorobenzene	(1)	4.147	96	1221798	50.000
72) n-Heptane	(1)	4.165	43	638458	49.093
73) n-Butanol	(4)	4.475	56	731098	1235.985
74) Trichloroethene	(1)	4.512	95	373651	50.732
75) Methylcyclohexane (mz98)	(1)	4.707	98	296106	50.177
76) Methylcyclohexane	(1)	4.707	83	658147	50.085
77) 1,2-Dichloropropane	(1)	4.725	63	403119	50.950
78) Dibromomethane	(1)	4.840	93	252720	50.398
79) 1,4-Dioxane	(4)	4.865	88	96696	622.784
80) Methyl Methacrylate	(1)	4.883	69	418505	50.058
83) Bromodichloromethane	(1)	5.017	83	460803	49.488
85) 2-Nitropropane	(1)	5.242	41	409138	99.543
86) 2-Chloroethyl Vinyl Ether	(1)	5.351	63	333254	51.080 50.077
87) cis-1,3-Dichloropropene	(1)	5.485	75 43	607188 1602211	103.508
89) 4-Methyl-2-Pentanone	(1)	5.674 5.771	98	1214659	50.041
93) \$Toluene-d8	(2)	5.771	100	801726	48.068
92) \$Toluene-d8 (mz100)	(2) (2)	5.838	92	939328	50.775
94) Toluene	(2)	6.088	75 ·		49.490
95) trans-1,3-Dichloropropene	(2)	6.234	69	655351	49.466
96) Ethyl Methacrylate	(4)	0.234	03	000001	47.400

^{* =} Compound is an internal standard.

page 2 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

Consider to their commentation of the experience of the first profit of the ballion exercises where the above

Target Revision 3.5

Instrument ID: HP09355.i Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Analyst ID: ADS01731 Injection date and time: 10-JUL-2012 12:41

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Calibration date and time: 10-JUL-2012 13:20 Sublist used: 8260WI

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Lab Sample ID: VSTD050 Sample Name: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
07) 1 1 2 my chlosophore	(2)	6.276	97	355430	= ====================================
97) 1,1,2-Trichloroethane 98) Tetrachloroethene	(2)	6.428	166	432814	50.405
99) 1,3-Dichloropropane	(2)	6.453	76	640951	50.380
101) 2-Hexanone	(2)	6.586	43	1302682	103.153
101) 2-hexamone 102) Dibromochloromethane	(2)	6.696	129	368929	48.546
104) 1,2-Dibromoethane	(2)	6.799	107	394974	50.051
106) *Chlorobenzene-d5	(2)	7.329	117	888114	50.000
107) Chlorobenzene	(2)	7.359	112	1062398	50.858
108) 1,1,1,2-Tetrachloroethane	(2)	7.456	131	361168	49.835
109) Ethylbenzene	(2)	7.499	91	1835238	51.301
110) m+p-Xylene	(2)	7.621	106	1427409	102.777
113) o-Xylene	(2)	7.986	106	704243	51.127
114) Styrene	(2)	7.998	104	1206100	51.186
115) Bromoform	(2)	8.144	173	296257	47.243
112) Xylene (Total)	(2)		106	2131652	153.904
116) Isopropylbenzene	(2)	8.326	105	1852158	52.247
118) Cyclohexanone	(4)	8.375	55	491068	624,838
120) \$4-Bromofluorobenzene (mz174)	(2)	8.442	174	390658	49.814
119)\$4-Bromofluorobenzene	(2)	8.442	• 95	448155	49.805
121) Bromobenzene	(3)	8.551	156	477627	50.290
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	608610	50.128
123) 1,2,3-Trichloropropane	(3)	8.600	110	193483	49.905
124) trans-1,4-Dichloro-2-Butene		8.631	53	540788	124.464
125) n-Propylbenzene	(3)	8.673	91	2159321	52.827
126) 2-Chlorotoluene	(3)	8.722	126	441139	50.246
128) 4-Chlorotoluene	(3)	8.813	126	463341	50.719
127) 1,3,5-Trimethylbenzene	(3)	8.825	105	1590965	51.798
130) tert-Butylbenzene	(3)	9.075	134	357175 290577	50.525 49.047
131) Pentachloroethane	(3)	9.075	167		51.715
132) 1,2,4-Trimethylbenzene	(3)	9.111 9.239	105 105	1632053 1974299	52.532
133) sec-Butylbenzene	(3)	9.300	146	914408	50.710
134) 1,3-Dichlorobenzene	(3) (3)	9.354	119	1775401	52.246
135) p-Isopropyltoluene 136)*1,4-Dichlorobenzene-d4	(3)	9.354	152	523859	50.000
138) 1,4-Dichlorobenzene	(3)	9.367	146	939866	50.957
139) 1,2,3-Trimethylbenzene	(3)	9.421	105	1666835	52.002
141) Benzyl Chloride	(3)	9.470	91	1315289	49.669
141) 1,3-Diethylbenzene	(3)	9.573	119	1064455	51.518
TED! TID DICEMI INCHINCHE	(-,				

^{* =} Compound is an internal standard.

page 3 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD050

Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
=======================================		======	146	875075	51.263
144) 1,2-Dichlorobenzene	(3)	9.634	146		
143) 1,4-Diethylbenzene	(3)	9.634	119	1098893 .	51.737
145) n-Butylbenzene	(3)	9.653	92	853806	51.075
146) 1,2-Diethylbenzene	(3)	9.713	119	888565	51.392
148) 1,2-Dibromo-3-Chloropropane	(3)	10.182	75	171327	49.221
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	718076	50.885
150) 1,2,4-Trichlorobenzene	(3)	10.742	180	676130	51.446
151) Hexachlorobutadiene	(3)	10.863	225	332623	50.538
152) Naphthalene	(3)	10.900	128	2231200	49.776
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	658110	51.517
154) 2-Methylnaphthalene	(3)	11.624	142	1351068	53.038

page 4 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40.
Target 3.5 esignature user ID: ads01731

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 3

Compound Name : Chloromethane

Scan Number : 38
Retention Time (minutes): 1.063
Quant Ion : 50.00
Area (flag) : 488153M
On-Column Amount (ng) : 51.8938

Integration start scan : 31 Integration stop scan: 44 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Lab Sample ID: VSTD050 Sample Name: VSTD050

Compound Number

Compound Name Chloromethane

Scan Number 38 Retention Time (minutes): 1.063 50.00 Quant Ion 513394 Area 51.9517 On-column Amount (ng)

Integration stop scan: Integration start scan 21 Y at integration end: Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

telesias de la completa de la filia del filia del filia de la fili

Manually Integrated Quant Ion HP MS y110i13.d, Ion 67.00 1.3 1.2 1.1-1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2-0.1 0.0 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

_

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 14

Compound Name : Freon 123a

Scan Number : 127
Retention Time (minutes): 1.604
Quant Ion : 67.00
Area (flag) : 340700MA
On-Column Amount (ng) : 51.4293

Integration start scan : 112 Integration stop scan: 144 Y at integration start : 1511 Y at integration end: 1511

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID: ads01731

Integration of Quant Ion Original

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 14

Compound Name : Freon 123a

: 201 Scan Number

Retention Time (minutes): 2.054 Quant Ion : 67.00 Area : 6352 : 118.6397 On-column Amount (ng)

226 Integration start scan 186 Integration stop scan: 120 Y at integration start 252 Y at integration end:

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

and the first of the control of the

proceedings and additional states and approximate the interpretation of the same of the same and agency

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 11-JUL-2012 18:07

Date, time and analyst ID of latest file update: 11-Jul-2012 18:07 sej02002

Lab Sample ID: VSTD050 Sample Name: VSTD050

: 21 Compound Number

: 2-Propanol Compound Name

: 163 Scan Number Retention Time (minutes): 1.823 Quant Ion Area (flag) : 248279M : 263.7933 On-Column Amount (ng)

Integration stop scan: 143 Integration start scan : Y at integration end: Y at integration start

improper integration Reason for manual integration:

Digitally signed by Sara E. Johnson Analyst responsible for change: on 07/11/2012 at 18:08.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Lab Sample ID: VSTD050 Sample Name: VSTD050

Compound Number

: 2-Propanol

Compound Name

: 163 Scan Number Retention Time (minutes): 1.823 : 45.00 Quant Ion : 303309 Area

: 257.7833 On-column Amount (ng)

Integration stop scan: 143 : Integration start scan Y at integration end: Y at integration start

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:08. Target 3.5 esignature user ID: sej02002

Control of the Contro

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

contribution before the first of the second

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Lab Sample ID: VSTD050 Sample Name: VSTD050

Compound Number

Compound Name : t-Butyl Alcohol

: 210 Scan Number Retention Time (minutes): 2.109 : 59.00 Quant Ion Area (flag) 542365M : 242.5675 On-Column Amount (ng)

273 Integration start scan 193 Integration stop scan: Ω Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

The entering of the Control of the C

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 210
Retention Time (minutes): 2.109
Quant Ion : 59.00
Area : 468612

On-column Amount (ng) : 247.2600 Integration start scan : 194 Integration stop scan: 236

Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3:5 esignature user ID: ads01731

- 1998年 - 19

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:20

Date, time and analyst ID of latest file update: 10-Jul-2012 13:20 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 30

Compound Name : Acrylonitrile

Scan Number : 223
Retention Time (minutes): 2.188
Quant Ion : 53.00
Area (flag) : 279183M
On-Column Amount (ng) : 53.5496

Integration start scan : 211 Integration stop scan: 250 Y at integration start : 264 Y at integration end: 264

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40

Analyst responsible for change. Out of the deal of the second of the sec

Target 3.5 esignature user ID: ads01731

Original Integration of Quant

Data File: /chem2/HP09355.i/12jul10a.b/yl10i13.d Injection date and time: 10-JUL-2012 12:41

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:10

Date, time and analyst ID of latest file update: 10-Jul-2012 13:10 ads01731

Lab Sample ID: VSTD050 Sample Name: VSTD050

Compound Number

Compound Name Acrylonitrile

Scan Number 223 Retention Time (minutes): 2.188 Quant Ion 53.00 Area 110643 On-column Amount (ng) 27.0525

Integration stop scan: 222 190 Integration start scan 324 324 Y at integration end: Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40Target 3.5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sul

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Sample Name: VSTD020 Lab Sample ID: VSTD020

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

there is seen somethern't indicated the company of property

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD020 Sample Name: VSTD020

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

Contract of the Contract of th

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07 Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 11-JUL-2012 18:07
Date, time and analyst ID of latest file update: 11-Jul-2012 18:07 sej02002

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
Compounds 2) Dichlorodifluoromethane 3) Chloromethane 4) 1,3-Butadiene 5) Vinyl Chloride 7) Bromomethane 8) Chloroethane 9) Dichlorofluoromethane 11) n-Pentane 10) Trichlorofluoromethane 13) Ethyl Ether 14) Freon 123a 15) Acrolein 16) 1,1-Dichloroethene 17) Acetone 18) Freon 113 21) 2-Propanol 20) Methyl Iodide 22) Carbon Disulfide 24) Allyl Chloride 25) Methyl Acetate 26) Methylene Chloride 28)*t-Butyl Alcohol 30) Acrylonitrile 31) trans-1,2-Dichloroethene 32) Methyl Tertiary Butyl Ether 33) n-Hexane 34) 1,1-Dichloroethane 36) di-Isopropyl Ether 37) 2-Chloro-1,3-Butadiene 39) Ethyl t-Butyl Ether 40) cis-1,2-Dichloroethene 41) 2-Butanone 42) 2,2-Dichloropropane 43) Propionitrile 46) Methacrylonitrile	Ref. ===== (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				(ng) ====================================
47) Bromochloromethane48) Tetrahydrofuran	(1) (4)	3.277 3.326	128 71	70350 80464	18.565 35.326

M = Compound was manually integrated.

page 1 of 4

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:08.

Target 3.5 esignature user ID: sej02002

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 13:07 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
50) Chloroform	(1)	3.362	83	232153	19.118
52) \$Dibromofluoromethane	(1)	3.508	113	279159	50.027
51) \$Dibromofluoromethane (mz111)	(1)	3.508	111	283780	49.776
53) 1,1,1-Trichloroethane	(1)	3.533	97	220522	19.712
54) Cyclohexane (mz 84)	(1)	3.587	84	204546	19.613
55) Cyclohexane (mz 69)	(1)	3.593	· 69	75958	19.691
56) Cyclohexane	(1)	3.593	56	251658	19.629
45) 1,2-Dichloroethene (total)	(1)	5.555	96	265999	38.582
57) 1,1-Dichloropropene	(1)	3.679	75	187807	19.212
58) Carbon Tetrachloride	(1)	3.691	117	163676	18.854
60) \$1,2-Dichloroethane-d4 (mz104		3.812	104	46183	49.930
61) \$1, 2-Dichloroethane-d4 (mz65)	(1)	3.812	65	379413	51.418
59) Isobutyl Alcohol	(4)	3.812	41	316564M	458.502
62) \$1,2-Dichloroethane-d4	(1)	3.812	102	74544	51.380
63) Benzene	(1)	3.873	78	548499	19.330
65) 1,2-Dichloroethane	(1)	3.885	62	200811	18.909
64) 1,2-Dichloroethane (mz 98)	$(\overline{1})$	3.891	98	17602	18.963
69) t-Amyl Methyl Ether	(1)	4.007	73	421812	18.910
71) *Fluorobenzene	(1)	4.147	96	1206833	50.000
72) n-Heptane	(1)	4.165	43	263005	20.291
73) n-Butanol	(4)	4.475	56	580326	919.572
74) Trichloroethene	(1)	4.512	95	138417	19.180
75) Methylcyclohexane (mz98)	(1)	4.707	98	110964	19.309
76) Methylcyclohexane	(1)	4.713	83	253346	19.627
77) 1,2-Dichloropropane	(1)	4.725	63	148861	19.076
78) Dibromomethane	(1)	4.840	93	93467	18.919
79) 1,4-Dioxane	(4)	4.865	88	78081	467.264
80) Methyl Methacrylate	(1)	4.883	69	154637	18.665
83) Bromodichloromethane	(1)	5.017	83	163660	18.327
85) 2-Nitropropane	(1)	5.248	41	136679	35.577
86) 2-Chloroethyl Vinyl Ether	(1)	5.358	63	130272	19.931
87) cis-1,3-Dichloropropene	(1)	5.485	. 75	218796	18.633
89) 4-Methyl-2-Pentanone	(1·)	5.674	43	569194	37.676
93)\$Toluene-d8	(2)	5.771	98	1190566	49.830
92)\$Toluene-d8(mz100)	(2)	5.771	100	784152	48.655
94) Toluene	(2)	5.838	92	350938	19.247
95) trans-1,3-Dichloropropene	(2)	6.088	75	214689	18.370
96) Ethyl Methacrylate	(2)	6.234	69	246543	18.785

M = Compound was manually integrated.

Digitally signed by Amgela D. Sneeringer on 07/10/2012 at 14:40 Target 3:5 esignature user ID: ads01731 page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 13:07 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
97) 1,1,2-Trichloroethane 98) Tetrachloroethene 99) 1,3-Dichloropropane 101) 2-Hexanone 102) Dibromochloromethane 104) 1,2-Dibromoethane 106)*Chlorobenzene-d5 107) Chlorobenzene 108) 1,1,1,2-Tetrachloroethane 109) Ethylbenzene 110) m+p-Xylene 113) o-Xylene 114) Styrene 115) Bromoform 112) Xylene (Total) 116) Isopropylbenzene 118) Cyclohexanone 120)\$4-Bromofluorobenzene(mz174) 119)\$4-Bromofluorobenzene 121) Bromobenzene 122) 1,1,2,2-Tetrachloroethane 123) 1,2,3-Trichloropropane 124) trans-1,4-Dichloro-2-Butene 125) n-Propylbenzene 126) 2-Chlorotoluene 127) 1,3,5-Trimethylbenzene 130) tert-Butylbenzene 131) Pentachloroethane 132) 1,2,4-Trimethylbenzene 133) sec-Butylbenzene 134) 1,3-Dichlorobenzene 135) p-Isopropyltoluene 136)*1,4-Dichlorobenzene-d4 138) 1,4-Dichlorobenzene-	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	======================================	===== 97 166 76 43 129 107 112 131 106 104 173 105 174 155 174 153 126 105 126 105 134 167 105 134 167 105 134 167 167 168 168 168 168 168 168 168 168	======================================	· - ·
139) 1,2,3-Trimethylbenzene 141) Benzyl Chloride 142) 1,3-Diethylbenzene	(3) (3) (3)	9.476 9.573	91 119	473713 394999	18.691 19.480

^{* =} Compound is an internal standard.

page 3 of 4

Talkault (100 km) is well to have a second source of the following second

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3:5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5.

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07 Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Calibration date and time: 10-JUL-2012 13:58 Sublist used: 8260WI

Andrews (1994) - English (1911) - Elementaria english (1911) - en Carteria basedonica

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD020 Sample Name: VSTD020

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	=====	0 634	146	332619	19.589
144) 1,2-Dichlorobenzene	(3)	9.634	146	• •	
143) 1,4-Diethylbenzene	(3)	9.634	119	415278	19.812
145) n-Butylbenzene	. (3)	9.653	92	327088	19.855
146) 1,2-Diethylbenzene	(3)	9.713	119	328698	19.365
148) 1,2-Dibromo-3-Chloropropane	(3)	10.182	75	64049	19.042
149) 1,3,5-Trichlorobenzene	(3)	10.334	180.	279493	19.875
150) 1,2,4-Trichlorobenzene	(3)	10.742	180	264348	20.056
151) Hexachlorobutadiene	(3)	10.863	225 -	131322	20.151
152) Naphthalene	(3)	10.900	128	876451	19.487
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	261088	20.184
154) 2-Methylnaphthalene	(3)	11.624	142	536071	20.688

page 4 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10 JUL 2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Annagar an agaige commander programme a grand and 1888 for each committee of materials and a commentation of the

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD020 Sample Name: VSTD020

Compound Number : 3

Compound Name : Chloromethane

Scan Number 38 Retention Time (minutes): 1.063 50.00 Quant Ion Area (flag) 199931M : 20.0195 On-Column Amount (ng)

Integration start scan 31 Integration stop scan: Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela Di Sneeringer

Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID: ads01731

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:23

Date, time and analyst ID of latest file update: 10-Jul-2012 13:23 Automation

Lab Sample ID: VSTD020 Sample Name: VSTD020

Compound Number

Compound Name : Chloromethane

Scan Number : 38 Retention Time (minutes): 1.063 Quant Ion : 50.00 Area : 208553

21.7797 On-column Amount (ng)

44 Integration start scan 23 Integration stop scan: Y at integration start Y at integration end:

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID. ads01731

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

The second secon

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 109
Retention Time (minutes): 1.494
Quant Ion : 101.00
Area (flag) : 214381M
On-Column Amount (ng) : 20.4835

Integration start scan : 84 Integration stop scan: 136 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer

Analyst responsible for change: on 07/10/2012 at 14:40

Target 3.5 esignature user ID: ads01731

Contact in Africa, in Africa, and A. A. William Beautiful and Landon.

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i
Analyst ID: ADS01731

Solding and the committee of the second of the second confidence of the

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:23

Date, time and analyst ID of latest file update: 10-Jul-2012 13:23 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 109
Retention Time (minutes): 1.494
Quant Ion : 101.00
Area : 328938
On-column Amount (ng) : 28.5002

Integration start scan : 84 Integration stop scan: 188 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 0771072012 at 14:40 Target 3.5 esignature user ID: ads01731

Manually Integrated Quant Ion HP MS gl10114.d, Ion 45.00 4.2 3,9 3.6-3.3 3,0 2.1-1.8 1.2-0.9 0.6 0.3 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 11-JUL-2012 18:07

Date, time and analyst ID of latest file update: 11-Jul-2012 18:07 sej02002

The second second is the expectage of the second process of the common common second

Lab Sample ID: VSTD020 Sample Name: VSTD020

Compound Number 21

: 2-Propanol Compound Name

: 164 Scan Number Retention Time (minutes): 1.829 Quant Ion : 45.00 Area (flag) : 188258M On-Column Amount (ng) : 186.0462

Integration stop scan: 189 146 Integration start scan 0 Y at integration end: Y at integration start

improper integration Reason for manual integration:

Digitally signed by Sara E. Johnson Analyst responsible for change: on 07/11/2012 at 18:08.

Target 3.5 esignature user ID: sej02002

marka in terra in the court of the contraction of t

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i
Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:23

Date, time and analyst ID of latest file update: 10-Jul-2012 13:23 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 21

Compound Name : 2-Propanol

Scan Number : 164
Retention Time (minutes): 1.829
Quant Ion : 45.00

Area : 239604 On-column Amount (ng) : 191.9527

Integration start scan : 146 Integration stop scan: 218 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:08. Target 3.5 esignature user ID: sej02002

The configuration of the Confi

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

The appropriate the process of the same

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst TD of latest file update: 10-Jul 2012 13:58 ads01731

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 209
Retention Time (minutes): 2.103
Quant Ion : 59.00
Area (flag) : 422384M
On-Column Amount (ng) : 179.9617

Reason for manual integration: improper integration.

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40

Target 3.5 esignature user ID: ads01731

1.4 G. C. C. C. Estatural Schiller (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945) (1945)

A CONSTRUCTOR STORY CONTROL OF STREET CONTROL OF STREET

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:23

Date, time and analyst ID of latest file update: 10-Jul-2012 13:23 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 209
Retention Time (minutes): 2.103
Quant Ion : 59.00
Area : 367653
On-column Amount (ng) : 162.4997

Integration start scan : 194 Integration stop scan: 237 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

A SERVICE DESCRIPTION OF THE PROPERTY OF THE P

Lab Sample ID: VSTD020 Sample Name: VSTD020

Compound Number : 30

Compound Name : Acrylonitrile

225 Scan Number Retention Time (minutes): 2.200 53.00 Quant Ion : 102910M Area (flag) On-Column Amount (ng) : 19.5064

Integration start scan 193 Integration stop scan: 255 Y at integration start O Y at integration end:

improper integration Reason for manual integration:

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40

207

200

190

110

120

130

140

Instrument ID: HP09355.i Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Analyst ID: ADS01731 Injection date and time: 10-JUL-2012 13:07

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 13:23

Date, time and analyst ID of latest file update: 10-Jul-2012 13:23 Automation

Lab Sample ID: VSTD020 Sample Name: VSTD020

. [1, [1].] 90

100

Compound Number : 30

0.0-

Compound Name : Acrylonitrile

225 Scan Number Retention Time (minutes): 53.00 Quant Ion 111670 Area 21.2377

On-column Amount (ng) 281 193 Integration stop scan: Integration start scan Y at integration end: Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

A STANDARD CONTRACTOR OF THE PROPERTY OF THE P

Manually Integrated Quant Ion HP MS y110114.d. Ion 41.00 9.0 8.0-812 7.0 6.0 5.0 4.0 3.0-2.0 1.0 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04 4.06 Time (Min)

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10 JUL 2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD020 Sample Name: VSTD020

59 Compound Number

Compound Name : Isobutyl Alcohol

Scan Number 490 3.812 Retention Time (minutes): 41.00 Quant Ion Area (flag) 316564M 458.5024 On-Column Amount (ng)

478 Integration stop scan: 514 Integration start scan 952 Y at integration start 952 Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i14.d Injection date and time: 10-JUL-2012 13:07

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:23

Date, time and analyst ID of latest file update: 10-Jul-2012 13:23 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 59

Compound Name : Isobutyl Alcohol

Scan Number : 490
Retention Time (minutes): 3.812
Quant Ion : 41.00

Area : 400350 On-column Amount (ng) : 555.6861

Integration start scan : 478 Integration stop scan: 538 Y at integration start : 952 Y at integration end: 952

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Sample Name: VSTD010 Lab Sample ID: VSTD010

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD010 Sample Name: VSTD010

Digitally signed by Angela D. on 07/10/2012 at 14:40 Sneeringer Target 3.5 esignature user ID: ads01731

page 2 of 2

exemblification and the second of the second of the second continuous and the continuous and

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28 Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Calibration date and time: 10-JUL-2012 13:58 Sublist used: 8260WI

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD010 Sample Name: VSTD010

	Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	Dichlorodifluoromethane	(1)	1.014	. 85	111415	10.964
	Chloromethane	(1)	1.050	50	121818M	12.079
	1,3-Butadiene	(1)	1.117	39	70525	10.366
	Vinyl Chloride	(1)	1.123	62	114767M	11.899
	Bromomethane	(1)	1.275	94	71105	12.239
	Chloroethane	(1)	1.324	64	61417	12.292
	Dichlorofluoromethane	(1)	1.427	. 67	116011	10.146
	n-Pentane	(1)	1.482	43	115995	10.247
	Trichlorofluoromethane	(1)	1.488	101	120087	11.362
	Ethyl Ether	(1)	1.586	.59	67676	11.245
	Freon 123a	(1)	1.604	67	73543	10.738
	Acrolein	(4)	1.659	56	274353	97.783
	1,1-Dichloroethene	(1)	1.732	96	54279	10.091
	Acetone	(1)	1.744	58	31835	23.073
•	Freon 113	(1)	1.756	101	57385	9.758
	2-Propanol	(4)	1.823	45	121070	97.613
	Methyl Iodide	(1)	1.829	142	107965	10.352
	Carbon Disulfide	(1)	1.878	76	168992	9.880
	Allyl Chloride	(1)	1.945	41	105778	10.371
	Methyl Acetate	(1)	1.957	43	108388	11.249
	Methylene Chloride	(1)	2.030	84	68200	10.541
	*t-Butyl Alcohol-d10	(4)	2.042	65	403302	250.000
	t-Butyl Alcohol	(4)	2.097	59	241074	102.757
	Acrylonitrile	(1)	2.188	53	58409M	10.963
	trans-1,2-Dichloroethene	(1)	2.224	96	66760	10.240
	Methyl Tertiary Butyl Ether		2.230	73	254343	10.780
	n-Hexane	(1)	2.443	57	111439	9.946
	1,1-Dichloroethane	(1)	2.553	63	132799	10.207
	di-Isopropyl Ether	(1)	2.626	45	261545	10.544
	2-Chloro-1,3-Butadiene	(1)	2.638	53	116125	10.103
	Ethyl t-Butyl Ether	(1)	2.954	59	257140	10.727
	2-Butanone	(1)	3.058	43	170549	21.048
	cis-1,2-Dichloroethene	(1)	3.064	96	76983	10.382
42)		(1)	3.070	77	101835	9.975
	Propionitrile	(4)	3.113	54	252665	100.924
	Methacrylonitrile	(1)	3.259	67	283050	53.751
	Bromochloromethane	(1)	3.277	128	39941	10.503
	Tetrahydrofuran	(4)	3.319	. 71	44223	19.048

M = Compound was manually integrated.

page 1 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID ads01731

^{* =} Compound is an internal standard.

in the state of the second sec

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 13:28 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Sample Name: VSTD010 Lab Sample ID: VSTD010

					On-Column
Compounds	I.S. Ref.	RT	QIon	Area	Amount (ng)
	======				- (**9/
50) Chloroform	(1)	3.356	83	128123	10.448
51) \$Dibromofluoromethane (mz111)		3.502	111	285614	49.608
52) \$Dibromofluoromethane	(1)	3.502	113	277860	49.309
53) 1,1,1-Trichloroethane	(1)	3.532	97	117140	10.369
56) Cyclohexane	(1)	3.587	56	129320	9.988
54) Cyclohexane (mz 84)	(1)	3.593	84	104053	9.880
55) Cyclohexane (mz 69)	(1)	3.593	69	38341	9.843
45) 1,2-Dichloroethene (total)	(1)		96	143743	20.622
57) 1,1-Dichloropropene	(1)	3.678	75	98395	9.967
58) Carbon Tetrachloride	(1)	3.684	117	84241	9.609
59) Isobutyl Alcohol	(4)	3.812	41	184390M	267.181
60) \$1,2-Dichloroethane-d4 (mz104		3.812	104	46327	49.597
62)\$1,2-Dichloroethane-d4	(1)	3.812	102	72793	49.683
61) \$1,2-Dichloroethane-d4 (mz65)		3.812	65	377406	50.647
63) Benzene	(1)	3.873	78	296044	10.331
64) 1,2-Dichloroethane (mz 98)	(1)	3.885	98	. 9783	10.436
65) 1,2-Dichloroethane	(1)	3.885	62	114148	10.643
69) t-Amyl Methyl Ether	(1)	4.007	73	238287	10.578
71) *Fluorobenzene	(1)	4.147	96	1218727	50.000
72) n-Heptane	(1)	4.165	43	132490	10.122
73) n-Butanol	(4)	4.475	56	333485	528.661
74) Trichloroethene	(1)	4.506	95	74101	10.168
75) Methylcyclohexane (mz98)	(1)	4.706	98	57544	9.916
76) Methylcyclohexane	(1)	4.706	83	130596	10.019
77) 1,2-Dichloropropane	(1)	4.719	63	82093	10.417
78) Dibromomethane	(1)	4.834	93	52200	10.463
79) 1,4-Dioxane	(4)	4.871	88	44623	267.155
80) Methyl Methacrylate	(1)	4.877	69	90069	10.765
83) Bromodichloromethane	(1)	5.017	83	89633	9.939
85) 2-Nitropropane	(1)	5.242	41	72959	18.806
86) 2-Chloroethyl Vinyl Ether	(1)	5.351	63	69016	10.456
87) cis-1,3-Dichloropropene	(1)	5.485	75	119578	10.084
89) 4-Methyl-2-Pentanone	(1)	5.674	43	311843M	20.440
93)\$Toluene-d8	(2)	5.765	98	1197108	49.714
92) \$Toluene-d8 (mz100)	(2)	5.765	100	781022	48.083
94) Toluene	(2)	5.838	92	189713	10.324
95) trans-1,3-Dichloropropene	(2)	6.087	75	118909	10.095
96) Ethyl Methacrylate	(2)	6.233	69	141628	10.707
				•	

M = Compound was manually integrated.

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731 page 2 of 4

^{* =} Compound is an internal standard. \$ = Compound is a surrogate standard.

AND REPORT OF THE PARTY OF THE

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28 Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Calibration date and time: 10-JUL-2012 13:58 Sublist used: 8260WI

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Sample Name: VSTD010 Lab Sample ID: VSTD010

	I.S.			•	On-Column Amount
Compounds	Ref.	RT	QIon	Area	. (ng)
	=====				10.776
97) 1,1,2-Trichloroethane	(2)	6.276	97	76453	10.776
98) Tetrachloroethene	(2)	6.428	166	85219	10.075
99) 1,3-Dichloropropane	(2)	6.452	76	136489	10.742
101) 2-Hexanone	(2)	6.586	43	257957	20.724
102) Dibromochloromethane	(2)	6.696	129	70426	9.744
104) 1,2-Dibromoethane	(2)	6.799	107	84248	10.699
106)*Chlorobenzene-d5	(2)	7.328	117	883720	50.000
107) Chlorobenzene	(2)	7.359	112	216257	10.416
108) 1,1,1,2-Tetrachloroethane	(2)	7.456	131	70914	10.052
109) Ethylbenzene	(2)	7.493	91	365372	10.290
110) m+p-Xylene	(2)	7.620	106	286159	20.678
113) o-Xylene	(2)	7.986	106	142936	10.410
114) Styrene	(2)	8.004	104	245365	10.460
115) Bromoform	(2)	8.144	173	55833	9.493
112) Xylene (Total)	(2)		106	429095	31.089
116) Isopropylbenzene	(2)	8.326	105	367484	10.348
118) Cyclohexanone	(4) ·	8.375	55	199170M	243.310
119)\$4-Bromofluorobenzene	(2)	8.436	95	445516	49.699
120) \$4-Bromofluorobenzene (mz174)	(2)	8.442	174	388717	49.847
121) Bromobenzene	(3)	8.551	156	98587	10.563
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	131221	10.870
123) 1,2,3-Trichloropropane	(3)	8.600	110	42034	10.908
124) trans-1,4-Dichloro-2-Butene	(3)	8.630	53	217748	51.714
125) n-Propylbenzene	(3)	8.673	91	433615	10.626
126) 2-Chlorotoluene	(3)	8.722	126	89921	10.431
128) 4-Chlorotoluene	. (3)	8.813	126	94592	10.526
127) 1,3,5-Trimethylbenzene	(3)	8.819	105	317472	10.447
130) tert-Butylbenzene	(3)	9.068	134	69698	10.123
131) Pentachloroethane	(3)	9.074	167	53741	9.642
132) 1,2,4-Trimethylbenzene	(3)	9.105	105	327181	10.475
133) sec-Butylbenzene	(3)	9.239	105	397504	10.582
134) 1,3-Dichlorobenzene	(3)	9.300	146	186923	10.513
135) p-Isopropyltoluene	(3)	9.354	119	356866	10.542
136) *1, 4-Dichlorobenzene-d4	(3)	9.354	152	512770	50.000
138) 1,4-Dichlorobenzene	(3)	9.366	146	194097	10.628
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	340413	10.695
141) Benzyl Chloride	(3)	9.476	91	258204	10.134
142) 1,3-Diethylbenzene	(3)	9.573	119	213948	10.496
	ι – ,		_		

M = Compound was manually integrated.

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40: Target 3.5 esignature user ID: ads01731

page 3 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Instrument ID: HP09355.i Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28 Analyst ID: ADS01731

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD010 Sample Name: VSTD010

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	=====	======	=====	105016	10 020
144) 1,2-Dichlorobenzene	(3)	9.634	146	185016	10.839
143) 1,4-Diethylbenzene	(3)	9.634	119	221126	10.494
145) n-Butylbenzene	(3)	9.646	92	172747	10.431
146) 1,2-Diethylbenzene	(3)	9.713	119	180231	10.562
148) 1,2-Dibromo-3-Chloropropane	(3)	10.182	75	34659	10.250
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	151964	10.750
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	143691	10.845
151) Hexachlorobutadiene	(3)	10.863	225	68283	10.423
152) Naphthalene	(3)	10.900	128	490493	10.848
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	143801	11.059
154) 2-Methylnaphthalene	(3)	11.624	142	284957	10.939

page 4 of 4

Digitally signed by Angela D. Sheeringer on 0.7/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD010 Sample Name: VSTD010

Compound Number - 3

: Chloromethane Compound Name

: 36 Scan Number Retention Time (minutes): 1.050 : 50.00 Quant Ion : 121818M Area (flag) : 12.0788 On-Column Amount (ng)

29 Integration stop scan: Integration start scan Y at integration end: 0 Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:44

Date, time and analyst ID of latest file update: 10-Jul-2012 13:44 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 3

Compound Name : Chloromethane

Scan Number : 36

Retention Time (minutes): 1.050
Quant Ion : 50.00
Area : 125414
On-column Amount (ng) : 12.2424

Integration start scan : 21 Integration stop scan: 43 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40: Target 3:5 esignature user ID: ads01731

Control of the Contro

Manually Integrated Quant Ion HP MS y110115.d, Ian 62.00 8.0-7.0 6.0 4.0 3.0-2.0-1.0-1.10 1.12 1.14 Time (Min) 1,16 1,18 1.20 1,24 0.98 1,02 1.04 1.06 1,08

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUJ-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 5

Compound Name : Vinyl Chloride

Scan Number : 48
Retention Time (minutes): 1.123
Quant Ion : 62.00
Area (flag) : 114767M
On-Column Amount (ng) : 11.8989

Integration start scan : 35 Integration stop scan: 61 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer

Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID; ads01731

58

60

56

52

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

annother than the second of th

Instrument ID: HP09355.i Analyst ID: ADS01731

70 72 74 76

68

66

64

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:44

Date, time and analyst ID of latest file update: 10-Jul-2012 13:44 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 5

36

Compound Name : Vinyl Chloride

Scan Number : 48
Retention Time (minutes): 1.123
Quant Ion : 62.00
Area : 118527
On-column Amount (ng) : 12.1937

Integration start scan : 35 Integration stop scan: 86 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

exemple personal control

Manually Integrated Quant Ion HP MS y110115.d. Ion 53.00 2.0-1.8 1.6 1.0-0.8 0.6-0.4-0.2-0.0 2.16 2.19 Time (Min) 2.43 2.25 2.28 2.40 2.13 2.01 2.07 2.10

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

in early of the earlies of the control of the presentation of the earliest of

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD010 Sample Name: VSTD010

: 30 Compound Number

: Acrylonitrile Compound Name

: 223 Scan Number Retention Time (minutes): 2.188 : 53.00 Quant Ion : 58409M Area (flag) : 10.9633 On-Column Amount (ng)

Integration stop scan: Integration start scan 194Y at integration end: 0 Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 0.7/10/2012 at 14:40.

Target 3:5 esignature user ID: ads01731

THE RESIDENCE ASSESSMENT OF THE RESIDENCE OF THE PROPERTY OF T

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Control of the Contro

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 13:44

Date, time and analyst ID of latest file update: 10-Jul-2012 13:44 Automation

Lab Sample ID: VSTD010 Sample Name: VSTD010

: 30 Compound Number

: Acrylonitrile Compound Name

: 223 Scan Number Retention Time (minutes): 2.188 : 53.00 Quant Ion : 62752 Area

: 11.4032 On-column Amount (ng)

Integration stop scan: 284 194 Integration start scan Y at integration end: Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

Manually Integrated Quant Ion HP MS y110115.d, Ion 41.00 5.6 5.2 4.B 4.0 3.6 3,2 2.8-2.4 2.0 1.6 1.2 0.8 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

The second service of the property of the second service of the se

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD010 Sample Name: VSTD010

: 59 Compound Number

: Isobutyl Alcohol Compound Name

: 490 Scan Number Retention Time (minutes): 3.812 Quant Ion : 41.00 Area (flag) : 184390M : 267.1805 On-Column Amount (ng)

512 Integration stop scan: Integration start scan 479 499 499 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID: ads01731

NAMES OF BUILDINGS OF STREET, AND ADDRESS OF

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 13:44

Date, time and analyst ID of latest file update: 10-Jul-2012 13:44 Automation

Lab Sample ID: VSTD010 Sample Name: VSTD010

Compound Number : 59

: Isobutyl Alcohol Compound Name

: 490 Scan Number Retention Time (minutes): 3.812 : 41.00 Quant Ion : 232296 Area : 304.8676 On-column Amount (ng)

Integration stop scan: 538 479 Integration start scan 499 499 Y at integration end: Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

The CONTRACTOR AND A CONTRACTOR OF THE CONTRACTOR AND A C

Manually Integrated Quant HP MS y110115.d. Ion 43.00 1.8-1.6 1.4 1.2-1.0-0.8 0.6 0.2-5.66 5.56 5.62 5.64

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Consideration of the contract of

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Lab Sample ID: VSTD010 Sample Name: VSTD010

Compound Number 89

4-Methyl-2-Pentanone Compound Name

796 Scan Number Retention Time (minutes): 5.674 : 43.00 Quant Ion Area (flag) 311843M : 20.4399 On-Column Amount (ng)

Integration stop scan: Integration start scan 785 0 Y at integration end: n Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Analyst responsible for change:

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 13:44

Date, time and analyst ID of latest file update: 10-Jul-2012 13:44 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 89

Compound Name : 4-Methyl-2-Pentanone

Scan Number : 796
Retention Time (minutes): 5.674
Quant Ion : 43.00
Area : 154728
On-column Amount (ng) : 11.3061

Integration start scan : 784 Integration stop scan: 795 Y at integration start : 262 Y at integration end: 262

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user 1D. ads01731

existing a second of the secon

Manually Integrated Quant Ion HP MS y110115.d. Ion 55.00 1.3 1,2 1.1-1.0 0.9 0,8 0.7-0.6 0.5 0.4 0.3 0.2 0.1-0.0 8.24 8.26 8.28 8.30 8.32 8.34 8.36 8.38 8.40 8.42 8.44 8.46 8.48 8.50 8.52 8.54 8.56 8.58 8.60 8.62 8.64 Time (Min)

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

in the efficient of the American Million of the control of the con

Calibration date and time: 10-JUL-2012 13:58

Date, time and analyst ID of latest file update: 10-Jul-2012 13:58 ads01731

Sample Name: VSTD010

Lab Sample ID: VSTD010

Compound Number : 118

: Cyclohexanone Compound Name

Scan Number : 1240 Retention Time (minutes): 8.375 Quant Ion 55.00 : 199170M Area (flag) : 243.3101 On-Column Amount (ng)

Integration stop scan: 1268 Integration start scan : 1232 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sheeringer Analyst responsible for change: on 0.7/10/2012 at 14:40

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i15.d Injection date and time: 10-JUL-2012 13:28

Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 13:44

Date, time and analyst ID of latest file update: 10-Jul-2012 13:44 Automation

Lab Sample ID: VSTD010 Sample Name: VSTD010

: 118 Compound Number

Compound Name : Cyclohexanone

: 1240 Scan Number Retention Time (minutes): 8.375 Quant Ion 55.00 204513 Area : 248.5400 On-column Amount (ng)

Integration stop scan: 1289 Integration start scan : 1232 Y at integration end: Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40Target 3.5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Calibration date and time: 10-JUL-2012 14:38

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD004 Lab Sample ID: VSTD004

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD004 Lab Sample ID: VSTD004

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3:5 esignature user ID: ads01731...

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i

Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD004 Sample Name: VSTD004

					·	On-Column
		I.S.		0.7	3	Amount
	Compounds	Ref.	RT	QIon	Area	(ng)
	Dichlorodifluoromethane	(1)	1.020	85	41147	4.248
	Chloromethane	(1)	1.044	50	44225	4.351
	Vinyl Chloride	(1)	1.117	62	40463M	4.230
4)		(1)	1.117	39	26699	3.754
	Bromomethane	(1)	1.275	94	25226	4.304
•	Chloroethane	(1)	1.318	$6\overline{4}$	21799	4.381
	Dichlorofluoromethane	(1)	1.421	67	51687	4.408
	Trichlorofluoromethane	(1)	1.476	101	43057	4.225
	n-Pentane	(1)	1.476	43	49674M	4.357
	Ethyl Ether	(1)	1.586	59	24948	4.158
	Freon 123a	(1)	1.598	67	34141	4.830
	Acrolein	(4)	1.659	56	105309	36.864
	1,1-Dichloroethene	(1)	1.732	96	23742	4.395
	Acetone	(1)	1.750	58	12589	8.994
	Freon 113	(1)	1.756	101	24880	4.228
	Methyl Iodide	(1)	1.823	142	43630	4.246
	2-Propanol	(4)	1.823	45	88483	70.605
	Carbon Disulfide	(1)	1.872	76	69827	4.105
	Allyl Chloride	(1)	1.945	41	43683	4.271
	Methyl Acetate	(1)	1.951	43	47678	4.802
	Methylene Chloride	(1)	2.030	84	28211	4.254
	*t-Butyl Alcohol-d10	(4)	2.042	65	417068	250.000
29)	t-Butyl Alcohol	(4)	2.103	· 59	180437	76.735
	Acrylonitrile	(1)	2.194	.53	25299М	4.645
	trans-1,2-Dichloroethene	(1)	2.224	96	28814	4.433
32)	Methyl Tertiary Butyl Ether	(1)	2.231	73	98595M	4.196
33)	n-Hexane	(1)	2.443	57	51821	4.548
	1,1-Dichloroethane	(1)	2.553	63	55091	4.304
36)	di-Isopropyl Ether	(1)	2.632	45	111561	4.431
	2-Chloro-1,3-Butadiene	(1)	2.638	53	48754	4.237
	Ethyl t-Butyl Ether	(1)	2.948	59	100476	4.217
	2-Butanone	(1)	3.052	43	65465	8.139
	cis-1,2-Dichloroethene	(1)	3.064	96	30824	4.216
	2,2-Dichloropropane	(1)	3.070	77	42781	4.276
	Propionitrile	(4)	3.119	54	186024	73.093
	Methacrylonitrile	(1)	3.259	. 67	206535	39.706
47)		(1)	3.277	128	15612	$\frac{4.124}{7.212}$
48)	Tetrahydrofuran	(4)	3.319	71	16980	7.212

M = Compound was manually integrated.

page 1 of 4

Digitally signed by Angela D. Sneeringer on 07/1072012 at 14:40. Target 3.5 esignature user ID: ads01731

^{* =} Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i

A COLOR OF THE PROPERTY OF THE

Analyst ID: ADS01731

CAMPAGAMATA CONTRACTOR OF BASIS CONTRACTOR OF THE

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI Calibration date and time: 10-JUL-2012 14:38
Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD004 Sample Name: VSTD004

				•	On-Column
•	I.S.				Amount
Compounds	Ref.	RT	QIon	Area	(ng)
	=====	=====	=====	========	=========
50) Chloroform	(1)	3.356	83	51487	4.181
51) \$Dibromofluoromethane(mz111)		3.502	111	284005 -	49.917
52) \$Dibromofluoromethane	(1)	3.502	113	280094	50.257
53) 1,1,1-Trichloroethane	(1)	3.526	97	52683	4.596
56) Cyclohexane	(1)	3.581	56	57819	4.420
54) Cyclohexane (mz 84)	(1)	3.587	84	45708	4.317
55) Cyclohexane (mz 69)	(1)	3.593	69	16478	4.227
45) 1,2-Dichloroethene (total)	(1)	5.555	96	59638	8.649
57) 1,1-Dichloropropene	(1)	3.678	75	42200	4.357
58) Carbon Tetrachloride	(1)	3.684	117	34441	4.081
59) Isobutyl Alcohol	(4)	3.806	41	137189м	193.479
	• •	3.812	65	373077	50.515
61) \$1,2-Dichloroethane-d4 (mz65)		3.812	104	46475	50.225
60) \$1,2-Dichloroethane-d4 (mz104	(1)	3.812	102	73365	50.345
62)\$1,2-Dichloroethane-d4		3.867	78	121452	4.274
63) Benzene	(1)	3.879	62	43846	4.117
65) 1,2-Dichloroethane	(1)	3.891	98	3711	4.131
64) 1,2-Dichloroethane (mz 98)	(1)	$\frac{3.691}{4.007}$	73	91464	4.121
69) t-Amyl Methyl Ether	(1)	4.147	96	1205608	50.000
71) *Fluorobenzene	(1)		43	66791	4.921
72) n-Heptane	(1)	4.165	43 56	237111	369.093
73) n-Butanol	(4)	4.469	95	30937	4.279
74) Trichloroethene	(1)	4.512			4.055
75) Methylcyclohexane (mz98)	(1)	4.707	98 -	23345	
76) Methylcyclohexane	(1)	4.707	83	52394	4.053
77) 1,2-Dichloropropane	(1)	4.725	63	32383	4.176
78) Dibromomethane	(1)	4.834	93	20514	4.189
79) 1,4-Dioxane	(4)	4.865	88	31733	186.240
80) Methyl Methacrylate	(1)	4.877	69	33282	4.018
83) Bromodichloromethane	(1)	5.011	83	34236	3.953
85) 2-Nitropropane	(1)	5.236	41	27638	7.323
86) 2-Chloroethyl Vinyl Ether	(1)	5.351	63	25340	3.900
87) cis-1,3-Dichloropropene	(1)	5.485	75	45618	4.020
89) 4-Methyl-2-Pentanone	(1)	5.674	43	119243	7.917
93)\$Toluene-d8	(2)	5.765	98	1189301	49.964
92)\$Toluene-d8(mz100)	(2)	5.765	100	776866	48.864
94) Toluene	(2)	5.838	92	78207	4.302
95) trans-1,3-Dichloropropene	(2)	6.088	75	42726	3.830
96) Ethyl Methacrylate	(2)	6.234	69	51702	3.959

M = Compound was manually integrated.

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

page 2 of 4

^{* =} Compound is an internal standard. \$ = Compound is a surrogate standard.

A SECTION OF THE CONTROL OF THE PROPERTY OF TH

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 13:50 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD004 Lab Sample ID: VSTD004

					On-Column
	I.S.				Amount
Compounds	Ref.	RT	QIon	Area	(ng)
=======================================	=====			========	<u>-</u>
97) 1,1,2-Trichloroethane	(2)	6.276	97	28834	4.153
98) Tetrachloroethene	(2)	6.422	166	36351	4.354
99) 1,3-Dichloropropane	(2)	6.453	. 76	51751	4.162
101) 2-Hexanone	(2)	6.586	43	. 98196	7.978
102) Dibromochloromethane	(2)	6.696	129	25057	3.672
104) 1,2-Dibromoethane	(2)	6.799	107	30486	3.993
106) *Chlorobenzene-d5	(2)	7.329	117	874337	50.000
107) Chlorobenzene	(2)	7.359	112	85574	4.176
108) 1,1,1,2-Tetrachloroethane	(2)	7.456	131	26517	3.916
109) Ethylbenzene	(2)	7.493	91	149341	. 4.207
110) m+p-Xylene	(2)	7.621	106	116017	8.391
113) o-Xylene	(2)	7.986	106	56197	4.113
114) Styrene	(2)	7.998	104	94850	4.072
115) Bromoform	(2)	8.144.	173	18630	3.312
112) Xylene (Total)	(2)		106	172214	12.504
116) Isopropylbenzene	(2)	8.326	105	151545	4.258
118) Cyclohexanone	(4)	8.375	55	162086	194.663
119) \$4-Bromofluorobenzene	(2)	8.436	95	448284	50.459
120) \$4-Bromofluorobenzene (mz174)		8.442	174	388014	50.270
121) Bromobenzene	(3)	8.551	156	39066	4.187
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	49069	4.106
123) 1,2,3-Trichloropropane	(3)	8.600	110	16290	4.221
124) trans-1,4-Dichloro-2-Butene		8.630	53	153114	37.226
125) n-Propylbenzene	(3)	8.673	91	179177	4.355
126) 2-Chlorotoluene	(3)	8.722	126	35376	4.119
128) 4-Chlorotoluene	(3)	8.813	126	37681	4.193
127) 1,3,5-Trimethylbenzene	(3)	8.819	105	128250	4.215
130) tert-Butylbenzene	(3)	9.068	134	28941	4.201
131) Pentachloroethane	(3)	9.068	167	19714	3.636
132) 1,2,4-Trimethylbenzene	(3)	9.105	105	133114	4.250
133) sec-Butylbenzene	(3)	9.239	105	164353	4.342
134) 1,3-Dichlorobenzene	(3)	9.300	146	75927	4.256
135) p-Isopropyltoluene	(3)	9.354	119	145077	4.269
136) *1, 4-Dichlorobenzene-d4	(3)	9.354	152	507838	50.000
138) 1,4-Dichlorobenzene	(3)	9.367	146	78041	4.259
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	133394	4.191
141) Benzyl Chloride	(3)	9.476	91	88841	3.593
142) 1,3-Diethylbenzene	(3)	9.573	119	83030	4.094
,,	• • •				

^{* =} Compound is an internal standard.

page 3 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i

Analyst ID: ADS01731

Sublist used: 8260WI

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI Calibration date and time: 10-JUL-2012 14:38
Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD004

Lab Sample ID: VSTD004

Compounds	I.S. Ref.	RT	QÍon	Area	On-Column Amount (ng)
	=====	=====	=====	========	
144) 1,2-Dichlorobenzene	(3)	9.634	146	72268	4.226
143) 1,4-Diethylbenzene	(3)	9.634	119	87199	4.148
145) n-Butylbenzene	(3)	9.646	92	70742	4.258
146) 1,2-Diethylbenzene	(3)	9.713	119	71238	4.178
148) 1,2-Dibromo-3-Chloropropane		10.182	75	12416	3.753
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	59866	4.227
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	57223	4.296
151) Hexachlorobutadiene	(3)	10.863	225 .	29652	4.464
152) Naphthalene	(3)	10.900	128	184912	4.103
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	57636	4.389
154) 2-Methylnaphthalene	(3)	11.617	142	116291	4.414
131, 1 110011, 1110110110110110	,				

page 4 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

AND THE REPORT OF THE PROPERTY

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 5

Compound Name : Vinyl Chloride

Scan Number : 47
Retention Time (minutes): 1.117
Quant Ion : 62.00
Area (flag) : 40463M
On-Column Amount (ng) : 4.2299

Integration start scan : 35 Integration stop scan: 64 Y at integration start : 0 Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:05

Date, time and analyst ID of latest file update: 10-Jul-2012 14:05 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 5

1 Million Commission of the Millian Malancial and the commission of the Commission o

Compound Name : Vinyl Chloride

Scan Number : 47
Retention Time (minutes): 1.117
Quant Ion : 62.00
Area : 40857
On-column Amount (ng) : 4.2324

Integration start scan : 35 Integration stop scan: 86 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

The same things to be the same of the same

Manually Integrated Quant Ion HP MS g110116.d, Ion 43.00 3.0 2.7-2.4-1.B-1.5 1.2-0.9-0.6-0.3-1.46 1.48 1.50 1.52 1.54 1.58 1.60 1.62 1.38 1.40 1.42 1.44 1.56

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

and the first of the comment of a district the configuration of the configuration of

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD004 Sample Name: VSTD004

: 11 Compound Number

: n-Pentane Compound Name

Scan Number : 106 Retention Time (minutes): 1.476 43.00 Quant Ion 49674M Area (flag) 4.3569 On-Column Amount (ng)

94 Integration stop scan: 118 Integration start scan 852 Y at integration end: 852 Y at integration start

improper integration Reason for manual integration:

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3:5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i
Analyst ID: ADS01731

- RESOLVE CONTRACTOR STATE SERVICE CONTRACTOR OF THE SERVICE CONTRACTO

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:05

Date, time and analyst ID of latest file update: 10-Jul-2012 14:05 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 11

Compound Name : n-Pentane

Scan Number : 106
Retention Time (minutes): 1.476
Quant Ion : 43.00
Area : 56338
On-column Amount (ng) : 4.8240

Integration start scan : 94 Integration stop scan: 136 Y at integration end: 852 Y at integration end: 852

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40: Target 3.5 esignature user ID: ads01731

and the second of the second o

Manually Integrated Quant Ion HP MS y110116.d, Ion 53.00 9.0-8.0 7.0 6.0 5.0-4.0-3.0 2.0-0.0 2.16 2.19 2.22 2.25 Time (Min) 2.43 2.46 2,28 2.31 2,40 2.10 2.13 2.07 1.98 1.95 2.01 2.04

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD004 Sample Name: VSTD004

: 30 Compound Number

: Acrylonitrile Compound Name

: 224 Scan Number Retention Time (minutes): 2.194 53.00 Quant Ion Area (flag) 25299M On-Column Amount (ng) 4.6454

Integration stop scan: 193 Integration start scan Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer

Analyst responsible for change: on 07/10/2012 at 14:40

Target 3.5 esignature user ID: ads01731

- Article Sand Brown and Agreement for

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:05

Date, time and analyst ID of latest file update: 10-Jul-2012 14:05 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 30

Compound Name : Acrylonitrile

Scan Number : 224
Retention Time (minutes): 2.194
Quant Ion : 53.00
Area : 26887
On-column Amount (ng) : 4.8777

Integration start scan : 193 Integration stop scan: 284 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature/user ID: ads01731

TO SEE A CONTRACTOR OF PROPERTY OF SECURITIES AND ADDRESS OF SECURITIE

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 13:50 Analyst ID: ADS01731

2.31

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

2,19

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD004 Lab Sample ID: VSTD004

2.25

2.28

Compound Number : 32

0.4

Compound Name : Methyl Tertiary Butyl Ether

Scan Number : 230
Retention Time (minutes): 2.231
Quant Ion : 73.00
Area (flag) : 98595M
On-Column Amount (ng) : 4.1963

Integration start scan : 215 Integration stop scan: 274 Y at integration start : 0 Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer-Analyst responsible for change: on 07%1072012 at 14:40

Target 3 5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i Analyst ID: ADS01731

Commencement of a supplemental distributions of

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:05

Date, time and analyst ID of latest file update: 10-Jul-2012 14:05 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 32

ANGERS DESCRIPTION OF SERVICE AND A SERVICE

Compound Name : Methyl Tertiary Butyl Ether

Scan Number : 231
Retention Time (minutes): 2.237
Quant Ion : 73.00
Area : 100120
On-column Amount (ng) : 4.2386

Integration start scan : 215 Integration stop scan: 302 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user TD: ads01731

For the control of th

Manually Integrated Quant Ion HP MS y110116.d, Ion 41.00 3.9-3.6-3.3-3.0 2.7-2.4-2.1-1.8-1.5-1.2-0.9 0.6 0.3 3,66 3,68 3,70 3,72 3,74 3,76 3,78 3,80 3,82 3,84 3,86 3,88 3,90 3,92 3,94 3,96 3,98 4,00 4,02 4,04

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50

Instrument ID: HP09355.i Analyst TD: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 59

Compound Name : Isobutyl Alcohol

Scan Number : 489
Retention Time (minutes): 3.806
Quant Ion : 41.00
Area (flag) : 137189M
On-Column Amount (ng) : 193.4787

Integration start scan : 479 Integration stop scan: 513 Y at integration start : 339 Y at integration end: 339

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

1 NUMBER TO ENGLISH CONTROL OF THE C

Data File: /chem2/HP09355.i/12jul10a.b/yl10i16.d Injection date and time: 10-JUL-2012 13:50 A

Instrument ID: HP09355.i Analyst ID: ADS01731

100

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:05

Date, time and analyst ID of latest file update: 10-Jul-2012 14:05 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 59

Compound Name : Isobutyl Alcohol

Scan Number : 489
Retention Time (minutes): 3.806
Quant Ion : 41.00
Area : 160073
On-column Amount (ng) : 219.8401

Integration start scan : 479 Integration stop scan: 538 Y at integration start : 339 Y at integration end: 339

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD001 Lab Sample ID: VSTD001

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40.
Target 3.5 esignature user ID: ads01731

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD001 Lab Sample ID: VSTD001

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40.
Target 3.5 esignature user TD: ads01731

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Calibration date and time: 10-JUL-2012 14:38

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD001 Sample Name: VSTD001

· ·	T 0				On-Column Amount
Compounds	I.S. Ref.	RТ	QIon	Area	(ng)
=======================================			=====	========	=======================================
Dichlorodifluoromethane	(1)	1.026	85	7247	0.749
Chloromethane	(1)	1.050	50	10205	1.005
5) Vinyl Chloride	(1)	1.123	62	9131	0.955
4) 1,3-Butadiene	(1)	1.123	39	9068	1.276
7) Bromomethane	(1)	1.275	94	5978	1.021
8) Chloroethane	(1)	1.330	64	4663	0.938
Dichlorofluoromethane	(1)	1.427	67	12594	1.075
10) Trichlorofluoromethane	(1)	1.488	101	8295M	0.815
11) n-Pentane	(1)	1.488	43	.10123	0.889
18) Freon 113	(1)	1.488	101	8295M	1.411
14) Freon 123a	(1)	1.592	67	8841	1.252
13) Ethyl Ether	(1)	1.592	59	5596	0.933
15) Acrolein	(4)	1.671	56	26797	8.781
16) 1,1-Dichloroethene	(1)	1.738	96	5267	0.976
17) Acetone	(1)	1.744	58	· 3296	2.357
20) Methyl Iodide	(1)	1.829	142	9428	0.918
21) 2-Propanol	(4)	1.835	45	26903	20.096
22) Carbon Disulfide	(1)	1.884	76	14898	0.877
24) Allyl Chloride	(1)	1.951		10010	0.979
26) Methylene Chloride	(1)	2.036	84	7363	1.111
28) *t-Butyl Alcohol-d10	(4)	2.054	65	445533	250.000
30) Acrylonitrile	(1)	2.078	53	7383	1.357
29) t-Butyl Alcohol	(4)	2.109	59	44306	17.638
25) Methyl Acetate	(1)	2.109	43	11879M	1.197
31) trans-1,2-Dichloroethene	(1)	2.237	96	6040	0.930
32) Methyl Tertiary Butyl Ether	r (1)	2.243	73	23104	0.984
33) n-Hexane	(1)	2.456	57	9517	0.836
34) 1,1-Dichloroethane	(1)	2.559	63	11473	0.897
<pre>36) di-Isopropyl Ether</pre>	(1)	2.632		25628	1.019
37) 2-Chloro-1,3-Butadiene	(1)	2.644	53	10278	0.894
39) Ethyl t-Butyl Ether	(1)	2.954	59	23071	0.969
40) cis-1,2-Dichloroethene	. (1)	3.064	96	6793	0.930
42) 2,2-Dichloropropane	(1)	3.070	77	8838	0.884
41) 2-Butanone	(1)	3.070	43	19445	2.419
43) Propionitrile	(4)	3.125	54	45890M	16.879
46) Methacrylonitrile	(1)	3.271	67	50295	9.677
47) Bromochloromethane	(1)	3.277	128	3269	0.864
48) Tetrahydrofuran	(4)	3.326	71	3873	1.540

M = Compound was manually integrated.

page 1 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

⁼ Compound is an internal standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

On-Column

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Control of the contro

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD001

Lab Sample ID: VSTD001

50) Chloroform (1) 3.356 83 12662 1.029 52) SDibromofluoromethane (1) 3.508 111 26702 49.689 51) SDibromofluoromethane(mz111) (1) 3.508 111 283248 49.825 53) 1,1,1-Trichloroethane (1) 3.532 97 11186 0.977 55) Cyclohexane (mz 69) (1) 3.587 69 3113 0.799 54) Cyclohexane (mz 84) (1) 3.593 84 8550 0.808 56) Cyclohexane (1) 3.593 56 11291 0.864 45) 1,2-Dichloroethene (total) (1) 96 12833 1.860 57) 1,1-Dichloropropene (1) 3.684 75 8417 0.870 58) Carbon Tetrachloride (1) 3.691 117 7095 0.841 59) Isobutyl Alcohol (4) 3.812 41 37112 48.995 61)\$1,2-Dichloroethane-d4 (mz65) (1) 3.812 65 368651 49.957 60)\$1,2-Dichloroethane-d4 (mz104) (1) 3.818 104 46355 50.136 62)\$1,2-Dichloroethane-d4 (mz 98) (1) 3.818 102 74270 51.008 63) Benzene (1) 3.873 78 26808 0.944 64) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (1) 3.891 62 10536 0.990 69) t-Amyl Methyl Ether (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.834 93 4469 0.913 78) Dibromomethane (1) 4.834 93 4469 0.913 78) Dibromomethane (1) 4.834 93 7072 80) Methyl Methacrylate (1) 5.485 75 9374 0.827 81) Bromodichloromethane (1) 5.485 75 9374 0.827 82) SToluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816		I.S. Ref.	RT	QIon	Area	Amount (ng)
52) SDibromofluoromethane (1) 3.508 113 276702 49.689 51) SDibromofluoromethane (mz111) (1) 3.508 111 283248 49.825 53) 1,1,1-Trichloroethane (1) 3.532 97 11186 0.977 55) Cyclohexane (mz 69) (1) 3.587 69 3113 0.799 54) Cyclohexane (mz 84) (1) 3.593 84 8550 0.808 856) Cyclohexane (mz 84) (1) 3.593 56 11291 0.864 45) 1,2-Dichloroethene (total) (1) 96 12833 1.860 57) 1,1-Dichloropropene (1) 3.684 75 8417 0.870 870 870 1.7 0.95 0.841 95) Isobutyl Alcohol (1) 3.691 117 7095 0.841 995 150 11,2-Dichloroethane-d4 (mz104) (1) 3.812 41 37112 48.995 61) \$1,2-Dichloroethane-d4 (mz104) (1) 3.812 41 37112 48.995 61) \$1,2-Dichloroethane-d4 (mz104) (1) 3.818 104 46355 50.136 62) \$1,2-Dichloroethane-d4 (mz104) (1) 3.818 102 74270 51.008 63) Benzene (1) 3.873 78 26808 0.944 64) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (mz 98) (1) 3.891 61 0536 0.990 69) t-Amyl Methyl Ether (1) 4.007 73 21078 0.950 71) *Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 780 780 780 780 780 780 780 780 780		(1)				1.029
Salish Control Methane (mz111) 1						
11	52) SDIDIOMOITUOI OMECHANE					
Signature Sign	51) \$DIDromotiuoromethano					
54) Cyclohexane (mz 84) (1) 3.593 84 8550 0.808 56) Cyclohexane (1) 3.593 56 11291 0.864 45) 1,2-Dichloroethene (total) (1) 96 12833 1.860 57) 1,1-Dichloropropene (1) 3.684 75 8417 0.870 58) Carbon Tetrachloride (1) 3.691 117 7095 0.841 59) Isobutyl Alcohol (4) 3.812 41 37112 48.995 61,\$1,2-Dichloroethane-d4 (mz65) (1) 3.812 65 368651 49.957 60)\$1,2-Dichloroethane-d4 (mz104) (1) 3.818 104 46355 50.136 62)\$1,2-Dichloroethane-d4 (1) 3.818 102 74270 51.008 63) Benzene (1) 3.873 78 26808 0.944 64) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (1) 4.007 73 21078 0.950 69) t-Amyl Methyl Ether (1) 4.007 73 21078 0.950 71)*Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (mz98) (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 81) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 98 1183288 49.816 92) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (2) 5.765 100 768294 48.427 94) Toluene						
\$\frac{1}{3}\$ (Syclohexane (Inz 04) (1) 3.593 56 11291 0.864 \$\frac{45}{5}\$ (Cyclohexane (total) (1) 96 12833 1.860 \$\frac{57}{5}\$ (1,2-Dichloroethene (total) (1) 96 12833 1.860 \$\frac{57}{5}\$ (1,1-Dichloropropene (1) 3.684 75 8417 0.870 \$\frac{58}{5}\$ (Carbon Tetrachloride (1) 3.691 117 7095 0.841 \$\frac{59}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.812 41 37112 48.995 \$\frac{61}{5}\$ (Carbon Tetrachloride (1) 3.818 104 46355 50.136 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 3.818 104 46355 50.136 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 3.818 104 46355 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 3.818 104 46355 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 4.107 73 21078 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 4.107 73 21078 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 4.107 73 21078 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 4.707 83 10411 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 4.707 83 10411 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 4.834 93 4469 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 4.834 93 4469 \$\frac{62}{5}\$ (Carbon Tetrachloride (1) 4.834 93 4469 \$\frac{62}{5}\$ (Carbon Tetrachloride (
## 1.2-Dichloroethene (total) (1) ## 3.684						
1	56) Cyclonexane		3.333			
S8) Carbon Tetrachloride (1) 3.691 117 7095 0.841 59) Isobutyl Alcohol (4) 3.812 41 37112 48.995 61)\$1,2-Dichloroethane-d4(mz65) (1) 3.812 65 368651 49.957 60)\$1,2-Dichloroethane-d4 (mz104) (1) 3.818 104 46355 50.136 62)\$1,2-Dichloroethane-d4 (1) 3.818 102 74270 51.008 63) Benzene (1) 3.873 78 26808 0.944 64) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (1) 3.891 62 10536 0.990 69) t-Amyl Methyl Ether (1) 4.007 73 21078 0.950 71)*Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.931 78) Dibromomethane (1) 4.883 69 7774 0.939 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 81) Bromodichloromethane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75			3 684			
Section Sectio						
61) \$1,2-Dichloroethane-d4 (mz65) (1) 3.812 65 368651 49.957 60) \$1,2-Dichloroethane-d4 (mz104) (1) 3.818 104 46355 50.136 62) \$1,2-Dichloroethane-d4 (1) 3.818 102 74270 51.008 63) Benzene (1) 3.873 78 26808 0.944 64) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (1) 3.891 62 10536 0.990 69) t-Amyl Methyl Ether (1) 4.007 73 21078 0.950 71)*Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 98 4139 0.720 76) Methylcyclohexane (mz98) (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93) \$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92) \$Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819 9122 0.819						
60) \$1,2-Dichloroethane-d4 (mz104) (1) 3.818 104 46355 50.136 62) \$1,2-Dichloroethane-d4 (1) 3.818 102 74270 51.008 63) Benzene (1) 3.873 78 26808 0.944 64) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (1) 3.891 62 10536 0.990 69) t-Amyl Methyl Ether (1) 4.007 73 21078 0.950 71)*Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.674 43 36850 2.449 93) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819	59) ISODUCYI ALCONOI					
62)\$1,2-Dichloroethane-d4 (1) 3.818 102 74270 51.008 63) Benzene (1) 3.873 78 26808 0.944 64) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (1) 3.891 62 10536 0.990 69) t-Amyl Methyl Ether (1) 4.007 73 21078 0.950 71)*Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 98 4139 0.720 76) Methylcyclohexane (1) 4.707 98 4139 0.720 76) Methylcyclohexane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92)\$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819	61)\$1,2-Dichioroethane-04(m200)					
63) Benzene (1) 3.873 78 26808 0.944 64) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (1) 3.891 62 10536 0.990 69) t-Amyl Methyl Ether (1) 4.007 73 21078 0.950 71)*Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 98 4139 0.720 76) Methylcyclohexane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92)\$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122	60)\$1,2-Dichioroethane-d4(m2104	(1)				
63) Benzene 64) 1,2-Dichloroethane (mz 98) (1) 3.885 98 723 0.806 65) 1,2-Dichloroethane (1) 3.891 62 10536 0.990 69) t-Amyl Methyl Ether (1) 4.007 73 21078 0.950 71)*Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 98 4139 0.720 76) Methylcyclohexane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						
65) 1,2-Dichloroethane (III 3.891 62 10536 0.990 69) t-Amyl Methyl Ether (I) 4.007 73 21078 0.950 71)*Fluorobenzene (I) 4.147 96 1204616 50.000 72) n-Heptane (I) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (I) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (I) 4.707 98 4139 0.720 76) Methylcyclohexane (I) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (I) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (I) 4.731 63 7203 0.930 78) Dibromomethane (I) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (I) 4.883 69 7774 0.939 83) Bromodichloromethane (I) 5.017 83 7453 0.861 85) 2-Nitropropane (I) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (I) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (I) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (I) 5.674 43 36850 2.449 93) \$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819	63) Benzene					0.806
69) t-Amyl Methyl Ether (1) 4.007 73 21078 0.950 71) *Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 98 4139 0.720 76) Methylcyclohexane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93) *Toluene-d8 (mz100) (2) 5.765 98 1183288 49 816 92) *Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819	64) 1,2-Dichioroechane (mz 90)					
71) *Fluorobenzene (1) 4.147 96 1204616 50.000 72) n-Heptane (1) 4.165 43 15547 1.146 73) n-Butanol (4) 4.475 56 58181 84.780 74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 98 4139 0.720 76) Methylcyclohexane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93) \$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						
71) *Filoropersene						
72) n-Heptane 73) n-Butanol 74) Trichloroethene 75) Methylcyclohexane (mz98) 76) Methylcyclohexane (mz98) 77) 1,2-Dichloropropane 78) Dibromomethane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 79) 1,4-Dioxane 70) Methyl Methacrylate 71) 4.883 72) 4.883 73) Bromodichloromethane 71) 5.017 72) 74 74 75 76 77 77 78 79 77 78 79 77 78 79 77 78 79 77 78 79 77 78 79 77 78 79 77 78 79 77 78 79 77 78 79 77 78 79 77 78 79 78 79 78 79 79 79 70 70 70 70 70 70 70 70 70 70 70 70 70	·					
74) Trichloroethene (1) 4.506 95 6818 0.944 75) Methylcyclohexane (mz98) (1) 4.707 98 4139 0.720 76) Methylcyclohexane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887. 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93) \$Toluene-d8 (mz100) (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						
75) Methylcyclohexane (mz98) (1) 4.707 98 4139 0.720 76) Methylcyclohexane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						
76) Methylcyclohexane (1) 4.707 83 10411 0.806 77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						
77) 1,2-Dichloropropane (1) 4.731 63 7203 0.930 78) Dibromomethane (1) 4.834 93 4469 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8(mz100) (2) 5.765 100 768294 94) Toluene 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						
77) 1,2-Dichlotopropane (1) 4.834 93 4469 0.913 79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						0.930
79) 1,4-Dioxane (4) 4.877 88 6594 36.228 80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8(mz100) (2) 5.765 100 768294 94) Toluene 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						0.913
80) Methyl Methacrylate (1) 4.883 69 7774 0.939 83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8(mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						36.228
83) Bromodichloromethane (1) 5.017 83 7453 0.861 85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8(mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						0.939
85) 2-Nitropropane (1) 5.242 41 9318 2.471 86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8(mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						
86) 2-Chloroethyl Vinyl Ether (1) 5.357 63 5758 0.887 87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						2.471
87) cis-1,3-Dichloropropene (1) 5.485 75 9374 0.827 89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93)\$Toluene-d8 (2) 5.765 98 1183288 49.816 92)\$Toluene-d8(mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819	96) 2-Nitropropane					0.887
89) 4-Methyl-2-Pentanone (1) 5.674 43 36850 2.449 93) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819	97) gig_1 3-Dighloropropene					0.827
93) \$Toluene-d8 (2) 5.765 98 1183288 49.816 92) \$Toluene-d8 (mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						2.449
92)\$Toluene-d8(mz100) (2) 5.765 100 768294 48.427 94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819					1183288	
94) Toluene (2) 5.838 92 16756 0.924 95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819					768294	48.427
95) trans-1,3-Dichloropropene (2) 6.094 75 9122 0.819						
55/ CEGIID 2/5 DECIMENT 0 010					9122	
	96) Ethyl Methacrylate	(2)		69	11863	0.910

^{* =} Compound is an internal standard.

page 2 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3:5 esignature user ID: ads01731

^{\$ =} Compound is a surrogate standard.

in the confidence of the control of AMERICAN confidence in the preference of the confidence of the control of

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

' Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38
Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD001 Sample Name: VSTD001

	T C				On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
Compounds ===================================	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		QION == 97 166 43 129 117 112 1 106 104 173 105 55 174 6 1205 126 126 126 126 126 126 126 126 126 126		
139) 1,2,3-Trimethylbenzene 141) Benzyl Chloride 142) 1,3-Diethylbenzene	(3) (3) (3)	9.415 9.476 9.573	105 91 119	29887 18718 17705	0.934 0.753 0.868

M = Compound was manually integrated.

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

page 3 of 4

^{* =} Compound is an internal standard. \$ = Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i

Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI Calibration date and time: 10-JUL-2012 14:38
Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD001

Lab Sample ID: VSTD001

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
144) 1 2 0 0	(3)	9.634	146	. 16673	0.970
144) 1,2-Dichlorobenzene	,	9.634	119	18980	0.898
143) 1,4-Diethylbenzene	(3)				0.909
145) n-Butylbenzene	(3)	9.646	92	15188M	
146) 1,2-Diethylbenzene	(3)	9.713	119	15079	. 0.880
148) 1,2-Dibromo-3-Chloropropane	(3)	10.182	· 75	3064	0.921
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	14762	1.037
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	14466	1.080
151) Hexachlorobutadiene	(3)	10.863	225	7376	1.104
152) Naphthalene	(3)	10.900	128	46193	1.019
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	14881	1.127
		11.624	142	32128	1.213
154) 2-Methylnaphthalene	(3)	11.024	142	22120	1.213

M = Compound was manually integrated.

page 4 of 4

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3:5 esignature user ID: ads01731

Control of the Contro

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Simple to the second of the se

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD001 Sample Name: VSTD001

Compound Number : 10

: Trichlorofluoromethane Compound Name

Scan Number : 108 Retention Time (minutes): 1.488 : 101.00 Quant Ion Area (flag) : 8295M : 0.8146 On-Column Amount (ng)

128 Integration stop scan: 82 Integration start scan Y at integration end: 0 Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 0.77/10/2012 at 14.40Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10 Instrument ID: HP09355.i Analyst ID: ADS01731

- All the contract of the cont

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:26

Date, time and analyst ID of latest file update: 10-Jul-2012 14:26 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 108
Retention Time (minutes): 1.488
Quant Ion : 101.00
Area : 12877
On-column Amount (ng) : 1.1882

Integration start scan : 82 Integration stop scan: 186 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

water a second responsible to the complete of the production of the probability of the contract of the contrac

Manually Integrated Quant Ion HP MS y110117.d, Ion 101.00 2.6-2.4-2.2 2.0 1.8 1.6 1.4-1,2 1.0 0.8 0.6 0,4 0.2 0.0 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70 1.38

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 18

Compound Name : Freon 113

Scan Number : 108
Retention Time (minutes): 1.488
Quant Ion : 101.00
Area (flag) : 8295M
On-Column Amount (ng) : 1.4107

Integration start scan : 93 Integration stop scan: 128 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 0.7/10/2012 at 14.40%

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:26

Date, time and analyst ID of latest file update: 10-Jul-2012 14:26 Automation

Lab Sample ID: VSTD001 Sample Name: VSTD001

Compound Number

Compound Name : Freon 113

Scan Number

Retention Time (minutes): 1.488 Quant Ion : 101.00

Area : 12877

2.1901 On-column Amount (ng) 93

Integration stop scan: Integration start scan Y at integration end: 0 Y at integration start

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

e entre etter i de l'est min i la completation de la completation de la completation de la completation de la c

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD001 Sample Name: VSTD001

: 25 Compound Number

Compound Name : Methyl Acetate

: 210 Scan Number Retention Time (minutes): 2.109 Quant Ion : 11879M Area (flag) : 1.1973 On-Column Amount (ng)

222 196 Integration stop scan: Integration start scan 458 458 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260WI Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 14:26

Date, time and analyst ID of latest file update: 10-Jul-2012 14:26 Automation

Lab Sample ID: VSTD001 Sample Name: VSTD001

: 25 Compound Number

: Methyl Acetate Compound Name

: 210 Scan Number Retention Time (minutes): 2.109 Quant Ion 43.00 18655 Area 1.8803 On-column Amount (ng)

Integration stop scan: 253 Integration start scan 196 Y at integration end: Y at integration start 458

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

The transfer of the second of

Manually Integrated Quant Ion HP MS y110117.d. Ion 54.00 1.2-1.1 1,0 0.9 0.8 0.7 0.6 0.5 0,4 0.3-0.2 0.1-0.0 3.21 B (Min '3,**3**0 3.24 3.27 3.18 3.00 3.03 3.06 3.09 3.12

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD001 Sample Name: VSTD001

43 Compound Number

: Propionitrile Compound Name

: 377 Scan Number Retention Time (minutes): 3.125 : 54.00 Quant Ion Area (flag) : 45890M : 16.8793 On-Column Amount (ng)

420 Integration stop scan: Integration start scan 363 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Target 3:5 esignature user ID: ads01731

HER CONTRACTOR OF THE SECTION OF THE

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:26

Date, time and analyst ID of latest file update: 10-Jul-2012 14:26 Automation

Sample Name: VSTD001 Lab. Sample ID: VSTD001

Compound Number : 43

Compound Name : Propionitrile

Scan Number : 377
Retention Time (minutes): 3.125
Quant Ion : 54.00
Area : 47249
On-column Amount (ng) : 17.3792

On-column Amount (ng) : 17.3792 Integration start scan : 363 Integration stop scan: 459 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

in the control of the College Control of the College Control of the College Co

Manually Integrated Quant Ion HP MS y110117.d. Ion 43.00 1.6-1., 4-1.2 1.0-0.8 0.6 0.4 0.2 6.58 5.60 5.64 6.46 6.56

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-MM-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD001 Sample Name: VSTD001

Compound Number : 101

: 2-Hexanone Compound Name

: 946 Scan Number Retention Time (minutes): 6.586 Quant Ion : 43.00 Area (flag) : 23415M : 1.9064 On-Column Amount (ng)

Integration stop scan: 959 937 Integration start scan Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID: ads01731

anagogyanagogyan gogygyttilaran salag 💎 parat inagotyan sagagasaan

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:26

Date, time and analyst ID of latest file update: 10-Jul-2012 14:26 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 101

Compound Name : 2-Hexanone

Scan Number : 946
Retention Time (minutes): 6.586
Quant Ion : 43.00
Area : 25496
On-column Amount (ng) : 2.0759

Integration start scan : 937 Integration stop scan: 979 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731.

AND THE PROPERTY OF THE PROPER

Manually Integrated Quant Ion HP MS ul10i17,d, Ion 55.00 2.8 2.6 .2.4-2.2 2.0 1.6 1.2 1.0 0.8 0.6-0.2 8.24 8.26 8.28 8.30 8.32 8.34 8.36 8.38 8.40 8.42 8.44 8.46 8.48 8.50 8.52 8.54 8.56 8.58 8.60 8.62 8.64 8.66 8.68 Time (Min)

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD001 Sample Name: VSTD001

: 118 Compound Number

: Cyclohexanone Compound Name

: 1240 Scan Number Retention Time (minutes): 8.375 55.00 Quant Ion 41954M Area (flag) : 47.1671 On-Column Amount (ng)

Integration stop scan: 1276 : 1232 Integration start scan Y at integration end: Y at integration start

improper integration Reason for manual integration:

Digitally signed by Angela D. Sneeringer Analyst responsible for change: on 07/10/2012 at 14:40.

Target 3.5 esignature user ID ads01731

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:26

Date, time and analyst ID of latest file update: 10-Jul-2012 14:26 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 118

Compound Name : Cyclohexanone

Scan Number : 1240
Retention Time (minutes): 8.375
Quant Ion : 55.00
Area : 42914
On-column Amount (ng) : 48.0985

Integration start scan : 1232 Integration stop scan: 1289 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40. Target 3.5 esignature user ID: ads01731

Manually Integrated Quant Ion HP MS y110117.d. Ion 92.00 1.8 1,6 1.2 1.0 0.8 0.6 0,4 0.2 9.64 (Min' 9.72 9.74 9,78 9.68 9,70 9.52 9.54 9.60 9.62

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260WI

Control of the Contro

Calibration date and time: 10-JUL-2012 14:38

Date, time and analyst ID of latest file update: 10-Jul-2012 14:38 ads01731

Lab Sample ID: VSTD001 Sample Name: VSTD001

: 145 Compound Number

Compound Name : n-Butylbenzene

1449 Scan Number Retention Time (minutes): 9.646 Quant Ion : 92.00 Area (flag) : 15188M : 0.9091 On-Column Amount (ng)

Integration stop scan: 1454 : 1443 Integration start scan Y at integration end: Y at integration start

Reason for manual integration: improper integration

 $\label{eq:Digitally_signed_by_Angela_D:Sneeringer} \mbox{Analyst responsible for change: on $07/10/2012 at $14:40.}$

Target 3.5 esignature user ID: ads01731

Data File: /chem2/HP09355.i/12jul10a.b/yl10i17.d Injection date and time: 10-JUL-2012 14:10

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260WI

Calibration date and time: 10-JUL-2012 14:26

Date, time and analyst ID of latest file update: 10-Jul-2012 14:26 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 145

Compound Name : n-Butylbenzene

Scan Number : 1449
Retention Time (minutes): 9.646
Quant Ion : 92.00
Area : 15679

On-column Amount (ng) : 0.9386 Integration start scan : 1443

Integration start scan : 1443 Integration stop scan: 1469 Y at integration start : 0 Y at integration end: 0

Digitally signed by Angela D. Sneeringer on 07/10/2012 at 14:40 Target 3.5 esignature user ID: ads01731

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24. Target 3.5 esignature user ID: sej02002

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14 Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Lab Sample ID: MDL0.5 Sample Name: MDL0.5

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24 Target 3.5 esignature user ID: sej02002

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Instrument ID: HP09355.i Analyst ID: ADS01731 Injection date and time: 10-JUL-2012 14:34

mandetermination of the state o

Sublist used: 8260W Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

and a second control of the control

Calibration date and time: 11-JUL-2012 18:10
Date, time and analyst ID of latest file update: 11-Jul-2012 18:14 sej02002

Lab Sample ID: MDL0.5 Sample Name: MDL0.5

	Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	Dichlorodifluoromethane	(1)	1.020	85	3993	0.407
•	Chloromethane	(1)	1.038	50	5511M	0.535
•	1,3-Butadiene	(1)	1.111	39	2991M	0.424
	Vinyl Chloride	(1)	1.117	62	4323M	0.446
	Bromomethane	(1)	1.269	94	3005	0.506
	Chloroethane	(1)	1.318	64	2546	0.505
9)	Dichlorofluoromethane	(1)	1.427	67	6344M	0.534
	n-Pentane	(1)	1.482	43	7213M	0.624
	Trichlorofluoromethane	(1)	1.500	101	4117M	0.398
	Ethyl Ether	(1)	1.592	59	3106	0.511
	Freon 123a	(1)	1.604	67	5372	0.750 4.788
	Acrolein	(4)	1.659	56	14151	0.478
	1,1-Dichloroethene	(1)	1.732	96	2617 1810	1.276
	Acetone	(1)	1.750	58 101	2470M	0.414
	Freon 113	(1)	1.762 1.823	45	18682	17.262
	2-Propanol	(4)	1.835	142	4875	0.468
	Methyl Iodide	(1) (1)	1.833	76	8342M	0.484
	Carbon Disulfide	(1)	1.945	41	6131	0.591
	Allyl Chloride	(1)	2.030	84	4458	0.663
	Methylene Chloride	(4)	2.048	65	431536	250.000
	*t-Butyl Alcohol-d10 t-Butyl Alcohol	(4)	2.109	59	22862	9.397
22)	trans-1,2-Dichloroethene	(1)	2.224	96	3270	0.496
327	Methyl Tertiary Butyl Ether		2.237	73	11684	0.491
	n-Hexane	(1)	2.450	57	8923	0.772
	1,1-Dichloroethane	(1)	2.559	63	5993	0.462
	di-Isopropyl Ether	(1)	2.632	45	13535	0.530
	2-Chloro-1, 3-Butadiene	(1)	2.638	53	5635	0.483
	Ethyl t-Butyl Ether	(1)	2.954	59	11043	0.457
40)	cis-1,2-Dichloroethene	(1)	3.058	96	3295	0.445
	2,2-Dichloropropane	(1)	3.070	77	4672	0.461
41)	2-Butanone	(1)	3.082	43	12791	1.569
43)	Propionitrile	(4)	3.125	54	23337	8.862
	Methacrylonitrile	(1)	3.259	67	25326	4.803
•	Bromochloromethane	(1)	3.277	128	1902	0.496 0.924
48)	-	(4)	3.319	71	2252	0.924
	Chloroform	(1)	3.356	83	7572 279884	49.541
52)	\$Dibromofluoromethane	(1)	3.502	113	219004	47.J41

M = Compound was manually integrated.
* = Compound is an internal standard.

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:15. Target 3.5 esignature user ID: sej02002 page 1 of 4

^{\$ =} Compound is a surrogate standard.

Control of the second control of the Company of the second of the second of the second second second of the second

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 14:34 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
53) 1,1,1-Trichloroethane	(1)	3.532	97	5677	0.489
56) Cyclohexane	(1)	3.581	56	7463	0.563
45) 1,2-Dichloroethene (total)	(1)		96	6565 ·	0.941
57) 1,1-Dichloropropene	(1)	3.678	75	4322	0.440
58) Carbon Tetrachloride	(1)	3.684	117	3420M	0.400
62)\$1,2-Dichloroethane-d4	(1)	3.812	.102	74412	50.373
59) Isobutyl Alcohol	(4)	3.830	41	20371	27.766
63) Benzene	(1)	3.867	78	14375	0.499
65) 1,2-Dichloroethane	(1)	3.891	62	5350	0.496
69) t-Amyl Methyl Ether	(1)	4.001	73	10741	0.477
71)*Fluorobenzene	(1)	4.147	96	1222121	50.000
72) n-Heptane	(1)	4.171	43	12717	0.924
73) n-Butanol	(4)	4.481	56	29508	44.393
74) Trichloroethene	(1)	4.494	95	3198	0.436
76) Methylcyclohexane	(1)	4.707	83	9218	0.703
77) 1,2-Dichloropropane	(1)	4.719	63	3634	0.462 0.450
78) Dibromomethane	(1)	4.840	93	2233 2761	15.661
79) 1,4-Dioxane	(4)	$4.871 \\ 4.877$	88 69	4226	0.503
80) Methyl Methacrylate	(1) (1)	5.011	83	3741	0.303
83) Bromodichloromethane 85) 2-Nitropropane	(1)	5.236	41	5209	1.362
86) 2-Chloroethyl Vinyl Ether	(1)	5.351	63	2740	0.416
87) cis-1,3-Dichloropropene	(1)	5.485	75	4736	0.412
89) 4-Methyl-2-Pentanone	(1)	5.674	43	15917	1.043
93) \$Toluene-d8	(2)	5.765	98	1195165	49.786
94) Toluene	(2)	5.838	92	8733	0.476
95) trans-1,3-Dichloropropene	(2)	6.088	75	4572	0.406
96) Ethyl Methacrylate	(2)	6.234	69	6023	0.457
97) 1,1,2-Trichloroethane	(2)	6.282	97	3196	0.456
98) Tetrachloroethene	(2)	6.428	166	4356	0.517
99) 1,3-Dichloropropane	(2)	6.446	76	5966	0.476
101) 2-Hexanone	(2)	6.580	43	12065	0.972
102) Dibromochloromethane	(2)	6.690	129	2684	0.390
104) 1,2-Dibromoethane	(2)	6.799	107	3439	0.447
106) *Chlorobenzene-d5	(2)	7.329	117	881792	50.000
107) Chlorobenzene	(2)	7.359	112	10756	0.520
108) 1,1,1,2-Tetrachloroethane	(2)	7.456	131	3006	0.440
109) Ethylbenzene	(2)	7.493	91	19347	0.540

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24.
Target 3.5 esignature user ID: sej02002

page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

in the field has the state of the section of the second section of the section of

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Instrument ID: HP09355.i Analyst ID: ADS01731 Injection date and time: 10-JUL-2012 14:34

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W Calibration date and time: 10-JUL-2012 15:14 Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Lab Sample ID: MDL0.5 Sample Name: MDL0.5

			•		On-Column
Commonweda	I.S. Ref.	RT	QIon	Area	·Amount (ng)
Compounds	rei. ======				
110) m+p-Xylene	(2)	7.621	106	15567	1.116
113) o-Xylene	(2)	7.986	106	7415	0.538
114) Styrene	(2)	7.998	104	11662	0.496
115) Bromoform	(2)	8.138	173	1950	0.344
112) Xylene (Total)	(2)		106	22982	1.655
116) Isopropylbenzene	(2)	8.326	105	23873	0.665
118) Cyclohexanone	(4)	8.375	55	20161	23.401
119)\$4-Bromofluorobenzene	(2)	8.436	95	449462	50.164
121) Bromobenzene	(3)	8.551	156	5380	0.571
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	6035	0.500
123) 1,2,3-Trichloropropane	(3)	8.600	110	1930	0.495
124) trans-1,4-Dichloro-2-Butene		8.630	53	16625	4.001
125) n-Propylbenzene	(3)	8.667	91	31904	0.768
126) 2-Chlorotoluene	(3)	8.722	126	5491	0.633
128) 4-Chlorotoluene	(3)	8.813	126	5863	0.646
127) 1,3,5-Trimethylbenzene	(3)	8.819	105	23605	0.768
131) Pentachloroethane	(3)	9.068	167	2675	0.488
130) tert-Butylbenzene	(3)	9.068	134	5566	0.800
132) 1,2,4-Trimethylbenzene	(3)	9.105	105	23966	0.757
133) sec-Butylbenzene	(3)	9.239	105	33985	0.889
134) 1,3-Dichlorobenzene	(3)	9.300	146	13662	0.758
136)*1,4-Dichlorobenzene-d4	(3)	9.354	152	513014	50.000
135) p-Isopropyltoluene	(3)	9.354	119	30909	0.900
138) 1,4-Dichlorobenzene	(3)	9.367	146	14382	0.777
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	24041	0.748
141) Benzyl Chloride	(3)	9.470	91	9662	0.387
142) 1,3-Diethylbenzene	(3)	9.573	119	17474	0.853
143) 1,4-Diethylbenzene	(3)	9.634	119	19935	0.939
144) 1,2-Dichlorobenzene	(3)	9.634	146	12895	0.747
145) n-Butylbenzene	(3)	9.646	92	15957M	0.951
146) 1,2-Diethylbenzene	(3)	9.713	119	15555	0.903
148) 1,2-Dibromo-3-Chloropropane		10.182	75	1503	0.450
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	17180	1.201
	(3)	10.741	180	16784	1.247
	(3)	10.863	225	6937	1.034
151) Hexachlorobutadiene	(3)	10.900	128	38585	0.887
152) Naphthalene	(3)	11.058	180	17310	1.305
153) 1,2,3-Trichlorobenzene	(3)	11.624	142	33723	1.267
154) 2-Methylnaphthalene	(3)	11.024	747	ل ۱۵۱۵	. 1.201

M = Compound was manually integrated.
* = Compound is an internal standard.

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24. Target 3.5 esignature user ID: sej02002 page 3 of 4

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d

Instrument ID: HP09355.i

Injection date and time: 10-JUL-2012 14:34

Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Sample Name: MDL0.5

Lab Sample ID: MDL0.5

M = Compound was manually integrated.
* = Compound is an internal standard.
\$ = Compound is a surrogate standard.

page 4 of 4

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24.
Target 3.5 esignature user ID: sej02002

entre de sebabación de como como compresentación de la proposition de la compresentación de la compresentación

Manually Integrated Quant Ion HP MS y110m02.d, Ion 50.00 3.6 3,3-3.0 2.7-2.1-1.B-1.5 1.2 0.9 0.6 0.92 0,94 0.98 1.00 1.02 1,08

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 3

Compound Name : Chloromethane

Scan Number : 34
Retention Time (minutes): 1.038
Quant Ion : 50.00
Area (flag) : 5511M
On-Column Amount (ng) : 0.5348

Integration start scan : 27 Integration stop scan: 42 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson Analyst responsible for change: on 07/10/2012 at 15:24

Target 3.5 esignature user ID: sej02002

Portugues de la companya de la companya de la companya de la companya de la companya de la companya de la comp Portugues de la companya de la companya de la companya de la companya de la companya de la companya de la comp

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 14:49 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 3

Compound Name : Chloromethane

Scan Number : 34
Retention Time (minutes): 1.038
Quant Ion : 50.00
Area : 7071

On-column Amount (ng) : 0.6863

Integration start scan : 27 Integration stop scan: 55 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 07/10/2012 at 15.24. Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS yl10m02.d, Ion 39.00 3.0 2.8 2.6 2.4 2,2 2,0 1.8 (×10^3 1.6 1.4 1.2 1.0 0.8 0.6 0.4 $0.2^{\frac{1}{2}}$ 0.0-1.10 1.12 1.14 1.16 1,18 1,20 1.22 1.00 1.06 1.08

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

The second of the Control of Maria State of the Control of the Con

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Lab Sample ID: MDL0.5 Sample Name: MDL0.5

Compound Number

1,3-Butadiene Compound Name

46 Scan Number 1.111 Retention Time (minutes): 39.00 Quant Ion 2991M Area (flag) 0.4236 On-Column Amount (ng)

53 Integration start scan 40 Integration stop scan: 535 Y at integration start 535 Y at integration end:

Reason for manual integration: improper integration

 $\label{eq:Digitally} \mbox{Digitally signed by Sara E. Johnson Analyst responsible for change: on $07/10/2012$ at $15:24$.}$

Target 3.5 esignature user ID: sej02002

Compound Number : 4
Compound Name : 1,3-Butadiene
Scan Number : 46

Scan Number : 46
Retention Time (minutes): 1.111
Quant Ion : 39.00
Area : 4775
On-column Amount (ng) : 0.6763

Integration start scan : 40 Integration stop scan: 52 Y at integration start : 96 Y at integration end: 132

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24. Target 3:5 esignature user ID: sej02002

the Contraction of the Contracti

Manually Integrated Quant Ion HP MS ul10m02.d, Ion 62.00 3.3-3.0-2.7-2.1 1.8-1.5-1,2-0.9-0.6-0.3-0.0-1.18 1.20 1,22 1,24 1.26 1.00 1,16

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

1,08

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

1.12

Lab Sample ID: MDL0.5 Sample Name: MDL0.5

Compound Number

1.02

1.04

: Vinyl Chloride Compound Name

47 Scan Number 1.117 Retention Time (minutes): : 62.00 Quant Ion Area (flag) 4323M On-Column Amount (ng) : 0.4458

56 Integration start scan 41 Integration stop scan: 0 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson Analyst responsible for change: on 07/10/2012 at 15:24

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34 Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 14:49 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 5

Compound Name : Vinyl Chloride

Scan Number : 47
Retention Time (minutes): 1.117

Quant Ion : 62.00
Area : 5111
On-column Amount (ng) : 0.5271

On-column Amount (ng) : 0.5271 Integration start scan : 35 Integration stop scan: 80 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24. Target 3:5 esignature user ID: sej02002

Manually Integrated Quant Ion HP MS yl10m02.d. Ion 67.00 3.6-3.3-3.0-2.7 2.4 1.8-1.5 1.2-0.6-0,3 1.48 1,56 1.30 1,38

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 9

Compound Name : Dichlorofluoromethane

Scan Number : 98
Retention Time (minutes): 1.427
Quant Ion : 67.00
Area (flag) : 6344M
On-Column Amount (ng) : 0.5337

Integration start scan : 90 Integration stop scan: 108 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sara E Johnson
Analyst responsible for change: on 07/10/2012 at 15:24
Target 3:5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

AND AND THE PROPERTY OF THE PR

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 14:49 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 9

Compound Name : Dichlorofluoromethane

Scan Number : 98
Retention Time (minutes): 1.427
Quant Ion : 67.00
Area : 6973
On-column Amount (ng) : 0.5867

Integration start scan : 90 Integration stop scan: 116 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24. Target 3.5 esignature user ID: sej02002

agraphic properties properties to the second consisting \$100,000,000 and a second

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Andrew Construction of the Constitution of the Association of the Constitution of the

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Lab Sample ID: MDL0.5 Sample Name: MDL0.5

Compound Number : 11

Compound Name : n-Pentane

: 107 Scan Number Retention Time (minutes): 1.482 : 43.00 Quant Ion : 7213M Area (flag) : 0.6241 On-Column Amount (ng)

Integration stop scan: 115 Integration start scan 97 Y at integration end: Y at integration start 741

Reason for manual integration: improper integration

Digitally signed by Sara E Johnson Analyst responsible for change: on 07/10/2012 at 15:24.

Target 3.5 esignature user ID: sej02002

The State of the Control of March and March Williams of the Control of the Contro

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i
Analyst ID: ADS01731

- Consideration of the Contract of the Contrac

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 14:49 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 11

Compound Name : n-Pentane

Scan Number : 107
Retention Time (minutes): 1.482
Quant Ion : 43.00
Area : 11338
On-column Amount (ng) : 0.9811

Integration start scan : 84 Integration stop scan: 136 Y at integration start : 704 Y at integration end: 704

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24. Target 3.5 esignature user ID: sej02002

ACCEPTAGE AND PROCESSES
 BOTH READERS READERS AND ACCEPTAGE A

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Sample Name: MDL0.5

Lab Sample ID: MDL0.5

Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 110
Retention Time (minutes): 1.500
Quant Ion : 101.00
Area (flag) : 4117M
On-Column Amount (ng) : 0.3985

Integration start scan : 84 Integration stop scan: 125 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson Analyst responsible for change: on 07/10/2012 at 15:24

Target 3.5 esignature user ID: sej02002

Additional and Additional Conference of the Conf

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 14:49 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 110
Retention Time (minutes): 1.500
Quant Ion : 101.00
Area : 6588
On-column Amount (ng) : 0.6377

Integration start scan : 84 Integration stop scan: 188 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24. Target 3.5 esignature user ID: sej02002

Content to the content of the conten

Manually Integrated Quant Ion HP MS yl10m02.d, Ion 101.00 1.2 1.1-1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1-0.0 1,82 1,84 1.88 1.74 1.76 Time (Min) 1.80 1.62 1.64

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

A STATE OF THE PROPERTY OF THE

Sublist used: 8260W Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Lab Sample ID: MDL0.5 Sample Name: MDL0.5

Compound Number : 18

Compound Name : Freon 113

Scan Number : 153 Retention Time (minutes): 1.762 Quant Ion : 101.00 Area (flag) : 2470M On-Column Amount (ng) : 0.4141

162 139 Integration stop scan: Integration start scan Y at integration end: Y at integration start 0

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson Analyst responsible for change: on 07/10/2012 at 15:24.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Commercial Commercial Control of the

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 14:49 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 18

Compound Name : Freon 113

Scan Number : 110
Retention Time (minutes): 1.500
Quant Ion : 101.00
Area : 6588
On-column Amount (ng) : 1.1044

Integration start scan : 94 Integration stop scan: 159 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24 Target 3.5 esignature user ID: sej02002

Figure of the companies of the figure of the contract of the c

Manually Integrated Quant Ion HP MS yl10m02.d, Ion 76.00 4,2-3.9 3.6-3,3-3.0-2.7-2.4 2.1-1.8-1.5 1.2-0.9-0.3-0.0 2.02 1.76 1.78 1.80 1.88 Time (Min 1.92 1.82 1.84

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst TD: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Lab Sample ID: MDL0.5 Sample Name: MDL0.5

Compound Number : 22

Compound Name : Carbon Disulfide

: 172 Scan Number . Retention Time (minutes): 1.878 76.00 Quant Ion Area (flag) : 8342M : 0.4838 On-Column Amount (ng)

Integration start scan 165 Integration stop scan: 0 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson Analyst responsible for change: on 07/10/2012 at 15:24.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 14:49 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 22

Compound Name : Carbon Disulfide

Scan Number : 172
Retention Time (minutes): 1.878
Quant Ion : 76.00
Area : 10028
On-column Amount (ng) : 0.5816

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24 Target 3:5 esignature user ID: sej02002

The second contraction of the second contrac

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 58

Compound Name : Carbon Tetrachloride

Scan Number : 469
Retention Time (minutes): 3.684
Quant Ion : 117.00
Area (flag) : 3420M
On-Column Amount (ng) : 0.3998

Integration start scan : 457 Integration stop scan: 483 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sara E Johnson Analyst responsible for change: on 07/10/2012 at 15:24.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 14:49 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number

Compound Name : Carbon Tetrachloride

Scan Number : 442 Retention Time (minutes): 3.520 Quant Ion 117.00 Area 3632

: 0.4246 On-column Amount (ng)

438 Integration stop scan: 482 Integration start scan Y at integration end: 0 Y at integration start

Digitally signed by Sara E. Johnson on 07/10/2012 at Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:24 sej02002

Lab Sample ID: MDL0.5 Sample Name: MDL0.5

: 145 Compound Number

Compound Name : n-Butylbenzene

: 1449 Scan Number Retention Time (minutes): 9.646 : 92.00 Quant Ion : 15957M Area (flag) : 0.9507 On-Column Amount (ng)

: 1443 Integration stop scan: 1455 Integration start scan Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sara E Johnson Analyst responsible for change: on 07/10/2012 at 15:24.

Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12jul10a.b/yl10m02.d Injection date and time: 10-JUL-2012 14:34

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 14:49 Automation

Sample Name: MDL0.5 Lab Sample ID: MDL0.5

Compound Number : 145

Compound Name : n-Butylbenzene

Scan Number : 1449
Retention Time (minutes): 9.646
Quant Ion : 92.00
Area : 16383
On-column Amount (ng) : 0.9761

On-column Amount (ng) : 0.9761 Integration start scan : 1443 Integration stop scan: 1469 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:24. Target 3:5 esignature user ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Injection date and time: 10-JUL-2012 14:55

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:23 sej02002

Lab Sample ID: YLGICV Sample Name: YLGICV

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:23 Target 3.5 esignature user ID: sej02002

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Injection date and time: 10-JUL-2012 14:55

Accordance of the Company of the Com

Instrument ID: HP09355.i
Analyst ID: ADS01731

and the contract of the second second

Analyst ID: ADS01/31

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:23 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:23. Target 3.5 esignature user ID: sej02002

page 2 of 2

Contractive to the contractive of the contractive of the project of the contractive of th

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 14:55 Analyst ID: ADS01731

Control of the Contro

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W Calibration date and time: 11-JUL-2012 18:10 Date, time and analyst ID of latest file update: 11-Jul-2012 18:13 sej02002

Lab Sample ID: YLGICV Sample Name: YLGICV

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
2) Dichlorodifluoromet		1.020	85	136130	14.309
Chloromethane	(1)	1.062	50	159993	16.025
5) Vinyl Chloride	(1)	1.129	62	159008	16.924
4) 1,3-Butadiene	(1)	1.129	39	120275	17.580
7) Bromomethane	(1)	1.281	94	88640	15.398
8) Chloroethane	(1)	1.324	64	69513	14.224
Dichlorofluorometha	ine (1)	1.434	67	237014	20.580
11) n-Pentane	(1)	1.482	43	116395	10.394
10) Trichlorofluorometh		1.494	.101	187177M	18.698
13) Ethyl Ether	(1)	1.592	59	96843	16.431
14) Freon 123a	(1)	1.604	67	140395	20.222
15) Acrolein	(4)	1.665	56	304306	122.773
16) 1,1-Dichloroethene	(1)	1.732	96	102218	19.267
17) Acetone	(1)	1.750	58	176886	128.666
18) Freon 113	(1)	1.756	101	106559A	18.436
20) Methyl Iodide	(1)	1.829	142	188215	18.649
21) 2-Propanol	(4)	1.835	45	141427	155.835
22) Carbon Disulfide	(1)	1.878	76	291358	17.439
24) Allyl Chloride	(1)	1.951	41	178979	17.815
25) Methyl Acetate	(1)	1.957	43	205167A	21.037
26) Methylene Chloride	(1)	2.036	84	120368	18.479 250.000
28) *t-Butyl Alcohol-d10	(4)	2.048	65 59	361869 393678	192.960
29) t-Butyl Alcohol	(4)	2.109	59 53		95.190
30) Acrylonitrile	(1)	2.194 2.231	96	509177 125570	19.671
31) trans-1,2-Dichloroe		2.231	73	445326	19.297
32) Methyl Tertiary But 33) n-Hexane	(1)	2.243	57	212265	18.965
34) 1,1-Dichloroethane	(1)	2.559	63	246515	19.607
36) di-Isopropyl Ether	(1)	2.638	45	464162	18.772
37) 2-Chloro-1,3-Butadi		2.644	53	218620	19.344
39) Ethyl t-Butyl Ether		2.954	59	445077	19.019
40) cis-1,2-Dichloroeth		3.070	96	139934	19.486
42) 2,2-Dichloropropane		3.076	77	187500	19.081
41) 2-Butanone	(1)	3.076	43	1114300	141.046
43) Propionitrile	(4)	3.125	54	325206	147.273
46) Methacrylonitrile	(1)	3.265	67	737866	144.426
47) Bromochloromethane	(1)	3.283	128	70515	18.965
48) Tetrahydrofuran	(4)	3.326	71	196905	96.386
•	• •				

M = Compound was manually integrated.

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:14. Target 3.5 esignature user ID: sej02002 page 1 of 4

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

A CONTROL OF THE CONTROL OF THE ANGRES OF THE ANGRES OF THE CONTROL OF THE ANGRES OF T

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 14:55 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

· 电电子 医克克特氏病 医克克克特氏病 医克克特氏病 医克克特氏病 医克克特氏病 医克克特氏病 医克克特氏病 医克克特氏病 医克克特氏病 医克克特氏病 医克克克克克氏病 医克克氏病 医克克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克克克氏病 医克克克特氏病 医克克克特氏病 医克克克氏病 医克克氏病 医克克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克克氏病 医克克克氏病 医克克克克氏病 医克克克克氏管 克克氏管皮管炎 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克克氏病 医克克克氏病 医克克克氏病 医克克克克氏病 医克克克氏病 医克克氏病 医克克氏病 医克克克氏病 医克克克氏病 医克克克克克克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克克氏病 医克克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏病 医克克克氏原皮病 医克克氏病

Date, time and analyst ID of latest file update: 10-Jul-2012 15:23 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

·	I.S.			· ·.	On-Column Amount
Compounds	Ref.	RT =====	QIon	Area	(ng)
50) Chloroform	(1)	3.362	83	220723	18.250
52) \$Dibromofluoromethane	(1)	3.508	113	271129	49.531
53) 1,1,1-Trichloroethane	(1)	3.532	97	188675	16.757
56) Cyclohexane	(1)	3.593	56	239704	18.655
45) 1,2-Dichloroethene (total)	(1)		96	265504 *	39.157
57) 1,1-Dichloropropene	(1)	3.684	75	178295	18.741
58) Carbon Tetrachloride	(1)	3.691	117	157644	19.019
59) Isobutyl Alcohol	(4)	3.818	41	278570	452.797
62)\$1,2-Dichloroethane-d4	(1)	3.818	102	73524	51.369
63) Benzene	(1)	3.873	78	534232	19.140
65) 1,2-Dichloroethane	(1)	3.885	62	200314	19.149
69) t-Amyl Methyl Ether	(1)	4.013	73	412469	18.919
71)*Fluorobenzene	(1)	4.147	96	1184133	50.000
72) n-Heptane	(1)	4.171	43	249296	18.700
73) n-Butanol	(4)	4.481	56	506136	908.044
74) Trichloroethene	(1)	4.512	95	135029	19.017
76) Methylcyclohexane	. (1)	4.707	83	249544	19.652
77) 1,2-Dichloropropane	(1)	4.725	63	146405	19.222
78) Dibromomethane	(1)	4.840	93	91497	19.024
79) 1,4-Dioxane	(4)	4.871	88	72797	492.415
80) Methyl Methacrylate	(1)	4.883	69	150450	18.491
83) Bromodichloromethane	(1)	5.017	83	157506	18.517
85) 2-Nitropropane	(1)	5.248	. 41	59282	15.993
86) 2-Chloroethyl Vinyl Ether	(1)	5.351	63	120463	18.877
87) cis-1,3-Dichloropropene	(1)	5.485	75	230998	20.725
89) 4-Methyl-2-Pentanone	(1)	5.674	43	1380529	93.324
93) \$Toluene-d8	(2)	5.771	98	1172744	50.029
94) Toluene	(2)	5.838	92	338769	18.924
95) trans-1,3-Dichloropropene	(2)	6.088	75	206993	18.841
96) Ethyl Methacrylate	(2)	6.234	69	243702	18.949
97) 1,1,2-Trichloroethane	(2)	6.276	97 1.c.c	131213	19.189
98) Tetrachloroethene	(2)	6.428	166	157310	19.133 19.218
99) 1,3-Dichloropropane 101) 2-Hexanone	(2)	6.453 6.586	76	235347 1125313	92.840
	(2)		43	125508	
102) Dibromochloromethane	(2) (2)	6.696 6.799	129 107	143454	18.679 19.078
104) 1,2-Dibromoethane	(2)	7.329	117	861039	50.000
106)*Chlorobenzene-d5 107) Chlorobenzene	(2)	7.329	112	386029	19.130
TO 1 1 CHILOT ODGHIZGHG	(4)	1.333	112	, 300023	19.130

^{* =} Compound is an internal standard.

page 2 of 4

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:23. Target 3:5 esignature user ID: sej02002

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Instrument ID: HP09355.i Injection date and time: 10-JUL-2012 14:55 Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:23 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

	I.S.				On-Column Amount
Compounds	Ref.	RT =====	QIon	Area	(ng)
108) 1,1,1,2-Tetrachloroethane	(2)	7.456	131	123725	18.554
109) Ethylbenzene	(2)	7.493	91	664382	19.006
110) m+p-Xylene	(2)	7.621	106	522205	38.351
113) o-Xylene	(2)	7.986	106	254751	18.935
114) Styrene	(2)	7.998	104	431914	18.830
115) Bromoform	(2)	8.138	173	94703	17.095
112) Xylene (Total)	(2)		106	776956	57.286
116) Isopropylbenzene	(2)	8.326	105	671615	19.160
118) Cyclohexanone	(4)	8.375	55	312271	432.241
119)\$4-Bromofluorobenzene	(2)	8.436	95	435291	49.754
121) Bromobenzene	(3)	8.551	156	173684	18.676
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	225883	18.965
123) 1,2,3-Trichloropropane	(3)	8.600	110	69698	18.121
124) trans-1,4-Dichloro-2-Butene	e (3)	8.630	53	401877	98.034
125) n-Propylbenzene	(3)	8.673	91	792854	19.335
126) 2-Chlorotoluene	(3)	8.722	126	160200	18.714
128) 4-Chlorotoluene	(3)	8.813	126	166127	18.547 18.966
127) 1,3,5-Trimethylbenzene	(3)	8.819	105 167	575098 99183	18.355
131) Pentachloroethane	(3)	9.068 9.068	134	130289	18.977
130) tert-Butylbenzene	(3)	9.105	105	581961	18.641
132) 1,2,4-Trimethylbenzene	(3)	9.239	105	718442	19.044
133) sec-Butylbenzene	(3) (3)	9.300	146	332173	18.684
134) 1,3-Dichlorobenzene	(3)	9.348	152	506143	50.000
136) *1,4-Dichlorobenzene-d4	(3)	9.354	119	648173	19.138
135) p-Isopropyltoluene 138) 1,4-Dichlorobenzene	(3)	9.367	146	336479	18.424
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	629857	19.857
141) Benzyl Chloride	(3)	9.470	91	444410	18.031
142) 1,3-Diethylbenzene	(3)	9.573	119	395559	19.567
143) 1,4-Diethylbenzene	(3)	9.634	119	413562	19.737
144) 1,2-Dichlorobenzene	(3)	9.634	146	320779	18.823
145) n-Butylbenzene	(3)	9.646	92	309748	18.705
146) 1,2-Diethylbenzene	(3)	9.713	119	330190	19.430
148) 1,2-Dibromo-3-Chloropropane		10.182	75	58079	17.616
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	262789	18.618
150) 1,2,4-Trichlorobenzene	(3)	10.741	180	249594	18.802
151) Hexachlorobutadiene	(3)	10.863	225	117910	17.811
152) Naphthalene	(3)	10.900	128	815382	19.009
-					

^{* =} Compound is an internal standard.

page 3 of 4

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:23 Target 3.5 esignature user ID: sej02002

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Injection date and time: 10-JUL-2012 14:55

Instrument ID: HP09355.i

Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:23 sej02002

Sample Name: YLGICV

Lab Sample ID: YLGICV

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
	======	=====	=====	=========	==========
153) 1,2,3-Trichlorobenzene 154) 2-Methylnaphthalene	(3) (3)	11.058 11.617	180 142	238803 498552	18.244 18.988

page 4 of 4

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:23.
Target 3 5 esignature user ID: sej02002

HAVE THE REPORT OF THE PROPERTY OF THE PARTY

Manually Integrated Quant Ion HP MS yl10v02.d, Ian 101.00 5.6 5,2 4.8 4.4 4.0-3.2 2.8 2.4 2.0 1.6 0.8 0.4 1.38 1,68

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Injection date and time: 10-JUL-2012 14:55

Instrument ID: HP09355.i
Analyst ID: ADS01731

The property of the property of the contract of the particular of

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:23 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

Compound Number : 10

Compound Name : Trichlorofluoromethane

Scan Number : 109
Retention Time (minutes): 1.494
Quant Ion : 101.00
Area (flag) : 187177M
On-Column Amount (ng) : 18.6984

Integration start scan : 84 Integration stop scan: 134 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson Analyst responsible for change: on 0.7/10/2012 at 15:23

Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Injection date and time: 10-JUL-2012 14:55

Instrument ID: HP09355.i Analyst ID: ADS01731

Sublist used: 8260W Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 15:10 Automation

Lab Sample ID: YLGICV Sample Name: YLGICV

Compound Number

: Trichlorofluoromethane Compound Name

: 109 Scan Number Retention Time (minutes): 1.494 : 101.00 Quant Ion Area : 293907

: 29.3604 On-column Amount (ng) 84

Integration stop scan: 188 Integration start scan 0 Y at integration end: Y at integration start

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:23 Target 3.5 esignature user ID: sej02002

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Injection date and time: 10-JUL-2012 14:55

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

Calibration date and time: 10-JUL-2012 15:14

Date, time and analyst ID of latest file update: 10-Jul-2012 15:23 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

Compound Number : 18

Compound Name : Freon 113

Scan Number : 152 Retention Time (minutes): 1.756 : 101.00 Quant Ion Area (flag) : 106559A

: 18.4359 On-Column Amount (ng)

Integration stop scan: 188 Integration start scan 136 Y at integration start Y at integration end:

improper integration Reason for manual integration:

Digitally signed by Sara E. Johnson Analyst responsible for change: on 07/10/2012 at 15:23.

Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Injection date and time: 10-JUL-2012 14:55

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 826.0W Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 15:10 Automation

Sample Name: YLGICV Lab Sample ID: YLGICV

Compound Number

Compound Name : Freon 113

Scan Number : 109 Retention Time (minutes): 1.494 : 101.00 Quant Ion

: 187348 Area : 32.4132 On-column Amount (ng)

Integration stop scan: Integration start scan 88 Y at integration start 0 Y at integration end:

Digitally signed by Sara E. Johnson on 07/10/2012 at 15:23. Target 3.5 esignature user ID. sej02002

CONTRACTOR OF A SAME OF A

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Injection date and time: 10-JUL-2012 14:55

Instrument ID: HP09355.i Analyst ID: ADS01731

Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Sublist used: 8260W

and extractive free and an end of the confidence of the first of the confidence of the

Calibration date and time: 11-JUL-2012 18:10

Date, time and analyst ID of latest file update: 11-Jul-2012 18:13 sej02002

Sample Name: YLGICV Lab Sample ID: YLGICV

Compound Number : 25

Compound Name : Methyl Acetate

Scan Number : 185
Retention Time (minutes): 1.957
Quant Ion : 43.00
Area (flag) : 205167A
On-Column Amount (ng) : 21.0366

Integration start scan : 173 Integration stop scan: 198 Y at integration start : 2070 Y at integration end: 2070

Reason for manual integration: improper integration

Digitally signed by Sara E. Johnson

Analyst responsible for change: on 07/11/2012 at 18:14.

Target 3.5 esignature user ID: sej02002

GC/MS audit/management approval:

Instrument ID: HP09355.i Data File: /chem2/HP09355.i/12jul10a.b/yl10v02.d Analyst ID: ADS01731 Injection date and time: 10-JUL-2012 14:55

Sublist used: 8260W Method used: /chem2/HP09355.i/12jul10a.b/Y8260W.m

Calibration date and time: 10-JUL-2012 14:47

Date, time and analyst ID of latest file update: 10-Jul-2012 15:10 Automation

Lab Sample ID: YLGICV Sample Name: YLGICV

: 25 Compound Number

On-column Amount (ng)

Compound Name : Methyl Acetate

Scan Number : 212 Retention Time (minutes): 2.121 Quant Ion 43.00 Area 49039 : 5.0283

: 198 219 Integration start scan Integration stop scan: : 2070 Y at integration end: Y at integration start

Digitally signed by Sara E. Johnson on 07/11/2012 at 18:14. Target 3.5 esignature user ID: sej02002

Data File: /chem2/HP09355.i/12sep03b.b/ys03t05.d

Date : 03-SEP-2012 23:39

Client ID: 50NG BFB MAR28-12

Instrument: HP09355.i

Page 1

Sample Info: 50NG BFB MAR28-12

Operator: SAS00403

Column phase: DB-624

Column diameter: 0.18

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47. Target 3.5 esignature user ID: sas00403

Data File: /chem2/HP09355.i/12sep03b.b/ys03t05.d

Date : 03-SEP-2012 23:39 Client ID: 50NG BFB MAR28-12

Instrument: HP09355.i

Sample Info: 50NG BFB MAR28-12

Column phase: DB-624

Operator: SAS00403

1 bfb

Column diameter: 0.18

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47. Target 3.5 esignature user ID: sas00403

Data File: /chem2/HP09355.i/12sep03b.b/ys03t05.d

Date : 03-SEP-2012 23:39 Client ID: 50NG BFB MAR28-12

Instrument: HP09355.i

Sample Info: 50NG BFB MAR28-12

Operator: SASO0403

Column phase: DB-624

Column diameter: 0.18

Data File: ys03t05.d

Spectrum: Avg. Scans 19-21 (3.70), Background Scan 12

Location of Maximum: 95.00 Number of points: 74

	m/z	Y		m/z	Υ		m/z	Y		m/z	Y
ī	36.00	1054	i	64.00	543	I	91.00	476	ı	137.00	285 1
1	37.00	5739	1	65.00	299	ı	92,00	3860	ı	141.00	1277 I
1	38.00	5252	ı	67.00	387	ı	93.00	5389	ı	143.00	1428
1	39.00	1994	1	68.00	13124	ı	94.00	15836	ı	146,00	236
1	44.00	423	1	69.00	13591	i	95,00	135808	I	148,00	390 I
+-			+-			+-			-+-		+
1	45.00	1107	ł	70.00	929	I	96.00	9260	١	155.00	333
1	47.00	1153	I	72.00	683	ı	97.00	341	1	157.00	298
1	48,00	876	ı	73.00	6297	I	104,00	588	١	172.00	426
1	49,00	5261	ı	74.00	22200	I	105.00	87	١	173.00	295
1	50.00	24568	ı	75.00	68512	ı	106.00	611	1	174.00	119656 I
+-			+-			+-			-+		+
ı	51.00	7378	ı	76.00	5967	I	116.00	486	I	175.00	8912 I
ı	52,00	394	ı	77.00	748	ı	117.00	805	I	176,00	118840 I
i	55.00	365	ı	78,00	378	١	118.00	546	1	177.00	7920 I
1	56.00	1941	ı	79,00	3285	ı	119.00	718	1	178.00	183 I
1	57.00	3159	ı	80,00	1004	ı	128.00	551	1	207.00	26 I
+-			-+-			+-			-+		+
ı	60,00	1263	i	81.00	3509	i	129,00	103	I	281.00	133 i
1	61.00	5824	ı	82.00	853	ı	130.00	504	1	282.00	83 I
ı	62.00	5941	ı	87.00	4200	ı	131.00	84	1		1
1	63.00	4724	ı	88.00	4193	ı	135.00	99	ı		ı
+-			+-			+-			+		+

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47. Target 3.5 esignature user ID: sas00403

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Injection date and time: 04-SEP-2012 00:19

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst ID of latest file update: 04-Sep-2012 00:44 sas00403

Lab Sample ID: VSTD050 Sample Name: VSTD050

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47. Target 3.5 esignature user ID: sas00403

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 00:19 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst ID of latest file update: 04-Sep-2012 00:44 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47. Target 3.5 esignature user ID: sas00403

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 00:19 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst ID of latest file update: 04-Sep-2012 00:44 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
2) Dichlorodifluoromethane	(1)	1.020	85	375531	52.007
Chloromethane	(1)	1.062	50	315854	41.682
5) Vinyl Chloride	(1)	1.129	62	291089	40.819
7) Bromomethane	(1)	1.287	94	203220	46.512
8) Chloroethane	(1)	1.330	64	157548	42.474
Trichlorofluoromethane	(1)	1.500	101	436899	57.502
13) Ethyl Ether	(1)	1.592	59	170540	38.123
15) Acrolein	(4)	1.665	56	744705	411.380
<pre>16) 1,1-Dichloroethene</pre>	(1)	1.738	96	201319	49.993
17) Acetone	(1)	1.750	58	91398	87.591
18) Freon 113	(1)	1.762	101	219671	50.072
21) 2-Propanol	(4)	1.829	45	164080	247.546
20) Methyl Iodide	(1)	1.835	142	406115	53.015
22) Carbon Disulfide	(1)	1.884	76	608406	47.978
24) Allyl Chloride	(1)	1.951	41	307612	40.341
25) Methyl Acetate	(1)	1.957	43	344386	46.523
26) Methylene Chloride	(1)	2.036	84	231658	46.857
28)*t-Butyl Alcohol-d10	(4)	2.048	65	264292	250.000
29) t-Butyl Alcohol	(4)	2.103	59	274350M	184.119
30) Acrylonitrile	(1)	2.194	53	163036	40.157
31) trans-1,2-Dichloroethene	(1)	2.230	96	232273	47.939
32) Methyl Tertiary Butyl Ether		2.243	73	823576	47.019
33) n-Hexane	(1)	2.449	57	296132	34.859
34) 1,1-Dichloroethane	(1)	2.559	63	438679	45.969
36) di-Isopropyl Ether	(1)	2.638	45	723446	38.547
37) 2-Chloro-1,3-Butadiene	(1)	2.644	53	389355	45.389
39) Ethyl t-Butyl Ether	(1)	2.960	59	778505	43.830
40) cis-1,2-Dichloroethene	(1)	3.070	96	265489	48.708
41) 2-Butanone	(1)	3.076	43	478614	79.817
42) 2,2-Dichloropropane	(1)	3.082	77	393911	52.813
43) Propionitrile	(4)	3.125	54	363377	225.315
46) Methacrylonitrile	(1)	3.265	67	437701	112.875
47) Bromochloromethane	(1)	3.283	128	143032	50.683
48) Tetrahydrofuran	(4)	3.325	71	139484	93.486
50) Chloroform	(1)	3.362	83 113	477695	52.037 53.696
52) \$Dibromofluoromethane	(1)	3.508 3.508	111	223097 226213	53.333
51) \$Dibromofluoromethane (mz111)	(1) (1)	3.508	97	418905	49.018
53) 1,1,1-Trichloroethane	(1)	3.336	91	410300	43.010

M = Compound was manually integrated.

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47.
Target 3.5 esignature user ID: sas00403

page 1 of 4

0- 0-1---

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 00:19 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst ID of latest file update: 04-Sep-2012 00:44 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area	(ng)
	=====		=====		=======================================
56) Cyclohexane	(1)	3.599	56	394004	40.400
55) Cyclohexane (mz 69)	(1)	3.599	69	124343	42.791
54) Cyclohexane (mz 84)	(1)	3.599	84	353660	44.811
45) 1,2-Dichloroethene (total)	(1)		96	497762	96.647
57) 1,1-Dichloropropene	(1)	3.684	75	354025	49.028
58) Carbon Tetrachloride	(1)	3.697	117	371231	59.009
62) \$1,2-Dichloroethane-d4	(1)	3.818	102	56604	52.104
60) \$1,2-Dichloroethane-d4 (mz104)	(1)	3.818	104	34996	50.731
61) \$1,2-Dichloroethane-d4 (mz65)	(1)	3.818	65	312890	56.830
59) Isobutyl Alcohol	(4)	3.824	41	233831	520.402
63) Benzene	(1)	3.879	78	1018384	48.070
64) 1,2-Dichloroethane (mz 98)	(1)	3.891	98	33203	49.583
65) 1,2-Dichloroethane	(1)	3.891	62	417583	52.594
69) t-Amyl Methyl Ether	(1)	4.013	73	761888	46.042
71) *Fluorobenzene	(1)	4.153	96	898772	50.000
72) n-Heptane	(1)	4.171	43	335731	33.179
73) n-Butanol	(4)	4.481	56	414235	1017.546
74) Trichloroethene	(1)	4.518	95	272461	50.556
75) Methylcyclohexane (mz98)	(1)	4.713	98	194633	45.352
76) Methylcyclohexane	(1)	4.713	83	422201	43.805
77) 1,2-Dichloropropane	(1)	4.731	63	261621	45.255
78) Dibromomethane	(1)	4.846	93	188280	51.576
79) 1,4-Dioxane	(4)	4.877	88	64282	595.353
80) Methyl Methacrylate	(1)	4.883	69	271669	43.991
83) Bromodichloromethane	(1)	5.023	83	349992	54.209
85) 2-Nitropropane	(1)	5.248	41	276877	98.411
86) 2-Chloroethyl Vinyl Ether	(1)	5.357	63	212895	43.954
87) cis-1,3-Dichloropropene	(1)	5.491	75	419309	49.564
89) 4-Methyl-2-Pentanone	(1)	5.680	43	960475	85.543
92) \$Toluene-d8 (mz100)	(2)	5.771	100	595243	47.410
93) \$Toluene-d8	(2)	5.771	98	911222	48.475
94) Toluene	(2)	5.844	92	675979	47.088
95) trans-1,3-Dichloropropene	(2)	6.093	75	423726	48.096
96) Ethyl Methacrylate	(2)	6.240	69	417899	40.519
97) 1,1,2-Trichloroethane	(2)	6.282	97	267934	48.863
98) Tetrachloroethene	(2)	6.434	166	330358	50.104
99) 1,3-Dichloropropane	(2)	6.459	76	461603	47.005
101) 2-Hexanone	(2)	6.592	43	806978	83.023
202, 2 110110110	ν-,				

^{* =} Compound is an internal standard.

page 2 of 4

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47. Target 3.5 esignature user ID: sas00403

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 00:19 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst ID of latest file update: 04-Sep-2012 00:44 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT =====	QIon	Area	On-Column Amount (ng)
102) Dibromochloromethane	(2)	6.702	129	294514	54.659
104) 1,2-Dibromoethane	(2)	6.805	107	299097	49.602
106) *Chlorobenzene-d5	(2)	7.335	117	690476	50.000
107) Chlorobenzene	(2)	7.365	112	809958	50.054
108) 1,1,1,2-Tetrachloroethane	(2)	7.462	131	.292944	54.782
109) Ethylbenzene	(2)	7.499	91	1368141	48.805
110) m+p-Xylene	(2)	7.620	106	1083008	99.185
113) o-Xylene	(2)	7.992	106	531405	49.254
114) Styrene	(2)	8.004	104	863639	46.951
115) Bromoform	(2)	8.144	173	244757	55.096
112) Xylene (Total)	(2)		106	1614413	148.438
116) Isopropylbenzene	(2)	8.332	105	1421771	50.581
118) Cyclohexanone	(4)	8.375	55	220615	418.116
119) \$4-Bromofluorobenzene	(2)	8.442	95	357364	50.937
120) \$4-Bromofluorobenzene (mz174)	(2)	8.442	174	325308	53.368
121) Bromobenzene	(3)	8.551	156	383930	47.499
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	462141	44.642
123) 1,2,3-Trichloropropane	(3)	8.606	110	159315	47.656
124) trans-1,4-Dichloro-2-Butene	(3)	8.630	53	365996	102.723
125) n-Propylbenzene	(3)	8.673	91	1678465	47.094
126) 2-Chlorotoluene	(3)	8.728	126	357755	48.084
128) 4-Chlorotoluene	(3)	8.813	126	374280	48.078
127) 1,3,5-Trimethylbenzene	(3)	8.825	105	1262161	47.892
130) tert-Butylbenzene	(3)	9.074	134	286256	47.972
131) Pentachloroethane	(3)	9.074	167	239342	50.962
132) 1,2,4-Trimethylbenzene	(3)	9.111	105	1303702	48.046
133) sec-Butylbenzene	(3)	9.245	105	1554511	47.410
134) 1,3-Dichlorobenzene	(3)	9.306	146	735605	47.605
135) p-Isopropyltoluene	(3)	9.354	119	1405604	47.749
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	439913	50.000
138) 1,4-Dichlorobenzene	(3)	9.373	146	777465	48.978
139) 1,2,3-Trimethylbenzene	(3)	9.421	105	1300465	47.170
141) Benzyl Chloride	(3)	9.476	91	980460	45.769
142) 1,3-Diethylbenzene	(3)	9.579	119	802401	45.668
144) 1,2-Dichlorobenzene	(3)	9.640	146	734469	49.587
143) 1,4-Diethylbenzene	(3)	9.640	119	835396	45.871
145) n-Butylbenzene	(3)	9.652	92	673252M	46.776
146) 1,2-Diethylbenzene	(3)	9.719	119	694417	47.014

M = Compound was manually integrated.

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47.
Target 3.5 esignature user ID: sas00403

page 3 of 4

On Column

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Injection date and time: 04-SEP-2012 00:19

Instrument ID: HP09355.i

Analyst ID: SAS00403

 ${\tt Method\ used:\ /chem2/HP09355.i/12sep03b.b/Y8260W.m}$

Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst ID of latest file update: 04-Sep-2012 00:44 sas00403

Sample Name: VSTD050

Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
148) 1,2-Dibromo-3-Chloropropane 149) 1,3,5-Trichlorobenzene 150) 1,2,4-Trichlorobenzene 151) Hexachlorobutadiene 152) Naphthalene 153) 1,2,3-Trichlorobenzene 154) 2-Methylnaphthalene	(3) (3) (3) (3) (3) (3)	10.188 10.340 10.747 10.869 10.900 11.064 11.630	75 180 180 225 128 180 142	139923 607628 552183 265382 1802097 534521 910787	48.830 49.531 47.857 46.122 48.338 46.984 39.911

page 4 of 4

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47.
Target 3.5 esignature user ID: sas00403

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Injection date and time: 04-SEP-2012 00:19

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst TD of latest file update: 04-Sep-2012 00:44 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 209
Retention Time (minutes): 2.103
Quant Ion : 59.00
Area (flag) : 274350M
On-Column Amount (ng) : 184.1189

Reason for manual integration: improper integration

Digitally signed by Stephanie A. Selis

Analyst responsible for change: on 09/04/2012 at 00:47.

Target 3.5 esignature user ID: sas00403

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Injection date and time: 04-SEP-2012 00:19

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst ID of latest file update: 04-Sep-2012 00:43 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

: 29 Compound Number

: t-Butyl Alcohol Compound Name

Scan Number : 209 Retention Time (minutes): 2.103 : 59.00 Quant Ion : 333064 Area : 223.5215 On-column Amount (ng)

245 Integration start scan 193 Integration stop scan: 0 Y at integration end: Y at integration start

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47. Target 3.5 esignature user ID: sas00403

Manually Integrated Quant Ion

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Injection date and time: 04-SEP-2012 00:19

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst ID of latest file update: 04-Sep-2012 00:44 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 145

Compound Name : n-Butylbenzene

Scan Number : 1450
Retention Time (minutes): 9.652
Quant Ion : 92.00
Area (flag) : 673252M
On-Column Amount (ng) : 46.7762

Integration start scan : 1441 Integration stop scan: 1456 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Stephanie A. Selis

Analyst responsible for change: on 09/04/2012 at 00:47.

Target 3.5 esignature user ID: sas00403

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412

Data File: /chem2/HP09355.i/12sep03b.b/ys03c01.d Injection date and time: 04-SEP-2012 00:19

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8260WI-FRBN

Calibration date and time: 04-SEP-2012 00:43

Date, time and analyst ID of latest file update: 04-Sep-2012 00:43 sas00403

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 145

Compound Name : n-Butylbenzene

Scan Number : 1450
Retention Time (minutes): 9.652
Quant Ion : 92.00
Area : 704405
On-column Amount (ng) : 48.9405

On-column Amount (ng) : 48.9405 Integration start scan : 1441 Integration stop scan: 1471 Y at integration start : 0 Y at integration end: 0

Digitally signed by Stephanie A. Selis on 09/04/2012 at 00:47. Target 3.5 esignature user ID: sas00403

Raw QC Data

VBLKY65

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

VBLKY65

Data file: /chem2/HP09355.i/12sep03b.b/ys03b05.d Data file Sample Info. Line: VBLKY65;VBLKY65;1;3;;;PLM;;;

Injection date and time: 04-SEP-2012 00:39 Instrument ID: HP09355.i Batch: Y122472AA

Date, time and analyst ID of latest file update: 04-Sep-2012 02:27 sas00403

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Calibration date and time (Last Method Edit): 04-SEP-2012 00:52

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.054(-0.006)	201	65	333387 (26)	250.00	
71) Fluorobenzene	4.147(0.006)	545	96	955740 (6)	50.00	
106) Chlorobenzene-d5	7.335(0.000)	1069	117	702231 (2)	50.00	
136) 1,4-Dichlorobenzene-d4	9.354(0.000)	1401	152	411322 (-6)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	QC %Rec. fla	gs QC Limits
52) Dibromofluoromethane	(1)	3.508(-0.001)	113	233694	52.894	106%	80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.818(-0.001)	102	58812	50.909	102%	77 - 113
93) Toluene-d8	(2)	5.771(0.000)	98	929810	48.636	97%	80 - 113
119) 4-Bromofluorobenzene	(2)	8.442(0.000)	95	335779	47.059	94%	78 - 113

Targe	t Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		LOQ ample)
	cichlorodifluoromethane	(1)		=======		Not Detected					1	 5
-, -	hloromethane	(1)				Not Detected					1	5
	invl Chloride	(1)				Not Detected					1	5
	Bromomethane	(1)				Not Detected					1	5
	Chloroethane	(1)				Not Detected					1	5
	richlorofluoromethane	(1)				Not Detected					1	5
	thyl Ether	(1)				Not Detected					2	5
	crolein	(4)				Not Detected					40	100
	,1-Dichloroethene	(1)				Not Detected					0.8	5
	reon 113	(1)				Not Detected					2	10
-	cetone	(1)				Not Detected					6	20
	Methyl Iodide	(1)				Not Detected					1	5
	-Propanol	(4)				Not Detected					50	100
	arbon Disulfide	(1)				Not Detected					1	5
	allyl Chloride	(1)				Not Detected					1	5
	Methyl Acetate	(1)				Not Detected					1	5
	Methylene Chloride	(1)				Not Detected					2	5
	-Butyl Alcohol	(4)				Not Detected					10	80
	crylonitrile	(1)				Not Detected					4	20
	rans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
32) M	ethyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
	-Hexane	(1)				Not Detected					2	5
45) 1	,2-Dichloroethene (total)	(1)				Not Detected					0.8	5
34) 1	,1-Dichloroethane	(1)				Not Detected					1	5
36) d	li-Isopropyl Ether	(1)				Not Detected					0.8	5
37) 2	-Chloro-1,3-Butadiene	(1)				Not Detected					1	5
39) E	thyl t-Butyl Ether	(1)				Not Detected					0.8	5
40) c	is-1,2-Dichloroethene	(1)				Not Detected					0.8	5
41) 2	-Butanone	(1)				Not Detected					3	10
42) 2	2,2-Dichloropropane	(1)				Not Detected					1	5
	ropionitrile	(4)				Not Detected					30	100

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30. Target 3.5 esignature user ID: sas00403

page 1 of 3

VBLKY65 Lancaster Laboratories VBLKY65 Analysis Summary for GC/MS Volatiles VBLKY65

Data file: /chem2/HP09355.i/12sep03b.b/ys03b05.d Injection date and time: 04-SEP-2012 00:39
Data file Sample Info. Line: VBLKY65;VBLKY65;1;3;;;PLM;;;
Date, time and analyst ID of latest file update: 04-Sep-2012 02:27 sas00403

Injection date and time: 04-SEP-2012 00:39
Instrument ID: HP09355.i Batch: Y122472AA

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time (Last Method Edit): 04-SEP-2012 00:52

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

-	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		LOQ ample)
	Methacrylonitrile	(1)	=====	========		Not Detected				. ======	10	50
	Bromochloromethane	(1)				Not Detected	i				1	5
	Tetrahydrofuran	(4)				Not Detected	Ė				4	10
	Chloroform	(1)				Not Detected	i				0.8	5
	1,1,1-Trichloroethane	(1)				Not Detected	i				0.8	5
	Cyclohexane	(1)				Not Detected	i				2	5
	1,1-Dichloropropene	(1)				Not Detected	i				1	5
	Carbon Tetrachloride	(1)				Not Detected	i				1	5
	Isobutyl Alcohol	(4)				Not Detected	Ė				100	250
	Benzene	(1)				Not Detected	i i				0.5	5
	1,2-Dichloroethane	(1)				Not Detected	±				1	5
	t-Amyl Methyl Ether	(1)				Not Detected	d				0.8	5
	n-Heptane	(1)				Not Detected	d .				2	5
	n-Butanol	(4)				Not Detected	d				100	250
	Trichloroethene	(1)				Not Detected	d				1	5
	1,2-Dichloropropane	(1)				Not Detected	i				1	5
	Methylcyclohexane	(1)				Not Detected	đ				1	5
	Methyl Methacrylate	(1)				Not Detected	d				1	5
	Dibromomethane	(1)				Not Detected	d				1	5
	1,4-Dioxane	(4)				Not Detected	d				70	250
	Bromodichloromethane	(1)				Not Detected	d				1	5
	2-Nitropropane	(1)				Not Detected	d				2	10
	2-Chloroethyl Vinyl Ether	(1)				Not Detected	d				2	10
	cis-1,3-Dichloropropene	(1)				Not Detected	d				1	5
-	4-Methyl-2-Pentanone	(1)				Not Detected	đ				3	10
	Toluene	(2)				Not Detected	d				0.7	5
	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
	Ethyl Methacrylate	(2)				Not Detected					1	5
	1,1,2-Trichloroethane	(2)				Not Detected	d				0.8	5
		(2)				Not Detected					0.8	5
	1,3-Dichloropropane	(2)				Not Detected					1	5
	2-Hexanone	(2)				Not Detected					3	10
	Dibromochloromethane	(2)				Not Detected					1	5
	1,2-Dibromoethane	(2)				Not Detected					1	5
	Chlorobenzene	(2)				Not Detected					0.8	5
-	1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
	Ethylbenzene	(2)				Not Detected	d				0.8	5
	m+p-Xylene	(2)				Not Detecte					0.8	5
	Xylene (Total)	(2)				Not Detected	d				0.8	5
	o-Xylene	(2)				Not Detecte					0.8	5
	Styrene	(2)				Not Detecte	d				1	5
	Bromoform	(2)				Not Detecte	đ				1	5
	Isopropylbenzene	(2)				Not Detecte	d				1	5
	Cyclohexanone	(4)				Not Detecte	d				55	250
	1,1,2,2-Tetrachloroethane	(3)				Not Detecte					1	5
	trans-1,4-Dichloro-2-Butene	(3)				Not Detecte	d				15	50
	Bromobenzene	(3)				Not Detecte					1	5
,	1,2,3-Trichloropropane	(3)				Not Detecte					1	5
	n-Propylbenzene	(3)				Not Detecte					1	5
	2-Chlorotoluene	(3)				Not Detecte					1	5
	1,3,5-Trimethylbenzene	(3)				Not Detecte					1	5
	4-Chlorotoluene	(3)				Not Detecte					1	5
	tert-Butylbenzene	(3)				Not Detecte					1	5
	Pentachloroethane	(3)				Not Detecte					1	5
1 4 1 1												

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30. Target 3.5 esignature user ID: sas00403

page 2 of 3

VBLKY65

Lancaster Laboratories Analysis Summary for GC/MS Volatiles VBLKY65

Injection date and time: 04-SEP-2012 00:39
Instrument ID: HP09355.i Batch: Y122472AA Data file: /chem2/HP09355.i/l2sep03b.b/ys03b05.d Inje
Data file Sample Info. Line: VBLKY65;VBLKY65;1;3;;;PLM;;; Inst
Date, time and analyst ID of latest file update: 04-Sep-2012 02:27 sas00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Calibration date and time (Last Method Edit): 04-SEP-2012 00:52

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code:

Matrix: WATER

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT	(+/-RRT)	Olon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ
		=====			=========	=========		========	======		=====
132) 1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
133) sec-Butylbenzene	(3)				Not Detected					1	5
135) p-Isopropyltoluene	(3)				Not Detected					1	5
134) 1,3-Dichlorobenzene	(3)				Not Detected					1	5
138) 1,4-Dichlorobenzene	(3)				Not Detected					1	5
139) 1,2,3-Trimethylbenzene	(3)				Not Detected					1	5
141) Benzyl Chloride	(3)				Not Detected					1	5
142) 1,3-Diethylbenzene	(3)				Not Detected					- 1	5
143) 1,4-Diethylbenzene	(3)				Not Detected					1	5
145) n-Butylbenzene	(3)				Not Detected					1	5
144) 1,2-Dichlorobenzene	(3)				Not Detected					1	5
146) 1,2-Diethylbenzene	(3)				Not Detected					1	5
148) 1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
149) 1,3,5-Trichlorobenzene	(3)				Not Detected					1	5
150) 1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
151) Hexachlorobutadiene	(3)				Not Detected					2	5
152) Naphthalene	(3)				Not Detected					1	5
153) 1,2,3-Trichlorobenzene	(3)				Not Detected					1	5
154) 2-Methylnaphthalene	(3)				Not Detected	:				2	5

Total number of targets = 104

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30. Target 3.5 esignature user ID: sas00403

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412 page 3 of 3

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03b05.d Injection date and time: 04-SEP-2012 00:39

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Calibration date and time: 04-SEP-2012 00:52

Sublist used: 8260WPLM

Date, time and analyst ID of latest file update: 04-Sep-2012 02:27 sas00403

Sample Name: VBLKY65 Lab Sample ID: VBLKY65

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30.
Target 3.5 esignature user ID: sas00403

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03b05.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 00:39 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:27 sas00403

Sample Name: VBLKY65 Lab Sample ID: VBLKY65

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30.
Target 3.5 esignature user ID: sas00403

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03b05.d Injection date and time: 04-SEP-2012 00:39

Instrument ID: HP09355.i

Analyst ID: SAS00403

 ${\tt Method\ used:\ /chem2/HP09355.i/12sep03b.b/Y8260W.m}$

Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:27 sas00403

Sample Name: VBLKY65

Lab Sample ID: VBLKY65

Compounds	I.S. Ref.	RT	QIon	Area =======	On-Column Amount (ng)
28) *t-Butyl Alcohol-d10	(4)	2.054	65	333387	250.000
52) \$Dibromofluoromethane	(1)	3.508	113	233694	52.894
62) \$1,2-Dichloroethane-d4	(1)	3.818	102	58812	50.909
71) *Fluorobenzene	(1)	4.147	96	955740	50.000
93) \$Toluene-d8	(2)	5.771	98	929810	48.636
106) *Chlorobenzene-d5	(2)	7.335	117	702231	50.000
119) \$4-Bromofluorobenzene	(2)	8.442	95	335779	47.059
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	411322	50.000
52) \$Dibromofluoromethane 62) \$1,2-Dichloroethane-d4 71) *Fluorobenzene 93) \$Toluene-d8 106) *Chlorobenzene-d5 119) \$4-Bromofluorobenzene	(1) (1) (1) (2) (2) (2)	3.508 3.818 4.147 5.771 7.335 8.442	113 102 96 98 117 95	233694 58812 955740 929810 702231 335779	52.89 50.90 50.00 48.63 50.00 47.05

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30.
Target 3.5 esignature user ID: sas00403

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

LCSY65

Lab Name: Lancaster Laboratories

Contract:

Lab Code: LANCAS

Case No.:_____ SAS No.:____

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: LCSY65

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/12sep03b.b/ys03l3la.d

Level: (low/med) LOW

Date Received:

Moisture: not dec.

CAS NO.

Date Analyzed: 09/04/12

Column: (pack/cap) CAP

COMPOUND

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L Q 75-71-8-----Dichlorodifluoromethane 15 74-87-3-----Chloromethane 15 75-01-4-----Vinyl Chloride 16 74-83-9----Bromomethane 17 75-00-3-----Chloroethane 16 75-69-4----Trichlorofluoromethane 21 | 60-29-7----Ethyl Ether 15 107-02-8-----Acrolein-100 75-35-4----1,1-Dichloroethene 20 67-64-1-----Acetone 160 | 76-13-1----Freon 113 19 | 74-88-4-----Methyl Iodide 20 67-63-0----2-Propanol 140 75-15-0-----Carbon Disulfide 18 107-05-1 ----- Allyl Chloride 17 79-20-9-----Methyl Acetate 21 75-09-2-----Methylene Chloride 19 75-65-0----t-Butyl Alcohol 160 | 107-13-1-----Acrylonitrile 82 156-60-5----trans-1,2-Dichloroethene 19 1634-04-4-----Methyl Tertiary Butyl Ether 19 110-54-3----n-Hexane 15 75-34-3----1,1-Dichloroethane 18 108-20-3----di-Isopropyl Ether 16 126-99-8----2-Chloro-1,3-Butadiene 17 637-92-3----Ethyl t-Butyl Ether 18 | 156-59-2----cis-1,2-Dichloroethene 20 78-93-3----2-Butanone 130 594-20-7----2,2-Dichloropropane 20 107-12-0----Propionitrile

140

A SAMPLE NO.
A SAMPLE NO

Lab Name: Lancaster Laboratories

Contract:____

Lab Code: LANCAS

COMPOUND

Case No.:_____ SAS No.:____

SDG No.:_

Matrix: (soil/water) WATER

Lab Sample ID: LCSY65

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/12sep03b.b/ys03131a.d

Level: (low/med) LOW

Date Received:

Moisture: not dec. _____

Date Analyzed: 09/04/12

Column: (pack/cap) CAP

CAS NO.

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L 540-59-0----1,2-Dichloroethene (total) 39 126-98-7-----Methacrylonitrile 140 74-97-5-----Bromochloromethane 20 | 109-99-9-----Tetrahydrofuran 93 67-66-3-----Chloroform 19 71-55-6----l, l, l-Trichloroethane 20 110-82-7-----Cyclohexane 16 | 563-58-6-----1,1-Dichloropropene 19 56-23-5-----Carbon Tetrachloride 21 78-83-1-----Isobutyl Alcohol 400 71-43-2----Benzene 19 107-06-2----1, 2-Dichloroethane 19 994-05-8 ----t-Amyl Methyl Ether 18 142-82-5----n-Heptane 14 71-36-3----n-Butanol 770 79-01-6-----Trichloroethene 19 | 108-87-2----Methylcyclohexane 18 78-87-5----1, 2-Dichloropropane 1.8 74-95-3-----Dibromomethane 19 123-91-1-----1,4-Dioxane 420 | 80-62-6-----Methyl Methacrylate 16 75-27-4-----Bromodichloromethane 2.0 | 79-46-9----2-Nitropropane 16 110-75-8----2-Chloroethyl Vinyl Ether 16 | 10061-01-5----cis-1,3-Dichloropropene 20 | 108-10-1----4-Methyl-2-Pentanone 82 | 108-88-3-----Toluene 18 | 10061-02-6----trans-1,3-Dichloropropene 18 97-63-2----Ethyl Methacrylate 15 79-00-5----1,1,2-Trichloroethane 19

EPA SAMPLE NO.

LCS	Υ6	5

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: LCSY65

 $Sample \ \ wt/vol: \ 5.00 \ (g/mL) \ \ mL \\ Lab \ File \ ID: \ HP09355.i/12sep03b.b/ys03l3la.d$

Level: (low/med) LOW Date Received:

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CONCENTRATIO	ON UNITS:	
CAS NO. COMPOUND (ug/L or ug/Kg	g) ug/L Q)
127-18-4Tetrachloroethene	19	
142-28-91,3-Dichloropropane	18	
591-78-62-Hexanone	79	
124-48-1Dibromochloromethane	20	
106-93-41,2-Dibromoethane	19	
- 108-90-7Chlorobenzene	19-	
630-20-61,1,1,2-Tetrachloroethane	20	
100-41-4Ethylbenzene	18	
179601-23-1m+p-Xylene	38	
1.330-20-7Xylene (Total)	56	
95-47-6o-Xylene	18	
100-42-5Styrene	17	
75-25-2Bromoform	19	
98-82-8Isopropylbenzene	19	
108-94-1Cyclohexanone	390	
108-86-1Bromobenzene	18	
79-34-51,1,2,2-Tetrachloroethane	18	
96-18-41,2,3-Trichloropropane	18	
110-57-6trans-1,4-Dichloro-2-Butene	86	
103-65-1n-Propylbenzene	18	ĺ
95-49-82-Chlorotoluene	19	ĺ
108-67-81,3,5-Trimethylbenzene	18	ĺ
106-43-44-Chlorotoluene	18	j
98-06-6tert-Butylbenzene	18	ĺ
76-01-7Pentachloroethane	19	1
95-63-61,2,4-Trimethylbenzene	18	
135-98-8sec-Butylbenzene	18	
541-73-11,3-Dichlorobenzene	18	
99-87-6p-Isopropyltoluene	18	j
106-46-71,4-Dichlorobenzene	19	
	1	

EPA SAMPLE NO.

LCSY65

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: LCSY65

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03131a.d

Level: (low/med) LOW

Date Received:

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/K	g) ug/L	Q
526-73-8	1,2,3-Trime	thylbenzene	19	<u> </u>
100-44-7	Benzyl Chlo	oride	17	Ì
141-93-5	1,3-Diethy)	.benzene	18	İ
105-05-5	1,4-Diethyl	.benzene	18	İ
95-50-1	1,2-Dichlor	obenzene	19	j
104-51-8	n-Butylbenz	ene	18-	i
135-01-3	1,2-Diethy]	.benzene	19	İ
96-12-8	1,2-Dibromo	-3-Chloropropane	17	j
108-70-3	1,3,5-Trich	lorobenzene	19	İ
120-82-1	1,2,4-Trich	lorobenzene	19	İ
87-68-3	Hexachlorob	outadiene	18	İ
91-20-3	Naphthalene	2	18	İ
87-61-6	1,2,3-Trich	lorobenzene	18	İ
91-57-6	2-Methylnap	hthalene	15	İ
25340-17-4	Diethylbenz	ene (total)	55	İ
			i	i

LCSY65

Lancaster Laboratories Analysis Summary for GC/MS Volatiles LCSY65

Data file: /chem2/HP09355.i/12sep03b.b/ys03131a.d Injection date and time: 04-SEP-2012 01:58
Data file Sample Info. Line: LCSY65;LCSY65;1;3;LCS;;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time (Last Method Edit): 04-SEP-2012 00:52

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/l2sep03b.b/ys03c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.036(0.012)	198	65	318863 (21)	250.00	
71) Fluorobenzene	4.141(0.012)	544	96	1043907 (16)	50.00	
106) Chlorobenzene-d5	7.328(0.006)	1068	117	782398 (13)	50.00	
136) 1,4-Dichlorobenzene-d4	9.354(0.000)	1401	152	480543 (9)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52) Dibromofluoromethane	(1)	3.496(0.000)	113	250158	51.838	104%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	3.806(0.000)	102	65223	51.690	103%		77 - 113
93) Toluene-d8	(2)	5.765(0.000)	98	1045559	49.087	98%		80 - 113
119) 4-Bromofluorobenzene	(2)	8.436(0.000)	95	389334	48.974	98%		78 - 113

Target Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		LOQ emple)
2) Dichlorodifluoromethane	(1)	1.014(0.000)	85	128203	15.286	15.29			1	5
3) Chloromethane	(1)	1.044(0.003)	50	133629	15.183	15.18			1	5
5) Vinyl Chloride	(1)	1.117(0.002)	62	130651	15.774	15.77			1	5
7) Bromomethane	(1)	1.269(0.003)	94	85833	16.914	16.91			1	5
8) Chloroethane	(1)	1.318(0.002)	64	69906	16.226	16.23			1	5
10) Trichlorofluoromethane	(1)	1.482(0.003)	101	187935	21.296	21.30			1	5
13) Ethyl Ether	(1)	1.579(0.001)	59	77381	14.893	14.89			2	5
15) Acrolein	(4)	1.652(0.001)	56	225777	103.376	103.38			40	100
16) 1,1-Dichloroethene	(1)	1.725(0.001)	96	93857	20.067	20.07			0.8	5
18) Freon 113	(1)	1.756(0.000)	101	97988	19.230	19.23			2	10
17) Acetone	(1)	1.744(0.000)	58	196941	162.497	162.50			6	20
20) Methyl Iodide	(1)	1.823(0.001)	142	178135	20.021	20.02			1	5
21) 2-Propanol	(4)	1.811(0.003)	45	109666	137.136	137.14			50	100
22) Carbon Disulfide	(1)	1.871(0.001)	76	267165	18.139	18.14			1	5
24) Allyl Chloride	(1)	1.938(0.001)	41	147195	16.620	16.62			1	5
25) Methyl Acetate	(1)	1.950(0.000)	43	183656	21.361	21.36			1	5
26) Methylene Chloride	(1)	2.024(0.001)	84	109681	19.101	19.10			2	5
29) t-Butyl Alcohol	(4)	2.090(-0.000)	59	284036M	157.996	158.00			10	80
30) Acrylonitrile	(1)	2.182(0.001)	53	388469	82.379	82.38			4	20
31) trans-1,2-Dichloroethene	(1)	2.218(0.001)	96	106992	19.012	19.01			0.8	5
32) Methyl Tertiary Butyl Ether	(1)	2.230(0.001)	73	386389	18.993	18.99			0.5	5
33) n-Hexane	(1)	2.431(0.002)	57	146182	14.815	14.82			2	5
45) 1,2-Dichloroethene (total)	(1)		96	232046	38.765	38.77			0.8	5
34) 1,1-Dichloroethane	(1)	2.547(0.001)	63	202677	18.286	18.29			1	5
36) di-Isopropyl Ether	(1)	2.620(0.002)	45	345633	15.856	15.86			0.8	5
37) 2-Chloro-1,3-Butadiene	(1)	2.632(0.001)	53	170478	17.111	17.11			1	5
39) Ethyl t-Butyl Ether	(1)	2.942(0.002)	59	362789	17.585	17.59			0.8	5
40) cis-1,2-Dichloroethene	(1)	3.058(0.000)	96	125054	19.753	19.75			0.8	5
41) 2-Butanone	(1)	3.058(0.002)	43	932805	133.933	133.93			3	10
42) 2,2-Dichloropropane	(1)	3.070(0.000)	77	169948	19.618	19.62			1	5
43) Propionitrile	(4)	3.106(-0.000)	54	268829	138.162	138.16			30	100

M = Compound was manually integrated.

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30. Target 3.5 esignature user ID: sas00403

LCSY65 Lancaster Laboratories Analysis Summary for GC/MS Volatiles LCSY65

Data file: /chem2/HP09355.i/12sep03b.b/ys03131a.d Injection date and time: 04-SEP-2012 01:58
Data file Sample Info. Line: LCSY65;LCSY65;1;3;LCS;;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time (Last Method Edit): 04-SEP-2012 00:52

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		
	Methacrylonitrile	(1)	3.252(0.000)	67	621227	137.930	137.93			10	50
	Bromochloromethane	(1)	3.271 (0.000)	128	64553	19.694	19.69			1	5
	Tetrahydrofuran	(4)	3.313(-0.003)	71	167734	93.180	93.18			4	10
,	Chloroform	(1)	3.350(0.000)	83	203643	19.099	19.10			0.8	5
	1,1,1-Trichloroethane	(1)	3.526(0.000)	97	194702	19.615	19.62			0.8	5
	Cyclohexane	(1)	3.587(0.000)	56	181531	16.026	16.03			2	5
	1,1-Dichloropropene	(1)	3.672(0.000)	75	155739	18.569	18.57			1	5
	Carbon Tetrachloride	(1)	3.684(0.000)	117	151054	20.672	20.67			1	5
	Isobutyl Alcohol	(4)	3.806(-0.002)	41	215246	397.056	397.06			100	250
	Benzene	(1)	3.867(0.000)	78	467121	18.984	18.98			0.5	5
	1,2-Dichloroethane	(1)	3.879(0.000)	62	178410	19.346	19.35			1	5
	t-Amyl Methyl Ether	(1)	4.001 (0.000)	73	343919	17.894	17.89			0.8	5
	n-Heptane	(1)	4.159(-0.000)	43	163624	13.922	13.92			2	5
	n-Reptane n-Butanol	(4)	4.469(-0.007)	56	378242	770.117	770.12			100	250
	Trichloroethene	(1)	4.500(0.001)	95	121210	19.364	19.36			1	5
	1,2-Dichloropropane	(1)	4.719(-0.000)	63	118596	17.663	17.66			1	5
		(1)	4.700(-0.000)	83	202837	18.119	18.12			1	5
80)	Methylcyclohexane Methyl Methacrylate	(1)	4.877 (-0.001)	69	118093	16.464	16.46			1	5
•	Dibromomethane	(1)	4.834(-0.000)	93	81219	19.155	19.16			1	5
		(4)	4.865(-0.008)	88	55038	422.501	422.50			70	250
	1,4-Dioxane	(1)	5.011(-0.000)	83	146716	19.565	19.56			1	5
	Bromodichloromethane	(1)	5.242(-0.002)	41	51708	15.823	15.82			2	10
	2-Nitropropane	(1)	5.351(-0.002)	63	89598	15.927	15.93			2	10
	2-Chloroethyl Vinyl Ether	(1)	5.479(-0.000)	75	195321	19.878	19.88			1	5
•	cis-1,3-Dichloropropene	(1)	5.668(-0.001)	43	1063404	81.542	81.54			3	10
	4-Methyl-2-Pentanone		5.832(0.001)	92	299058	18.384	18.38			0.7	5
	Toluene	(2) (2)	6.087(0.000)	75	180988	18.130	18.13			1	5
	trans-1,3-Dichloropropene	(2)	6.233(0.000)	69	178619	15.284	15.28			ī	5
	Ethyl Methacrylate	(2)	6.276(0.000)	97	120690	19.424	19.42			0.8	5
	1,1,2-Trichloroethane	(2)	6.422(0.000)	166	141818	18.982	18.98			0.8	5
	Tetrachloroethene	(2)	6.452(0.000)	76	204491	18.377	18.38			1	5
	1,3-Dichloropropane	(2)	6.586(0.000)	43	874141	79.367	79.37			3	10
	2-Hexanone	(2)	6.696(0.000)	129	121422	19.887	19.89			1	5
	Dibromochloromethane	(2)	6.799(0.000)	107	128351	18.785	18.78			1	5
	1,2-Dibromoethane	(2)	7.359(-0.000)	112	349118	19.040	19.04			0.8	5
	Chlorobenzene	(2)	7.456(-0.000)	131	120547	19.894	19.89			1	5
	1,1,1,2-Tetrachloroethane	(2)	7.493(-0.000)	91	585818	18.443	18.44			0.8	5
	Ethylbenzene	(2)	7.614(-0.000)	106	465124	37.593	37.59			0.8	5
	m+p-Xylene Xylene (Total)	(2)	7.014(0.0007	106	690398	56.019	56.02			0.8	5
	o-Xylene	(2)	7.985(-0.000)	106	225274	18.427	18.43			0.8	5
	Styrene	(2)	8.004(-0.000)	104	358674	17.208	17.21			1	5
	Bromoform	(2)	8.138(-0.000)	173	93174	18.510	18.51			1	5
		(2)	8.326(-0.000)	105	602704	18.923	18.92			1	5
	Isopropylbenzene	(4)	8.375(-0.024)	55	249832	392.455	392.45			55	250
	Cyclohexanone	(3)	8.582(-0.000)	83	206376	18.250	18.25			1	5
	1,1,2,2-Tetrachloroethane trans-1,4-Dichloro-2-Butene	(3)	8.630(0.000)	53	334381	85.914	85.91			15	50
	Bromobenzene	(3)	8.551(-0.000)	156	160975	18.232	18.23			1	5
•		(3)	8.600(0.000)	110	67503	18.485	18.48			1	5
	1,2,3-Trichloropropane	(3)	8.673(0.000)	91	710160	18.241	18.24			ī	5
	n-Propylbenzene	(3)	8.722(0.000)	126	151480	18.638	18.64			1	5
	2-Chlorotoluene	(3)	8.819(0.000)	105	528343	18.353	18.35			1	5
	1,3,5-Trimethylbenzene	(3)	8.813(0.000)	126	155001	18.227	18.23			1	5
128)	4-Chlorotoluene tert-Butylbenzene	(3)	9.068(0.000)	134	117918	18.090	18.09			1	5
	Pentachloroethane	(3)	9.068(0.000)	167	97376	18.981	18.98			1	5
	r curacuitoroccualid	(-)	J. 000 (0.000)	~ 0 /	2,3,0						

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30. Target 3.5 esignature user ID: sas00403 page 2 of 3

LCSY65

Lancaster Laboratories Analysis Summary for GC/MS Volatiles LCSY65

Data file: /chem2/HP09355.i/12sep03b.b/ys03131a.d Injection date and time: 04-SEP-2012 01:58
Data file Sample Info. Line: LCSY65;LCSY65;1;3;LCS;;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time (Last Method Edit): 04-SEP-2012 00:52

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

'Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	roo
32) 1,2,4-Trimethylbenzene	(3)	9.105(0.000)	105	535117	18.054	18.05			1	5
33) sec-Butylbenzene	(3)	9.239(0.000)	105	654011	18.260	18.26			1	5
35) p-Isopropyltoluene	(3)	9.354(0.000)	119	583800	18.155	18.16			1	5
34) 1,3-Dichlorobenzene	(3)	9.300(0.000)	146	304326	18.029	18.03			1	5
38) 1,4-Dichlorobenzene	(3)	9.372 (-0.000)	146	325949	18.798	18.80			1	5
39) 1,2,3-Trimethylbenzene	(3)	9.415(0.000)	105	561303	18.638	18.64			1	5
41) Benzyl Chloride	(3)	9.476(-0.000)	91	395835	16.916	16.92			1	5
.42) 1,3-Diethylbenzene	(3)	9.573(0.000)	119	342398	17.840	17.84			1	5
43) 1,4-Diethylbenzene	(3)	9.634(0.000)	119	362833	18.238	18.24			1	5
.45) n-Butylbenzene	(3)	9.652(-0.000)	92	275223M	17.505	17.51			1	5
44) 1,2-Dichlorobenzene	(3)	9.634(0.000)	146	312499	19.314	19.31			1	5
46) 1,2-Diethylbenzene	(3)	9.713(0.000)	119	300287	18.612	18.61			1	5
48) 1,2-Dibromo-3-Chloropropane	(3)	10.182(0.000)	75	52338	16.720	16.72			2	5
.49) 1,3,5-Trichlorobenzene	(3)	10.334(0.000)	180	254348	18.980	18.98			1	5
.50) 1,2,4-Trichlorobenzene	(3)	10.747(-0.000)	180	233205	18.503	18.50			1	5
.51) Hexachlorobutadiene	(3)	10.863(0.000)	225	110681	17.610	17.61			2	5
.52) Naphthalene	(3)	10.900(-0.000)	128	745767	18.313	18.31			1	5
53) 1,2,3-Trichlorobenzene	(3)	11.058(0.000)	180	226888	18.257	18.26			1	5
.54) 2-Methylnaphthalene	(3)	11.630(-0.000)	142	371842	14.917	14.92			2	5

M = Compound was manually integrated.

Total number of targets = 104

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30. Target 3.5 esignature user ID: sas00403

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03131a.d Injection date and time: 04-SEP-2012 01:58

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Sample Name: LCSY65 Lab Sample ID: LCSY65

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30.
Target 3.5 esignature user ID: sas00403

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03131a.d Instruction date and time: 04-SEP-2012 01:58 And

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Sample Name: LCSY65 Lab Sample ID: LCSY65

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30. Target 3.5 esignature user ID: sas00403

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03l3la.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 01:58 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Sample Name: LCSY65 Lab Sample ID: LCSY65

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
Compounds ===================================	Ref. ===== (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.014 1.044 1.117 1.269 1.318 1.482 1.579 1.652 1.725 1.744 1.756 1.811 1.823 1.871 1.938 1.951 2.024 2.036 2.091 2.182 2.218 2.230 2.431 2.547 2.620 2.632 2.942 3.058 3.058 3.070 3.252 3.271	===== 85 50 94 10 10 10 10 10 10 10 10 10 10 10 10 10	128203 133629 130651 85833 69906 187935 7381 225777 93857 196941 97988 109666 178135 267165 147195 183656 109681 318863 284036M 388469 106992 386389 146182 202677 345633 170478 362789 125054 932805 169948 268829 621227 64553	
48) Tetrahydrofuran 50) Chloroform 52) \$Dibromofluoromethane 53) 1,1,1-Trichloroethane 56) Cyclohexane	(4) (1) (1) (1) (1)	3.313 3.350 3.496 3.526 3.587	71 83 113 97 56	167734 203643 250158 194702 181531	19.099 51.838 19.615 16.026

M = Compound was manually integrated.

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30.
Target 3.5 esignature user ID: sas00403

page 1 of 3

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03131a.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 01:58

Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Lab Sample ID: LCSY65 Sample Name: LCSY65

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
45) 1,2-Dichloroethene (total) 57) 1,1-Dichloropropene 58) Carbon Tetrachloride 59) Isobutyl Alcohol 62)\$1,2-Dichloroethane-d4 63) Benzene 65) 1,2-Dichloroethane 69) t-Amyl Methyl Ether 71)*Fluorobenzene 72) n-Heptane 73) n-Butanol 74) Trichloroethene 76) Methylcyclohexane 77) 1,2-Dichloropropane 78) Dibromomethane 79) 1,4-Dioxane 80) Methyl Methacrylate 83) Bromodichloromethane 85) 2-Nitropropane 86) 2-Chloroethyl Vinyl Ether 87) cis-1,3-Dichloropropene 89) 4-Methyl-2-Pentanone 93)\$Toluene-d8 94) Toluene 95) trans-1,3-Dichloropropene 96) Ethyl Methacrylate 97) 1,1,2-Trichloroethane 98) Tetrachloroethene	Ref. ===== (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	3.672 3.684 3.806 3.806 3.867 3.879 4.001 4.141 4.159 4.469 4.500 4.719 4.865 4.877 5.011 5.242 5.351 5.479 5.668 5.765 5.832 6.233 6.276 6.422	96 75 117 108 675 141 108 673 943 595 863 875 889 889 841 889 889 889 889 889 889 889 889 889 88		Amount (ng)
99) 1,3-Dichloropropane 101) 2-Hexanone 102) Dibromochloromethane 104) 1,2-Dibromoethane 106)*Chlorobenzene-d5 107) Chlorobenzene 108) 1,1,1,2-Tetrachloroethane 109) Ethylbenzene 110) m+p-Xylene 113) o-Xylene	(2) (2) (2) (2) (2) (2) (2) (2) (2)	6.452 6.586 6.696 6.799 7.328 7.359 7.456 7.493 7.614 7.985	76 43 129 107 117 112 131 91 106 106	874141 121422 128351 782398 349118 120547 585818 465124 225274	79.367 19.887 18.785 50.000 19.040 19.894 18.443 37.593 18.427

^{* =} Compound is an internal standard.

page 2 of 3

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03131a.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 01:58 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Sample Name: LCSY65 Lab Sample ID: LCSY65

					On-Column
	I.S.				Amount
Compounds	Ref. =====	RT =====	QIon	Area	(ng)
======================================	 (2)	8.004	104	358674	17.208
115) Bromoform	(2)	8.138	173	93174	18.510
112) Xylene (Total)	(2)	*****	106	690398	56.019
116) Isopropylbenzene	(2)	8.326	105	602704	18.923
118) Cyclohexanone	(4)	8.375	55	249832	392.455
119) \$4-Bromofluorobenzene	(2)	8.436	95	389334	48.974
121) Bromobenzene	(3)	8.551	156	160975	18.232
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	206376	18.250
123) 1,2,3-Trichloropropane	(3)	8.600	110	67503	18.485
124) trans-1,4-Dichloro-2-Butene		8.630	53	334381	85.914
125) n-Propylbenzene	(3)	8.673	91	710160	18.241
126) 2-Chlorotoluene	(3)	8.722	126	151480	18.638
128) 4-Chlorotoluene	(3)	8.813	126	155001	18.227
127) 1,3,5-Trimethylbenzene	(3)	8.819	105	528343	18.353
130) tert-Butylbenzene	(3)	9.068	134	117918	18.090
131) Pentachloroethane	(3)	9.068	167	97376	18.981
132) 1,2,4-Trimethylbenzene	(3)	9.105	105	535117	18.054
133) sec-Butylbenzene	(3)	9.239	105	654011	18.260
134) 1,3-Dichlorobenzene	(3)	9.300	146	304326	18.029
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	480543	50.000
135) p-Isopropyltoluene	(3)	9.354	119	583800	18.155
138) 1,4-Dichlorobenzene	(3)	9.373	146	325949	18.798
139) 1,2,3-Trimethylbenzene	(3)	9.415	105	561303	18.638
141) Benzyl Chloride	(3)	9.476	91	395835	16.916
142) 1,3-Diethylbenzene	(3)	9.573	119	342398	17.840
144) 1,2-Dichlorobenzene	(3)	9.634	146	312499	19.314
143) 1,4-Diethylbenzene	(3)	9.634	119	362833	18.238
145) n-Butylbenzene	(3)	9.652	92	275223M	17.505
146) 1,2-Diethylbenzene	(3)	9.713	119	300287	18.612
148) 1,2-Dibromo-3-Chloropropane		10.182	75	52338	16.720
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	254348	18.980
150) 1,2,4-Trichlorobenzene	(3)	10.747	180	233205	18.503
151) Hexachlorobutadiene	(3)	10.863	225	110681	17.610
152) Naphthalene	(3)	10.900	128	745767	18.313
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	226888	18.257
154) 2-Methylnaphthalene	(3)	11.630	142	371842	14.917

M = Compound was manually integrated.

page 3 of 3

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30.
Target 3.5 esignature user ID: sas00403

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Data File: /chem2/HP09355.i/12sep03b.b/ys03131a.d Injection date and time: 04-SEP-2012 01:58

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Sample Name: LCSY65 Lab Sample ID: LCSY65

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 207
Retention Time (minutes): 2.091
Quant Ion : 59.00
Area (flag) : 284036M
On-Column Amount (ng) : 157.9959

Reason for manual integration: improper integration

Digitally signed by Stephanie A. Selis

Analyst responsible for change: on 09/04/2012 at 02:30.

Target 3.5 esignature user ID: sas00403

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12sep03b.b/ys03131a.d Injection date and time: 04-SEP-2012 01:58

Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:14 Automation

Sample Name: LCSY65 Lab Sample ID: LCSY65

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 207
Retention Time (minutes): 2.091
Quant Ion : 59.00
Area : 330455
On-column Amount (ng) : 183.8164

Integration start scan : 193 Integration stop scan: 259
Y at integration start : 0 Y at integration end: 0

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30. Target 3.5 esignature user ID: sas00403

Data File: /chem2/HP09355.i/12sep03b.b/ys03131a.d Injection date and time: 04-SEP-2012 01:58

Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:29 sas00403

Sample Name: LCSY65 Lab Sample ID: LCSY65

Compound Number : 145

Compound Name : n-Butylbenzene

Scan Number : 1450
Retention Time (minutes): 9.652
Quant Ion : 92.00
Area (flag) : 275223M
On-Column Amount (ng) : 17.5052

Integration start scan : 1440 Integration stop scan: 1455 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Stephanie A. Selis

Analyst responsible for change: on 09/04/2012 at 02:30.

Target 3.5 esignature user ID: sas00403

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412

Data File: /chem2/HP09355.i/12sep03b.b/ys03131a.d Injection date and time: 04-SEP-2012 01:58

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM Calibration date and time: 04-SEP-2012 00:52

Date, time and analyst ID of latest file update: 04-Sep-2012 02:14 Automation

Sample Name: LCSY65 Lab Sample ID: LCSY65

Compound Number : 145

Compound Name : n-Butylbenzene

Scan Number : 1450
Retention Time (minutes): 9.652
Quant Ion : 92.00
Area : 291285

On-column Amount (ng) : 18.5268
Integration start scan : 1440 Integration stop scan: 1470
Y at integration start : 0 Y at integration end: 0

Digitally signed by Stephanie A. Selis on 09/04/2012 at 02:30. Target 3.5 esignature user ID: sas00403

VOLATILE ORGANICS ANALYSIS DATA SHEET

ĖΡΑ	SAMPLE	ИО	•
EPA	SAMPLE	NO	

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: LCDY65

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03l32a.d

Level: (low/med) LOW

Date Received:

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L	or ug/Kg)	ug/L	Q
75-71-8Dichlorodifluorometha	ane	15	
74-87-3Chloromethane	i	15	i
75-01-4Vinyl Chloride	i	15	i
74-83-9Bromomethane	Ì	17	i
75-00-3Chloroethane	į	16	ĺ
75-69-4Trichlorofluoromethan	ne	21	i
60-29-7Ethyl Ether	i	14	İ
107-02-8Acrolein	· · · · · · · · · · · · · · · · · · ·	110	
75-35-41,1-Dichloroethene	j	19	į
67-64-1Acetone	j	200	į
76-13-1Freon 113	·	19	į
74-88-4Methyl Iodide	j	20	İ
67-63-02-Propanol	į	130	Ì
75-15-0Carbon Disulfide	Ì	18	İ
107-05-1Allyl Chloride	j	16	İ
79-20-9Methyl Acetate	j	29	İ
75-09-2Methylene Chloride	į	19	İ
75-65-0t-Butyl Alcohol	j	150	İ
107-13-1Acrylonitrile	į	82	İ
156-60-5trans-1,2-Dichloroet	hene	19	j
1634-04-4Methyl Tertiary Buty	l Ether	19	İ
110-54-3n-Hexane	j	15	j
75-34-31,1-Dichloroethane	İ	18	j
108-20-3di-Isopropyl Ether	İ	16	İ
126-99-82-Chloro-1,3-Butadie	ne	17	İ
637-92-3Ethyl t-Butyl Ether		17	İ
156-59-2cis-1,2-Dichloroether	ne	20	į
78-93-32-Butanone	Ì	150	İ
594-20-72,2-Dichloropropane	ĺ	19	j
107-12-0Propionitrile	İ	140	İ
	İ		1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LC:	DY	6	5

Lab Name: Lancaster Laboratories

Contract:____

Lab Code: LANCAS

Case No.:_____ SAS No.:____

SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: LCDY65

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP09355.i/12sep03b.b/ys03l32a.d

Level: (low/med) LOW

Date Received:

Moisture: not dec.

Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L 540-59-0----1,2-Dichloroethene (total) 39 126-98-7-----Methacrylonitrile 130 74-97-5-----Bromochloromethane 19 | 109-99-9-----Tetrahydrofuran 100 67-66-3-----Chloroform 19 71-55-6----1,1,1-Trichloroethane 1-9 110-82-7-----Cyclohexane 563-58-6-----1,1-Dichloropropene 18 56-23-5-----Carbon Tetrachloride 20 78-83-1-----Isobutyl Alcohol 400 71-43-2----Benzene 19 107-06-2----1, 2-Dichloroethane 19 994-05-8----- t Amyl Methyl Ether 18 142-82-5----n-Heptane 14 71-36-3----n-Butanol 810 79-01-6-----Trichloroethene 19 | 108-87-2-----Methylcyclohexane 18 78-87-5----1, 2-Dichloropropane 17 74-95-3-----Dibromomethane 19 123-91-1-----1,4-Dioxane 450 80-62-6-----Methyl Methacrylate 16 75-27-4-----Bromodichloromethane 19 79-46-9----2-Nitropropane 16 110-75-8----2-Chloroethyl Vinyl Ether 15 | 10061-01-5----cis-1,3-Dichloropropene 20 108-10-1-----4-Methyl-2-Pentanone 81 108-88-3-----Toluene 18 10061-02-6-----trans-1,3-Dichloropropene 18 97-63-2----Ethyl Methacrylate 15 79-00-5----1,1,2-Trichloroethane 19

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

LCDY65	
T C D T C D	

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: LCDY65

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03132a.d

Level: (low/med) LOW

Date Received:

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

		CONCENTRALL	ON UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/K	(g) ug/L	Q
127-18-4	Tetrachloro	ethene	19	1
	1,3-Dichlor		18	i
		L E	81	
124-48-1	Dibromochlo	romethane	20	i
	1,2-Dibromo		19	i
	Chlorobenze		19	
630-20-6	1,1,1,2-Tet	rachloroethane	20	i
	Ethylbenzen		18	1
179601-23-	-1m+p-Xylene		37	i
	Xylene (Tot	al)	55	i
	Xylene		19	i
	Styrene		17	i
75-25-2	Bromoform		18	i
98-82-8	Isopropylbe	nzene	19	i
	Cyclohexano		470	i
108-86-1	Bromobenzen	е	18	i
79-34-5	1,1,2,2-Tet	rachloroethane	18	i
	1,2,3-Trich		19	i
	trans-1,4-D		82	ĺ
103-65-1	n-Propylben	zene	18	i
	2-Chlorotol		19	i
108-67-8	1,3,5-Trime	thylbenzene	18	j
			18	į
	tert-Butylb		18	j
	Pentachloro		19	İ
	1,2,4-Trime		. 18	j
	sec-Butylbe		18	İ
541-73-1	1,3-Dichlor	obenzene	18	İ
99-87-6	p-Isopropyl	toluene	18	
106-46-7	1,4-Dichlor	obenzene	19	
			1	1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER

Lab Sample ID: LCDY65

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP09355.i/12sep03b.b/ys03132a.d

Level: (low/med) LOW Date Received:

Moisture: not dec. ____ Date Analyzed: 09/04/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONC	LIN.	LKATI	NC	N UNITS		
(ug/L	or	uq/Ko	۲)	uq/L		

		CONCENTRALION	ONLID:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/L	Q
526-73-8	1,2,3-Trimeth	ylbenzene	19	
100-44-7	Benzyl Chlori	de	17	ĺ
141-93-5	1,3-Diethylbe	nzene	18	İ
105-05-5	1,4-Diethylbe	nzene	18	ĺ
95-50-1	1,2-Dichlorob	enzene	19	ĺ
	n-Butylbenzen	e	18	
135-01-3	1,2-Diethylbe	nzene	19	İ
96-12-8	1,2-Dibromo-3	-Chloropropane	17	
108-70-3	1,3,5-Trichlo	robenzene	19	
120-82-1	1,2,4-Trichlo	robenzene	18	
87-68-3	Hexachlorobut	adiene	18	
91-20-3	Naphthalene	j	18	
87-61-6	1,2,3-Trichlo	robenzene	18	İ
	2-Methylnapht		15	
	Diethylbenzen		55	
		i		

LCDY65

Lancaster Laboratories Analysis Summary for GC/MS Volatiles LCDY65

Data file: /chem2/HP09355.i/12sep03b.b/ys03132a.d Injection date and time: 04-SEP-2012 02:19
Data file Sample Info. Line: LCDY65;LCDY65;1;3;LCSD;;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time (Last Method Edit): 04-SEP-2012 02:27

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/l2sep03b.b/ys03c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
28) t-Butyl Alcohol-d10	2.048(0.000)	200	65	299172 (13)	250.00	
71) Fluorobenzene	4.147(0.006)	545	96	1074643 (20)	50.00	
106) Chlorobenzene-d5	7.329(0.006)	1068	117	799537 (16)	50.00	
136) 1,4-Dichlorobenzene-d4	9.354(0.000)	1401	152	479927 (9)	50.00	

	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
52)	Dibromofluoromethane	(1)	3.50	02(0.000)	113	255664	51.464	103%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	3.81	12(0.000)	102	66809	51.433	103%		77 - 113
93)	Toluene-d8	(2)	5.76	65 (0.000)	98	1062343	48.805	98%		80 - 113
119)	4-Bromofluorobenzene	(2)	8.44	42 (-0.001)	95	398331	49.031	98%		78 - 113

	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		LOQ ample)
	Dichlorodifluoromethane	(1)	1.020(-0.000)	85	130444	15.109	15.11			1	5
3)	Chloromethane	(1)	1.050(0.002)	50	136279	15.041	15.04			1	5
5)	Vinyl Chloride	(1)	1.123(0.001)	62	129128	15.144	15.14			1	5
7)	Bromomethane	(1)	1.275(0.002)	94	86560	16.569	16.57			1	5
8)	Chloroethane	(1)	1.324(0.000)	64	69325	15.631	15.63			1	5
10)	Trichlorofluoromethane	(1)	1.488(0.002)	101	186997	20.584	20.58			1	5
13)	Ethyl Ether	(1)	1.586(0.000)	59	77259	14.444	14.44			2	5
15)	Acrolein	(4)	1.665(-0.000)	56	221582	108.132	108.13			40	100
16)	1,1-Dichloroethene	(1)	1.732(0.000)	96	93389	19.396	19.40			0.8	5
18)	Freon 113	(1)	1.756(0.000)	101	98256	18.731	18.73			2	10
17)	Acetone	(1)	1.750(-0.000)	58	245464	196.741	196.74			6	20
20)	Methyl Iodide	(1)	1.829(0.000)	142	182380	19.912	19.91			1	5
	2-Propanol	(4)	1.823(0.002)	45	94883	126.460	126.46			50	100
	Carbon Disulfide	(1)	1.878(0.000)	76	269369	17.766	17.77			1	5
	Allyl Chloride	(1)	1.944(0.000)	41	147082	16.132	16.13			1	5
	Methyl Acetate	(1)	1.951(0.000)	43	253308	28.619	28.62			1	5
	Methylene Chloride	(1)	2.030(0.000)	84	112121	18.967	18.97			2	5
	t-Butyl Alcohol	(4)	2.109(-0.002)	59	254333M	150.786	150.79			10	80
	Acrylonitrile	(1)	2.194(-0.000)	53	399002	82.193	82.19			4	20
	trans-1,2-Dichloroethene	(1)	2.224(0.000)	96	110888	19.141	19.14			0.8	5
	Methyl Tertiary Butyl Ether	(1)	2.237(0.000)	73	392852	18.758	18.76			0.5	5
	n-Hexane	(1)	2.443(0.000)	57	148389	14.609	14.61			2	5
	1.2-Dichloroethene (total)	(1)		96	239035	38.804	38.80			0.8	5
	1,1-Dichloroethane	(1)	2.553(0.000)	63	205089	17.974	17.97			1	5
	di-Isopropyl Ether	(1)	2.632(0.000)	45	356823	15.901	15.90			0.8	5
	2-Chloro-1,3-Butadiene	(1)	2.638(0.000)	53	176436	17.202	17.20			1	5
	Ethyl t-Butyl Ether	(1)	2.954(0.000)	59	368984	17.374	17.37			0.8	5
	cis-1,2-Dichloroethene	(1)	3.064(0.000)	96	128147	19.663	19.66			0.8	5
	2-Butanone	(1)	3.058(0.003)	43	1048575	146.249	146.25			3	1.0
	2,2-Dichloropropane	(1)	3.076(0.000)	77	172190	19.308	19.31			1	5
	Propionitrile	(4)	3.119(0.002)	54	256746	140.637	140.64			30	100

M = Compound was manually integrated.

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45. Target 3.5 esignature user ID: sas00403

LCDY65 Lancaster Laboratories LCDY65

Data file: /chem2/HP09355.i/12sep03b.b/ys03132a.d Injection date and time: 04-SEP-2012 02:19
Data file Sample Info. Line: LCDY65;LCDY65;1;3;LCSD;;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time (Last Method Edit): 04-SEP-2012 02:27

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/l2sep03b.b/ys03c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

-	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		LOQ ample)
	Methacrylonitrile	(1)	3.259(0.000)	67	623128	134.395	134.39			10	50
47)	Bromochloromethane	(1)	3.277(0.000)	128	65406	19.383	19.38			1	5
48)	Tetrahydrofuran	(4)	3.319(0.002)	71	169780	100.525	100.52			4	10
50)	Chloroform	(1)	3.356(0.000)	83	204260	18.609	18.61			0.8	5
53)	1,1,1-Trichloroethane	(1)	3.532(0.000)	97	194736	19.058	19.06			0.8	5
56)	Cyclohexane	(1)	3.587(0.001)	56	183468	15.733	15.73			2	5
57)	1,1-Dichloropropene	(1)	3.684(-0.001)	75	156244	18.097	18.10			1	5
58)	Carbon Tetrachloride	(1)	3.690(0.000)	117	153155	20.360	20.36			1	5
59)	Isobutyl Alcohol	(4)	3.812(0.005)	41	203361	399.823	399.82			100	250
63)	Benzene	(1)	3.873(0.000)	78	472404	18.649	18.65			0.5	5
65)	1,2-Dichloroethane	(1)	3.885(0.000)	62	175946	18.533	18.53			1	5
69)	t-Amyl Methyl Ether	(1)	4.007(0.000)	73	348535	17.615	17.62			0.8	5
72)	n-Heptane	(1)	4.165(-0.000)	43	164772	13.619	13.62			2	5
73)	n-Butanol	(4)	4.475(0.003)	56	371063	805.226	805.23			100	250
74)	Trichloroethene	(1)	4.512(-0.000)	95	122264	18.974	18.97			1	5
77)	1,2-Dichloropropane	(1)	4.719(0.001)	63	119793	17.331	17.33			1	5
76)	Methylcyclohexane	(1)	4.706(-0.000)	83	205165	17.803	17.80			1	5
80)	Methyl Methacrylate	(1)	4.883(-0.001)	69	119803	16.225	16.22			1	5
78)	Dibromomethane	(1)	4.840(-0.000)	93	81746	18.728	18.73			1	5
79)	1,4-Dioxane	(4)	4.865(0.005)	88	54637	447.029	447.03			70	250
83)	Bromodichloromethane	(1)	5.017(-0.000)	83	146632	18.994	18.99			1	5
85)	2-Nitropropane	(1)	5.242(-0.000)	41	54240	16.124	16.12			2	10
86)	2-Chloroethyl Vinyl Ether	(1)	5.351(-0.000)	63	88965	15.362	15.36			2	10
87)	cis-1,3-Dichloropropene	(1)	5.485(-0.000)	15	198484	19.622	19.62			1	5
89)	4-Methyl-2-Pentanone	(1)	5.674(-0.000)	43	1083655	80.719	80.72			3	10
94)	Toluene	(2)	5.838(0.000)	92	300383	18.070	18.07			0.7	5
95)	trans-1,3-Dichloropropene	(2)	6.094(-0.000)	75	181654	17.807	17.81			1	5
96)	Ethyl Methacrylate	(2)	6.240(-0.000)	69	184171	15.421	15.42			1	5
97)	1,1,2-Trichloroethane	(2)	6.276(0.000)	97	119933	18.888	18.89			0.8	5
98)	Tetrachloroethene	(2)	6.428(0.000)	166	144367	18.909	18.91			0.8	5
99)	1,3-Dichloropropane	(2)	6.452(0.000)	76	204896	18.018	18.02			1	5
101)	2-Hexanone	(2)	6.586(0.000)	43	916520	81.431	81.43			3	10
102)	Dibromochloromethane	(2)	6.696(0.000)	129	122266	19.596	19.60			1	5
104)	1,2-Dibromoethane	(2)	6.799(0.000)	107	129915	18.606	18.61			1	5
107)	Chlorobenzene	(2)	7.359(-0.000)	112	355251	18.959	18.96			0.8	5
108)	1,1,1,2-Tetrachloroethane	(2)	7.456(-0.000)	131	121818	19.673	19.67			1	5
109)	Ethylbenzene	(2)	7.499(-0.000)	91	589266	18.153	18.15			0.8	5
110)	m+p-Xylene	(2)	7.620(-0.000)	106	466155	36.868	36.87			0.8	5
112)	Xylene (Total)	(2)		106	697635	55.397	55.40			0.8	5
113)	o-Xylene	(2)	7.986(-0.000)	106	231480	18.528	18.53			0.8	5
114)	Styrene	(2)	8.004(-0.000)	104	363593	17.070	17.07			1	5
115)	Bromoform	(2)	8.144(-0.000)	173	92096	17.903	17.90			1	5
116)	Isopropylbenzene	(2)	8.326(-0.000)	105	607277	18.658	18.66			1	5
118}	Cyclohexanone	(4)	8.369(0.003)	55	283606	474.832	474.83			55	250
122)	1,1,2,2-Tetrachloroethane	(3)	8.582(-0.000)	83	207281	18.354	18.35			1	5
124)	trans-1,4-Dichloro-2-Butene	(3)	8.630(0.000)	53	316964	81.544	81.54			15	50
121)	Bromobenzene	(3)	8.551(-0.000)	156	162757	18.457	18.46			1	5
123)	1,2,3-Trichloropropane	(3)	8.600(0.000)	110	68506	18.784	18.78			1	5
125)	n-Propylbenzene	(3)	8.673(0.000)	91	710797	18.281	18.28			1	5
126)	2-Chlorotoluene	(3)	8.722(0.000)	126	152572	18.797	18.80			1	5
127)	1,3,5-Trimethylbenzene	(3)	8.825(-0.000)	105	526651	18.317	18.32			1	5
128)	4-Chlorotoluene	(3)	8.813(-0.000)	126	156488	18.425	18.43			1	5
130)	tert-Butylbenzene	(3)	9.068(0.000)	134	119111	18.297	18.30			1	5
1011	Pentachloroethane	(3)	9.074(0.000)	167	96465	18.827	18.83			1	5

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45. Target 3.5 esignature user ID: sas00403 page 2 of 3

LCDY65

Lancaster Laboratories Analysis Summary for GC/MS Volatiles LCDY 65

Data file: /chem2/HP09355.i/12sep03b.b/ys03132a.d Injection date and time: 04-SEP-2012 02:19
Data file Sample Info. Line: LCDY65;LCDY65;1;3;LCSD;;PLM;;ys03b05; Instrument ID: HP09355.i Batch: Y122472AA
Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Blank Data file reference: /chem2/HP09355.i/12sep03b.b/ys03b05.d

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time (Last Method Edit): 04-SEP-2012 02:27

Mid Level Daily Calibration Standard Reference: /chem2/HP09355.i/12sep03b.b/ys03c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	I.S.				Conc.	Conc.	Blank		Reportin Limit	LOQ
Target Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	mple)
		=======================================	=====	=======================================			======			
132) 1,2,4-Trimethylbenzene	(3)	9.111(0.000)	105	539023	18.209	18.21			1	5
133) sec-Butylbenzene	(3)	9.239(0.000)	105	649920	18.169	18.17			1	5
135) p-Isopropyltoluene	(3)	9.354(0.000)	119	578280	18.007	18.01			1	5
134) 1,3-Dichlorobenzene	(3)	9.306(-0.000)	146	303391	17.997	18.00			1	5
138) 1,4-Dichlorobenzene	(3)	9.373(0.000)	146	329909	19.051	19.05			1	5
139) 1,2,3-Trimethylbenzene	(3)	9.421(0.000)	105	558940	18.583	18.58			1	5
141) Benzyl Chloride	(3)	9.476(0.000)	91	396260	16.956	16.96			1	5
142) 1,3-Diethylbenzene	(3)	9.573(0.000)	119	343079	17.898	17.90			1	5
143) 1,4-Diethylbenzene	(3)	9.634(0.000)	119	359851	18.112	18.11			1	5
145) n-Butylbenzene	(3)	9.652(0.000)	92	275763M	17.562	17.56			1	5
144) 1,2-Dichlorobenzene	(3)	9.634(0.000)	146	310223	19.198	19.20			1	5
146) 1,2-Diethylbenzene	(3)	9.713(0.000)	119	303064	18.808	18.81			1	5
148) 1,2-Dibromo-3-Chloropropane	(3)	10.182(0.000)	75	54026	17.282	17.28			2	5
149) 1,3,5-Trichlorobenzene	(3)	10.334(0.000)	180	250175	18.693	18.69			1	5
150) 1,2,4-Trichlorobenzene	(3)	10.748(0.000)	180	231844	18.418	18.42			1	5
151) Hexachlorobutadiene	(3)	10.863(0.000)	225	110298	17.571	17.57			2	5
152) Naphthalene	(3)	10.900(0.000)	128	735531	18.084	18.08			1	5
153) 1,2,3-Trichlorobenzene	(3)	11.058(0.000)	180	222048	17.891	17.89			1	5
154) 2-Methylnaphthalene	(3)	11.630(0.000)	142	377632	15.168	15.17			2	5
M = Compound was manually integrated.										

Total number of targets = 104

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45. Target 3.5 esignature user ID: sas00403

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03132a.d Injection date and time: 04-SEP-2012 02:19

Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Calibration date and time: 04-SEP-2012 02:27

Sublist used: 8260WPLM

Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Sample Name: LCDY65 Lab Sample ID: LCDY65

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45.
Target 3.5 esignature user ID: sas00403

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03132a.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 02:19 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 02:27

Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Sample Name: LCDY65 Lab Sample ID: LCDY65

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45.
Target 3.5 esignature user ID: sas00403

page 2 of 2

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03132a.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 02:19 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 02:27

Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Sample Name: LCDY65 Lab Sample ID: LCDY65

	T 0				On-Column
Compounds	I.S. Ref.	RT	QIon	Area	Amount (ng)
-	======				(1197
Dichlorodifluoromethane	(1)	1.020	85	130444	15.109
3) Chloromethane	(1)	1.050	50	136279	15.041
5) Vinyl Chloride	(1)	1.123	62	129128	15.144
7) Bromomethane	(1)	1.275	94	86560	16.569
8) Chloroethane	(1)	1.324	64	69325	15.631
10) Trichlorofluoromethane	(1)	1.488	101	186997	20.584
13) Ethyl Ether	(1)	1.586	59	77259	14.444
15) Acrolein	(4)	1.665	56	221582	108.132
<pre>16) 1,1-Dichloroethene</pre>	(1)	1.732	96	93389	19.396
17) Acetone	(1)	1.750	58	245464	196.741
18) Freon 113	(1)	1.756	101	98256	18.731
21) 2-Propanol	(4)	1.823	45	94883	126.460
20) Methyl Iodide	(1)	1.829	142	182380	19.912
22) Carbon Disulfide	· (1)	1.878	76	269369	17.766
24) Allyl Chloride	(1)	1.945	41	147082	16.132
25) Methyl Acetate	(1)	1.951	43	253308	28.619
26) Methylene Chloride	(1)	2.030	84	112121	18.967
28) *t-Butyl Alcohol-d10	(4)	2.048	65	299172	250.000
29) t-Butyl Alcohol	(4)	2.109	59	254333M	150.786
30) Acrylonitrile	(1)	2.194	53	399002	82.193
31) trans-1,2-Dichloroethene	(1)	2.224	96	110888	19.141
32) Methyl Tertiary Butyl Ether		2.237	73	392852	18.758
33) n-Hexane	(1)	2.443	57	148389	14.609
34) 1,1-Dichloroethane	(1)	2.553	63	205089	17.974
36) di-Isopropyl Ether	(1)	2.632	45	356823	15.901
37) 2-Chloro-1,3-Butadiene	(1)	2.638	53	176436	17.202
39) Ethyl t-Butyl Ether	(1)	2.954	59	368984	17.374
41) 2-Butanone	(1)	3.058	43	1048575	146.249
40) cis-1,2-Dichloroethene	(1)	3.064	96	128147	19.663
42) 2,2-Dichloropropane	(1)	3.076	77	172190	19.308
43) Propionitrile	(4)	3.119	54	256746	140.637
46) Methacrylonitrile	(1)	3.259	67	623128	134.395
47) Bromochloromethane	(1)	3.277	128	65406	19.383
48) Tetrahydrofuran 50) Chloroform	(4) (1)	3.319 3.356	71 83	169780 204260	100.525 18.609
52) \$Dibromofluoromethane	(1)	3.502	113	255664	51.464
53) 1,1,1-Trichloroethane	(1)	3.532	97	194736	19.058
56) Cyclohexane	(1)	3.587	56	183468	15.733
Jul Cletonevane	(1)	5.507	50	102400	10.700

M = Compound was manually integrated.

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45.
Target 3.5 esignature user ID: sas00403

page 1 of 3

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03132a.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 02:19 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 02:27

Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Sample Name: LCDY65 Lab Sample ID: LCDY65

Compounds	I.S. Ref.	RT ======	QIon	Area	On-Column Amount (ng)
45) 1,2-Dichloroethene (total)	(1)		96	239035	38.804
57) 1,1-Dichloropropene	(1)	3.684	75	156244	18.097
58) Carbon Tetrachloride	(1)	3.691	117	153155	20.360
59) Isobutyl Alcohol	(4)	3.812	41	203361	399.823
62) \$1,2-Dichloroethane-d4	(1)	3.812	102	66809	51.433
63) Benzene	(1)	3.873	78	472404	18.649
65) 1,2-Dichloroethane	(1)	3.885	62	175946	18.533
69) t-Amyl Methyl Ether	(1)	4.007	73	348535	17.615
71) *Fluorobenzene	(1)	4.147	96	1074643	50.000
72) n-Heptane	(1)	4.165	43	164772	13.619
73) n-Butanol	(4)	4.475	56	371063	805.226
74) Trichloroethene	(1)	4.512	95	122264	18.974
76) Methylcyclohexane	(1)	4.707	83	205165	17.803
77) 1,2-Dichloropropane	(1)	4.719	63	119793	17.331
78) Dibromomethane .	(1)	4.840	93	81746	18.728
79) 1,4-Dioxane	(4)	4.865	88	54637	447.029
80) Methyl Methacrylate	(1)	4.883	69	119803	16.225
83) Bromodichloromethane	(1)	5.017	83	146632	18.994
85) 2-Nitropropane	(1)	5.242	41	54240	16.124
86) 2-Chloroethyl Vinyl Ether	(1)	5.351	63	88965	15.362
87) cis-1,3-Dichloropropene	(1)	5.485	75	198484	19.622
89) 4-Methyl-2-Pentanone	(1)	5.674	43	1083655	80.719
93) \$Toluene-d8	(2)	5.765	98	1062343	48.805
94) Toluene	(2)	5.838	92	300383	18.070
95) trans-1,3-Dichloropropene	(2)	6.094	75	181654	17.807
96) Ethyl Methacrylate	(2)	6.240	69	184171	15.421
97) 1,1,2-Trichloroethane	(2)	6.276	97	119933	18.888
98) Tetrachloroethene	(2)	6.428	166	144367	18.909 18.018
99) 1,3-Dichloropropane	(2)	6.453 6.586	76	204896 916520	81.431
101) 2-Hexanone	(2)	6.696	43 129	122266	19.596
102) Dibromochloromethane	(2) (2)	6.799	107	129915	18.606
104) 1,2-Dibromoethane 106)*Chlorobenzene-d5	(2)	7.329	117	799537	50.000
100) "Chlorobenzene	(2)	7.359	112	355251	18.959
107) Chiorobenzene 108) 1,1,1,2-Tetrachloroethane	(2)	7.456	131	121818	19.673
109) Ethylbenzene	(2)	7.499	91	589266	18.153
110) m+p-Xylene	(2)	7.621	106	466155	36.868
113) o-Xylene	(2)	7.986	106	231480	18.528
,	• •	_			

^{* =} Compound is an internal standard.

page 2 of 3

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45.
Target 3.5 esignature user ID: sas00403

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem2/HP09355.i/12sep03b.b/ys03l32a.d Instrument ID: HP09355.i Injection date and time: 04-SEP-2012 02:19 Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 02:27

Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Sample Name: LCDY65 Lab Sample ID: LCDY65

					On-Column
	I.S.	D.M.	OT	7	Amount
Compounds	Ref.	RT ======	QIon	Area ========	(ng)
114) Styrene	(2)	8.004	104	363593	17.070
115) Bromoform	(2)	8.144	173	92096	17.903
112) Xylene (Total)	(2)		106	697635	55.397
116) Isopropylbenzene	(2)	8.326	105	607277	18.658
118) Cyclohexanone	(4)	8.369	55	283606	474.832
119) \$4-Bromofluorobenzene	(2)	8.442	95	398331	49.031
121) Bromobenzene	(3)	8.551	156	162757	18.457
122) 1,1,2,2-Tetrachloroethane	(3)	8.582	83	207281	18.354
123) 1,2,3-Trichloropropane	(3)	8.600	110	68506	18.784
124) trans-1,4-Dichloro-2-Butene		8.630	53	316964	81.544
125) n-Propylbenzene	(3)	8.673	91	710797	18.281
126) 2-Chlorotoluene	(3)	8.722	126	152572	18.797
128) 4-Chlorotoluene	(3)	8.813	126	156488	18.425
127) 1,3,5-Trimethylbenzene	(3)	8.825	105	526651	18.317
130) tert-Butylbenzene	(3)	9.068	134	119111	18.297
131) Pentachloroethane	(3)	9.075	167	96465	18.827
132) 1,2,4-Trimethylbenzene	(3)	9.111	105	539023	18.209
133) sec-Butylbenzene	(3)	9.239	105	649920	18.169
134) 1,3-Dichlorobenzene	(3)	9.306	146	303391	17.997
136) *1,4-Dichlorobenzene-d4	(3)	9.354	152	479927	50.000
135) p-Isopropyltoluene	(3)	9.354	119	578280	18.007
138) 1,4-Dichlorobenzene	(3)	9.373	146	329909	19.051
139) 1,2,3-Trimethylbenzene	(3)	9.421	105	558940	18.583
141) Benzyl Chloride	(3)	9.476	91	396260	16.956
142) 1,3-Diethylbenzene	(3)	9.573	119	343079	17.898
144) 1,2-Dichlorobenzene	(3)	9.634	146	310223	19.198
143) 1,4-Diethylbenzene	(3)	9.634	119	359851	18.112
145) n-Butylbenzene	(3)	9.652	92	275763M	17.562
146) 1,2-Diethylbenzene	(3)	9.713	119	303064	18.808
148) 1,2-Dibromo-3-Chloropropane		10.182	75	54026	17.282
149) 1,3,5-Trichlorobenzene	(3)	10.334	180	250175	18.693
150) 1,2,4-Trichlorobenzene	(3)	10.748	180	231844	18.418
151) Hexachlorobutadiene	(3)	10.863	225	110298	17.571
152) Naphthalene	(3)	10.900	128	735531	18.084
153) 1,2,3-Trichlorobenzene	(3)	11.058	180	222048	17.891
154) 2-Methylnaphthalene	(3)	11.630	142	377632	15.168

PTL07 0307

page 3 of 3

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45.
Target 3.5 esignature user ID: sas00403

M = Compound was manually integrated.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Data File: /chem2/HP09355.i/12sep03b.b/ys03132a.d Injection date and time: 04-SEP-2012 02:19

Instrument ID: HP09355.i
Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Su

Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 02:27

Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Sample Name: LCDY65 Lab Sample ID: LCDY65

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 210
Retention Time (minutes): 2.109
Quant Ion : 59.00
Area (flag) : 254333M
On-Column Amount (ng) : 150.7856

Integration start scan : 194 Integration stop scan: 226 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Stephanie A. Selis

Analyst responsible for change: on 09/04/2012 at 05:45.

Target 3.5 esignature user ID: sas00403

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412

Original Integration of Quant Ion

Data File: /chem2/HP09355.i/12sep03b.b/ys03132a.d Injection date and time: 04-SEP-2012 02:19

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM Calibration date and time: 04-SEP-2012 02:27

Date, time and analyst ID of latest file update: 04-Sep-2012 02:34 Automation

Sample Name: LCDY65 Lab Sample ID: LCDY65

Compound Number : 29

Compound Name : t-Butyl Alcohol

Scan Number : 210
Retention Time (minutes): 2.109
Quant Ion : 59.00
Area : 298715
On-column Amount (ng) : 177.0975

On-column Amount (ng) : 177.0975 Integration start scan : 194 Integration stop scan: 251 Y at integration start : 0 Y at integration end: 0

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45. Target 3.5 esignature user ID: sas00403

Data File: /chem2/HP09355.i/12sep03b.b/ys03132a.d Injection date and time: 04-SEP-2012 02:19

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m

Sublist used: 8260WPLM

Calibration date and time: 04-SEP-2012 02:27

Date, time and analyst ID of latest file update: 04-Sep-2012 02:36 sas00403

Sample Name: LCDY65 Lab Sample ID: LCDY65

Compound Number : 145

Compound Name : n-Butylbenzene

Scan Number : 1450
Retention Time (minutes): 9.652
Quant Ion : 92.00
Area (flag) : 275763M
On-Column Amount (ng) : 17.5620

Integration start scan : 1441 Integration stop scan: 1456 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Stephanie A. Selis

Analyst responsible for change: on 09/04/2012 at 05:45.

Target 3.5 esignature user ID: sas00403

Secondary review performed and digitally signed by Christine M. Ratcliff on 09/04/2012 at 19:05. Parallax ID: cmr00412

Data File: /chem2/HP09355.i/12sep03b.b/ys03132a.d Injection date and time: 04-SEP-2012 02:19

Instrument ID: HP09355.i Analyst ID: SAS00403

Method used: /chem2/HP09355.i/12sep03b.b/Y8260W.m Sublist used: 8260WPLM Calibration date and time: 04-SEP-2012 02:27

Date, time and analyst ID of latest file update: 04-Sep-2012 02:34 Automation

Sample Name: LCDY65 Lab Sample ID: LCDY65

Compound Number : 145

Compound Name : n-Butylbenzene

Scan Number : 1450
Retention Time (minutes): 9.652
Quant Ion : 92.00
Area : 291327
On-column Amount (ng) : 18.5532

On-column Amount (ng) : 18.5532 Integration start scan : 1441 Integration stop scan: 1470 Y at integration start : 0 Y at integration end: 0

Digitally signed by Stephanie A. Selis on 09/04/2012 at 05:45. Target 3.5 esignature user ID: sas00403

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Type I Data Package

Prepared for:

MWH Americas, Inc. P.O. Box 6610 Broomfield CO 80021

Project: GE Patillas Puerto Rico Water Samples Collected on 08/21/12

SDG# PTL07

GROUP SAMPLE NUMBERS 1331141 6766763-6766768

PA Cert. # 36-00037 NY Cert. # 10670 NJ Cert. # PA011 NC Cert. # 521

TX Cert. # T104704194-08A-TX

Through our technical processes and second person review of data, we have established that our data/deliverables are in compliance with the methods and project requirements unless otherwise noted or previously resolved with the client.

Date: 09/18/2012

Authorized by:

Dana M. Kauffman

Kong on Karffman.

Manager

Any questions or concerns you might have regarding this data package should be directed to your client representative, Natalie Luciano at Ext. 1881.

Table of Contents for SDG# PTL07

1.	Sample Reference List
2.	Analysis Request, Field Chain-of-Custody Record
3.	Methodology Summary/Reference 5
4.	Analysis Reports6
5.	Volatiles by GC/MS Data
	a. Case Narrative/Conformance Summary
	b. Quality Control and Calibration Summary Forms 18
	c. Sample Data
	d. Standards Data94
	e. Raw QC Data

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Sample Reference List for SDG Number PTL09 with a Data Package Type of I

12136 - MWH Americas, Inc. Project: GE Patillas Puerto Rico

Lab Sample	Lab Sample	
Number	Code	Client Sample Description
6769183	PAT-T	TB-082712 Water COC: 272728
6769184	PAT23	P-23 Grab Water COC: 272728
6769185	PAT11	P-11 Grab Water COC: 272728
6769186	PAT-4	P-4 Grab Water COC: 272728
6769187	PAT-9	P-9 Grab Water COC: 272728
6769188	PAT10	P-10A Grab Water COC: 272728
6769189	PAT-8	P-8 Grab Water COC: 272728
6769190	PAT15	P-15DD Grab Water COC: 272728
6769191	PAT-7	P-7 Grab Water COC: 272728
6769192	PAT7A	P-7A Grab Water COC: 272728
6769193	PATVA	Water for Vault Grab Water COC: 274795
6769194	PAT-D	Duplicate Grab Water COC: 274794
6769195	PAT16	P-16S Grab Water COC: 274794
6769196	PAT16	P-16SMS Grab Water COC: 274794
6769197	PAT16	P-16SMSD Grab Water COC: 274794
6769198	PA19D	P-19D Grab Water COC: 274794
6769199	PA19S	P-19S Grab Water COC: 274794
6769200	PAT17	P-17D Grab Water COC: 274794
6769201	PA18S	P-18S Grab Water COC: 274794
6769202	PA18D	P-18D Grab Water COC: 274794
6769203	PA20S	P-20S Grab Water COC: 274794
6769204	PA20D	P-20D Grab Water COC: 274794

Analysis Request/ Environmental Services Chain of Custody

Lancaster Laboratories

For Lancaster Laboratories use only Acct. # 12183 -204 Group# 1331673 Sample # 6769183 -204

272728 # 000

T For Lab Use Only

Please print, Instructions on reverse side correspond with circled numbers.

	ſ			,			···											<u>6</u>)—	Т					1	 -	_
		(<u>و</u>	səld Dələz	mes lo Tregui	o enu i) iqi	mperati	on S	70	Apa	1	***************************************					ì	Time (ille Ille		Time		Lime		Time
								1		1 × 1 × 1		•						Date T	1	Date		Date T				Date T
		<i>.</i>	= I niosultate 3=NaOH	ا				2		1 2									0		\dashv	۵	7	ľά		۵
		Preservation Codes	I=Iniost B=NaOH	0=Other				710	13	180								67					/			
		ation	- 2				1 3	B.0012	12	3 .								7					1			
FSC:	¥,	eserv	N=HC	S=H ₂ SO ₄				TB.		13								1/53								
W 5	ń	<u>ة</u> :	Ż	<u>ي</u>				*	+	 								1		·.		·:		. <u>.</u>		<u>.</u> :
							$-\!\!\!/$											ved by		(a pe	/	ed b		d pa/		ed b
g Leg	ا				}	7												February 38945195 22.39		Received by		Received by:		Received by:		Received by:
Analyses Requested	Preservation Codes					_												Time F	_			Time		Time		Time
ses Re	ation			/	/														╁╌					1		7
Inaly	eserv		_/	_				_	_	_		<u> </u>						Date	2	Date		Date		Date	/	Date
(5)		1	_					-	-	-	<u> </u>														'	
1		4			<i>T</i> (00	<u> </u>	-									5.36	}				/			
		#			\$4				\	+-		X	X	×	×	7	7					,				
—(4)—	LIS.	euis:	noo	10	ither otal #		1	1	<u> </u>	<u> </u>	~	~		<u>M</u>		by:		: <u>:</u>		/ خ		خذ		
7	atrix	cable k if	ChecilaaA	DE2	AN [7	later	\neg		$\langle \times \rangle$	×	×	×	×	×	×	17	Relinquished by:		Relinquished by:	λ	Relinquished by		Relinquished by		Relinguished by:
2	=					<u>-</u>	lio									·		المارة المارة المارة		sınbu	/	inquis		nquis		nauis
			103			$\overline{}$	ompo		1									Ne.		Ž (/	Re		Re		Re
			. 0/0/03			<u>ლ)</u> 		┿			X	X	×	× ×	×	, <u> </u>	0				1		te?			
			5501		9		Time	Collected	30	050	201	10	77	136	707	145	25	Rush		E-mail		67	SDG Complete?	Š	No No	
		#	S SolaSol #O'd	± ±	8.6			3	1								>	/\ <u>e</u>		Ú		resouline.am	000	Yes	MA MCP CT RCP Site-specific QC (MS/MSD/Dup)? ✓es No	
	Acct. #:	PWSID #:	#	# afor 0	10		ţe.	cted (/ F	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	317	1/61	0827/1	14180	215189	082312	214280	214230	Surgh day		Fax		lug	S	_	/Oub)	
	∢	. d	_ 	. c	Puerto		Date	Collected	60000	TIET do	1/6689	00	0	29	00	80	30	cle): al and		one		8			SMSD	West andreade OC securic and subsets but note to the
	1 X		.Š			1				Ï								se cir approv		Phone		Ó	red)	!	CT RCP	and tubened
		16	Kegnai	Densis	llecte													(plea		cle):	Fax #:	746	requi	P-13	offic C	OC same
•	FREE FLEERS	PATillas	`	0	, ou			1	2									TAT) aborat		se cir	<u>u</u>	Swegne	circle	TX TRRP-13	MA MCP Site-spec	
-	このア		Oner		W Se			087217										sted ((plea			ease	F	<u>≥[ග</u>	
	1 ,	GE	9	Felix	dme			6	} > ~						3			edue:	led: _	ed by		-	ld) su	(ĝ		
77 :	とに		١.		here		;	ation	3	1=	3	0	HOI	00	15	4	7A	ne Reect to	need	nest			Optio	NJ Re	Ŝ	` `
Ī	٦//	ne/#:	Jager	n h	w etc			4 R.	0	P-	9	ď	<i>2</i>	9	9,0	2	p.	Turnaround Time Requested (TAT) (please circle): Actinal (Rush TAT is subject to Lancaster Laboratories approval and surcharge.)	Date results are needed:	Rush results requested by (please circle):		ress:	age (Type I (validation/NJ Reg)	Type II (Tier II) Type III (Reduced NJ)	08.9
		Nan	:t Mar	, i	1 %		1											arour TAT į	resul	resu	e #:	E-mail address:	Pack	l (valic	Type II (Tier II) Type III (Reduc	≥
\sim	Client:	Project Name/#:	Project Manager:	Sampler.	Name of state where samples were collected:			- R. D										Turnaround Time Requested (TAT) (please circle): Activated (TAT) (please circle): Activated (TAT) is subject to Lancaster Laboratories approval and surcharged	Date	Rush	Phone #:	E-ma	A Data Package Options (please circle if required)	Туре	Type Type	Type IV (CLP SOW)
(\mathbf{r}))_					_4	بـ(س)ـد	<u> </u>	ł	1	1	1	1		1	'	ı	᠘					1 (∝	,)-		

Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601 (717) 656-2300 Fax: (717) 656-6766 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Issued by Dept. 6042 Management 2102.05

PTL09 0002

Analysis Request/ Environmental Services Chain of Custody

Lancaster Laboratories

Acct. # 12136 Group# 1331673 Sample # 6769183-204

000

274795

d numbers.
õ
ਹ
≒
2
드
⋝
-
Q
Ξ
×
*
ä
ج
ō
Ü
a)
ğ
. <u></u>
•
×
Š
æ
revers
=
_
0
S
=
.º
7
š
Ξ
ī
C
=
Æ
Õ.
a
Please

			(4	<u>)</u>	pejsa	anb	se to e en ti) t	nusaeq qiasai	meT noqu									Time (9	Time		Time		Time		Date Time
																		Date Ti	Date Ti		Date Ti		Date	'	Date Ti
		,	ulfate	I														å	_ <u>`</u>		۵	_	Ĕ	-	<u> </u>
For Lab Use Only FSC:	SCR#:	Preservation Codes	H=HCI T=Thiosulfate		S=H ₂ SO ₄ O=Other	•			Remarks		-							Received by: Fack 699451952134	•						A.
iested	des						R.		_			-		7	ak)		_			/	e Received by:		e Received by:		e Received by
Requ	on Co	-	H			_	\neq											Time	Time		Time		Time		Time
Analyses Requested	Preservation Codes				/	_							1					Date 0/ 23/2	Date		Date		Date		9 6
(5) Ar	4	Ĺ			ains) LI	0 Jr	19t 31 # C		3 X	/	/						das. 16ES	l by:		Jaj.		1 by:		l by:
	Matrix	t Ple	i yos	Che	OES aple	100 101		<u> </u>	io2 bW	\times					-			Relinquished by	Relinquished by:		Relinquished by		Relinquished by:		Relinquíshed by:
		! 	1	~		 	əti	sodw	100									Reling	Relind	,	Relin		Relin	1	Relind
				0/0/0			(6) qı	Era	X												e?			1
			#:	P.O.#: 1050/055. 010/03		. '	11.6	Time	ပိ									at Rush	E-mail		. GM	SDG Complete?	Yes No	Yes No.)
	ZAC Acct #		PWSID #:	P.O.#:		Annois 4	fror To	Date	Collected	082712								rcle): Norm	Phone Fax		gesonline. Cott	S		(S/MSD/Dup)	uired? Yes / N
	Client / WW Anericas Inc		Project Name/#: $GE /Plil/PS$	Project Manager: Onay Dealer	1. nea	2000	Name of state where samples were collected:		Sample Identification	Water for Unit				S. S. S. S. S. S. S. S. S. S. S. S. S. S				Turnaround Time Requested (TAT) (please circle) Normal Rush Rush TAT is subject to Lancaster Laboratories approval and surcharge.)	Date results are needed: Rush results requested by (please circle): Ph			8 Data Package Options (please circle if required)	Type I (validation/NJ Reg) TX TRRP-13	ed NJ) Site-specific ((A)

Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601 (717) 656-2300 Fax: (717) 656-6766 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Issued by Dept. 6042 Management 2102.05

PTL09 0003

Analysis Request/ Environmental Services Chain of Custody

Lancaster

For Lancaster Laboratories use only

Acct. # 12134 Group# 1331673 Sample # 6769183-204 COC #

274794

Please print. Instructions on reverse side correspond with circled numbers.

						-					For Lab Use Only		
· -{+-							(5)	Analyses Requested	Requ	ested	FSC:		
Client: MWH AMPRICAS INC	Acct #			Matrix	×		Pr	Preservation Codes	on Coc	es	SCR#:		
Name/#: (E PaTI)				saple:	<u> </u>	用	7				vation		(
Orax	P.O.# /050/055.	055. 010103	5	Ded O		SJ		_			H=HCI T=Thiosulfate N=HNO ₃ B=NaOH		<u>و</u>
Fel.x	Onote #:			DES				<u>/</u>			S=H ₂ SO ₄ O=Other		
state where samples were		Aile 3		oq □ qv □		OS Con			_	2 /			nse 10 er uper 1i) 10
(2)	Date T	Time	odw							/			
Sample Identification	Collected Coll	Collected ပြ		io2 sW	110	101	•			<i>Z</i>	Remarks		
Dupliate	5/ 7/2780	1223 X		×		X							
29/-2		X 39 X		X		× ×							
MS/MSD P-185		x 26 %		X		×							
6-170	1 115180	x 85 C		×		×							
561-0		300 X		\times		3 ×							
0+1-d	c/ 1/tr80	x 0/8		×		3 X							
P-185	682712 13			\times		3 ×							
081-d	/	323 X		X		<u>~</u>							
P. 205	E1 11FL80	330 X		×		X							
Joe-4	1 1/4cga	335 1		×		3 1							
Turnaround Time Requested (TAT) (please circle): Normal (Rush TAT is subject to Lancaster Laboratories approval and surcharge.	Normal d surcharge.)	Rush	Relip	Relipquished by:	S _E	Casa	1665	Date 062311	Time		Received by 9945/952239	Date Tin	Fime (9)
Bate results are needed: Rush results requested by (please circle): Pt	Phone Fax F.	F-mail	Relin	Relinquished by:	by:			Date	Time			Date Time	<u>ө</u>
	5		<i>'</i>	/						/			
dress: ONC	gesouture. Con		Relin	Relinquished by	<u>i</u>		-	Date	Time	Received by:		Date Time	Je
s (please		mplete?							·				
(6a)	CTRCP	o _N	Relin	Relinquished by:	by:	/		Date	Time	Received by:		Date	<u>e</u> /
	SIG-Specific QC (MS/MSU/Dup): Res)	S	Relin	Relinquished by:	by:			Pale	Time	Received by:		Date Tin	Time
Type VI (Raw Data Only) Internal COC Required? Yes / No	quired? Yes / No								_	laced a	Ja January January	5260 11/5-016	Sign

Lancaster Laboratories, Inc., 2425 New Holland Pike. Lancaster, PA 17601 (717) 656-2300 Fax: (717) 656-6766 Copies: White and yellow should accompany samples to Lancaster Laboratories. The pink copy should be retained by the client.

Issued by Dept. 6042 Management 2102.05

PTL09 0004

Environmental Sample Administration Receipt Documentation Log

	•		•				`								
Client/	Project:/	NWH.	Americas Inc	Shipping	g Containe	er Sealed: YES	S) NO								
Date of	f Receipt:	8/28/1	2	Custody	/ Seal Pres	sent*: KE	S NO								
Time o	f Receipt: _	0925		* Custody	seal was inta	act unless otherwise	noted in the								
Source	Code:	SO		α Package	iscrepancy se	Chilled	Not Chilled								
		:				, orimics	1100 01111100								
	· · · · · · · · · · · · · · · · · · ·		Temperature of	Shipping Contai											
Cooler #	Thermometer ID	Temperature (°C)	Temp Bottle (TB) or Surface Temp (ST)	Wet Ice (WI) or Dry Ice (DI) or Ice Packs (IP)	Ice Present? Y/N	Loose (L) Bagged Ice (B) or NA	Comments								
1	2737	1.0	TB	WI	У	В									
2			·												
3															
4															
5															
6	6														
Number of Trip Blanks received NOT listed on chain of custody:															
Paperwork Discrepancy/Unpacking Problems: P-80=P8 +:me = 1135, P-8 Wheled P-80															
P-8 labeled F-8D															
·															
Unpaci	ker Signature	/Emp#:	Partito Cyle	3472	_ Date/Ti	me: <u>8/28/12</u>	2 1342								

Issued by Dept. 6042 Management

GC/MS Volatiles pH Log Batch #: N122492AA

			Initials/	
LLI#	рН	Date Checked	Employee #	Comments
6769183	<2	9/5/2012	SG 3174	038a
6769184	<2	9/5/2012	SG 3174	038a
6769185	<2	9/5/2012	SG 3174	038a
6769186	<2	9/5/2012	SG 3174	038a
6769187	<2	9/5/2012	SG 3174	038a
6769188	<2	9/5/2012	SG 3174	038a
6769189	<2	9/5/2012	SG 3174	038a
6769190	<2	9/5/2012	SG 3174	038a
6769191	<2	9/5/2012	SG 3174	038a
6769192	<2	9/5/2012	SG 3174	038a
6769193	<2	9/5/2012	SG 3174	038a
6769194	<2	9/5/2012	SG 3174	038a
6769195	<2	9/5/2012	SG 3174	038a
6769196	<2	9/5/2012	SG 3174	038a
6769197	<2	9/5/2012	SG 3174	038a
6769198	<2	9/5/2012	SG 3174	038a
6769199	<2	9/5/2012	SG 3174	038a
6769200	<2	9/5/2012	SG 3174	038a
6769201	<2	9/5/2012	SG 3174	038a
6769202	<2	9/5/2012	SG 3174	038a
6769203	<2	9/5/2012	SG 3174	038a
6769204	<2	9/5/2012	SG 3174	038a

	Lancaster	Laboratories
se eurofins		

Bottle Code	Expected pH	Actual pH	Adjusted pH	Lot #	Preservative	<u>rative</u>	<u>Lab</u> Submitted?	Sub- contracted?	1	Preservation Code	Date Entered
SDG: PTL09 Group: 1331673 Sample: 6768 038A	PTL09 roup: 1331673 Sample: 6769183 038A	\$					>	z	NA - Not	NA - Not applicable	09/05/2012
	Check CI-				Present? N	Corrective Substance	Substance	Lot #			
nple: 6	Sample: 6769184 038A <2	42			HCI		>	z	NA - Not	NA - Not applicable	09/05/2012
	Check				Present? N	Corrective Substance	Substance	Lot #			
nple: 6	Sample: 6769185 038A <2	\$			HCI		>	z	NA - Not	NA - Not applicable	09/05/2012
	Check CI-				Present? N	Corrective Substance	<u>Substance</u>	Lot #			
nple: (Sample: 6769186 038A <2	2			HCI		>	z	NA - Not	NA - Not applicable	09/05/2012
	Check Cl-				Present? N	Corrective Substance	Substance	Lot #			
nple: (Sample: 6769187 038A <2	2			HCI		>	z	NA - Not	NA - Not applicable	09/05/2012
	Check				Present? N	Corrective Substance	Substance	Lot #			
mple: (Sample: 6769188 038A <2	5			HC		>	z	NA - Not	NA - Not applicable	09/05/2012
	Check Cl-				Present? N	Corrective Substance	Substance	Lot #			
* linked sample											

	Lancaster	Laboratories
eurofins		

	Laboratories	ratories	7 - 40 - 17 - 4		-				
Bottle Code	Expected PH	Actual pH	Adjusted PH Fot #	Preservative	<u>Lab</u> Submitted?	Sub- contracted?	Preservation Code	on Code	Date Entered
Sample: 038A	Sample: 6769189 038A <2	\$		HCI	>	z	NA - Not applicable	pplicable	09/05/2012
	Check CI-			Present? Corrective Substance N	Substance	Lot #			
Sample: 038A	Sample: 6769190 038A <2	2		HCI	>	z	NA - Not applicable	pplicable	09/05/2012
	Check CI-			Present? Corrective Substance N	Substance	Lot #	·····		
Sample: 038A	Sample: 6769191 038A <2	5		HCI	>	z	NA - Not applicable	ipplicable	09/05/2012
	Check CI-			Present? Corrective Substance N	Substance	. <u>Lot #</u>			
Sample: 038A	Sample: 6769192 038A <2	<2		HCI	>	z	NA - Not applicable	pplicable	09/05/2012
	Check Cl-			Present? Corrective Substance N	Substance	Lot #			
Sample 038A	Sample: 6769193 038A <2	2		HCI	>	z	NA - Not applicable	applicable	09/05/2012
	Check Cl-			Present? Corrective Substance N	Substance	Lot #			
Sample 038A	Sample: 6769194 038A <2	\$		HC.	>	z	NA - Not applicable	applicable	09/05/2012
	Check Cl-			Present? Corrective Substance	Substance	Lot #			
Sample 038A	Sample: 6769195 038A <2	8		- - - - - - - - - - - - - - - - - - -	>	z	NA - Not applicable	applicable	09/05/2012

S
\subseteq
Ē
2
3
•

Lancaster Laboratories

	Date Entered		09/05/2012		09/05/2012		09/05/2012		09/05/2012		09/05/2012		09/05/2012
	Preservation Code		NA - Not applicable		NA - Not applicable		NA - Not applicable		NA - Not applicable		NA - Not applicable	-	NA - Not applicable
4 4	contracted?	<u>Lot #</u>	z	Lot #	z	Lot #	z	Lot #	z	Lot #	z	Lot #	z
- -	tive Submitted?	Present? Corrective Substance N	>	Corrective Substance	>	Corrective Substance	>	Corrective Substance	>	Corrective Substance	>	Corrective Substance	>
	Preservative	Present? O	HCI	Present? (HCI	Present? (HCI	Present? N	HCI	Present? (되 무	Present? N	HG.
Adiusted													
ted Actual	刮		5		7		2		\$		5		\$
Expected	됩	Check Ci-	769196 <2	Check CI-	3769197 <2	Check Ci-	3 769198 <2	Check CI-	\$769199 <2	Check CI-	5 769200	Check Cl-	5769201 <2
	Bottle Code		Sample: 6769196 038A <2		Sample: 6769197 038A	PT	Sample: 6769198 © 038A <2	4 A A	Sample: 6769199 ය 038A <2		Sample: 6769200 038A <2		Sample: 6769201 038A <2

^{*} linked sample v 1.3.0

S
\subseteq
ш.
_
0
\equiv
~
_
6
Q 🐠

pH Historical Data	Preservation Code Date Entered		NA - Not applicable 09/05/2012		NA - Not applicable 09/05/2012		NA - Not applicable 09/05/2012	
	Sub- contracted?	Fot #	Z	Fot#	z	Lot #	z	Fot #
	Lab vative Submitted?	Present? Corrective Substance N	>	Present? Corrective Substance N	>	Corrective Substance	>	Corrective Substance
	Preservative	Present? N	HC	Present? N	I) HC	Present? N	HC	Present? N
	Fot#							
	Adjusted pH							
Lancaster Laboratories	Actual pH		\$		2		8	
	Expected <u>pH</u>	Check CI-	6769202 <2	Check Ci-	6769203 <2	Check Cl-	6769204 <2	Check Cl-
	Bottle Code		Sample: 6769202 038A <2		Sample: 6769203 038A <2		Sample: 6769204 038A <2	

0010

PTL09

v 1.3.0

Method Summary/Reference for SDG# PTL09 I

Page 1 of 1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 · 717-656-2300 Fax: 717-656-2681 · www.lancasterlabs.com

01163 GC/MS VOA Water Prep

An undiluted aliquot of the water sample or a dilution of the sample is purged with an inert gas and the volatiles are collected on an adsorbent trap that is subsequently desorbed onto a gas chromatographic column.

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 5030B, December 1996.

10903 8260 Std. Water Master

The water sample is purged and the volatile compounds are collected on a sorbent trap that is subsequently desorbed onto the GC/MS system for chromatographic and mass spectral analysis.

Reference: Test Methods for Evaluating Solid Wastes, SW-846 Method 8260B, December 1996

Page 1 of 3

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 MWH Americas, Inc. P.O. Box 6610 Broomfield CO 80021

September 07, 2012

Project: GE Patillas Puerto Rico

Submittal Date: 08/28/2012 Group Number: 1331673 SDG: PTL09 PO Number: 10501055.010103 State of Sample Origin: PR

Client Sample Description	Lancaster Labs #	Collected
TB-082712 Water	6769183	08/27/2012
COC: 272728	•	
GE Patillas - PR		
P-23 Grab Water	6769184	08/27/2012 10:45
COC: 272728		
GE Patillas - PR P-23		
P-11 Grab Water	6769185	08/27/2012 10:50
COC: 272728	·	
GE Patillas - PR P-11		
P-4 Grab Water	6769186	08/27/2012 11:00
COC: 272728		
GE Patillas - PR P-4		
P-9 Grab Water	6769187	08/27/2012 11:10
COC: 272728		
GE Patillas - PR P-9		
P-10A Grab Water	6769188	08/27/2012 11:26
COC: 272728		•
GE Patillas - PR P-10A		•
P-8 Grab Water	6769189	08/27/2012 11:36
COC: 272728		
GE Patillas - PR P-8		
P-15DD Grab Water	6769190	08/27/2012 12:00
COC: 272728		
GE Patillas - PR P-15DD		
P-7 Grab Water	6769191	08/27/2012 11:45
COC: 272728		
GE Patillas - PR P-7		
P-7A Grab Water	6769192	08/27/2012 11:50
COC: 272728		
GE Patillas - PR P-7A		

Page 2 of 3

ANALYTICAL RESULTS

Prepared by

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 MWH Americas, Inc. P.O. Box 6610 Broomfield CO 80021

September 07, 2012

Water for Vault Grab Water	. 6769193	08/27/2012
COC: 274795 GE Patillas - PR Water for Vault		
Duplicate Grab Water	6769194	08/27/2012 12:23
COC: 274794	0703134	00/2/12012 12.25
GE Patillas - PR Duplicate		
P-16S Grab Water	6769195	08/27/2012 12:34
COC: 274794	0703133	00/2/12012 12:04
GE Patillas - PR P-16S	,	
P-16SMS Grab Water	6769196	08/27/2012 12:40
COC: 274794	3,33,55	
GE Patillas - PR P-16S		
P-16SMSD Grab Water	6769197	08/27/2012 12:40
COC: 274794	•	
GE Patillas - PR P-16S		
P-19D Grab Water	6769198	08/27/2012 12:56
COC: 274794		
GE Patillas - PR P-19D		
P-19S Grab Water	6769199	08/27/2012 13:00
COC: 274794		
GE Patillas - PR P-19S		
P-17D Grab Water	6769200	08/27/2012 13:10
COC: 274794		
GE Patillas - PR P-17D		
P-18S Grab Water	6769201	08/27/2012 13:15
COC: 274794		
GE Patillas - PR P-18S	6760000	00/07/0040 40:00
P-18D Grab Water	6769202	08/27/2012 13:23
COC: 274794		
GE Patillas - PR P-18D P-20S Grab Water	6769203	08/27/2012 13:30
COC: 274794	0709203	00/21/2012 13.30
GE Patillas - PR P-20S		
P-20D Grab Water	6769204	08/27/2012 13:35
COC: 274794	0100204	30/E//2012 10:00
GE Patillas - PR P-20D		•
OL Latings Titl -200		

METHODOLOGY

The specified methodologies used in obtaining the enclosed analytical results are indicated on the

Page 3 of 3

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 MWH Americas, Inc. P.O. Box 6610 Broomfield CO 80021

September 07, 2012

Laboratory Sample Analysis Record.

ELECTRONIC COPY TO 1 COPY TO

MWH Americas, Inc. Data Package Group Attn: Bradly Toth

Matalu x 2

Respectfully Submitted,

Natalie R. Luciano

Specialist

(717) 556-7258

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mĹ	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Inorganic Qualifiers

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
B	Analyte was also detected in the blank	Ε	Estimated due to interference
Č	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
Ď	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ē	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
_	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	W	Post digestion spike out of control limits
•	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

3768.07

Page 1 of 12

MWH Americas, Inc.
Project: GE Patillas Puerto Rico
SDG: PTL09

Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25

A of all Name	11-21	6769183	A 4501	6769184		6769185 P-11	MDI
Analysis Name	Units	TB-082712	MDL	P-23 Result	MDL	Result	MDL
A		Result N.D.	6	Result 28	6	9 J	6
Acetone	ug/l		0.5	N.D.	0.5	N.D.	0.5
Benzene	ug/l	N.D.		N.D.	1	N.D.	1
Bromobenzene	ug/l	N.D.	. 1	N.D. N.D.	1	N.D. N.D.	1
Bromochloromethane	ug/l	N.D.	1		1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.		N.D. N.D.	1
Bromoform	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromomethane	ug/l	N.D.	1	N.D.	1		
2-Butanone	ug/l	N.D.	. 3	13	3	6 J	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Carbon Tetrachloride	ug/l	N.D.	1	N.D.	1	N.D.	1
Chlorobenzene	ug/l	. N.D.	8.0	N.D.	8.0	N.D.	8.0
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	N.D.	0.8	N.D.	8.0	N.D.	0.8
Chloromethane	ug/l	· N.D.	1	N.D.	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropropane	ug/l	N.D.	2	N.D.	2	N.D.	2
Dibromochloromethane	ug/i	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1,	N.D.	1
1,1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1 -	N.D.	1
1,1-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	. 0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	8.0	N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
trans-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l ug/l	N.D.	1	N.D.	1	N.D.	1
, , ,	_	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D. N.D.	0.5	N.D.	0.5	N.D.	0.5
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5

eurofins

Page 2 of 12

	/IWH America: t: GE Patillas SDG: PTL0	Puerto Rico		Report Date Submit Date	e: 9/7/2012 1 e: 8/28/2012		
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Styrene	ug/l	N.D.	1	N.D.	·1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	. 1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
- · · · · · · · · · · · · · · · · · · ·	- 3						
						0700400	
		6769186	MDI	6769187		6769188	MDI
Analysis Name	Units	P-4	MDL	P-9	MDL	P-10A	MDL
		P-4 Result		P-9 Result	MDL	P-10A Result	
Acetone	ug/l	P-4 Result 10 J	6	P-9 Result N.D.	MDL 6	P-10A Result 10 J	6
Acetone Benzene	ug/l ug/l	P-4 Result 10 J N.D.	6 0.5	P-9 Result N.D. N.D.	6 0.5	P-10A Result 10 J N.D.	6 0.5
Acetone Benzene Bromobenzene	ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D.	6 0.5 1	P-9 Result N.D. N.D. N.D.	6 0.5 1	P-10A Result 10 J N.D. N.D.	6 0.5 1
Acetone Benzene Bromobenzene Bromochloromethane	ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D. N.D.	6 0.5 1 1	P-9 Result N.D. N.D. N.D. N.D. N.D.	6 0.5 1	P-10A Result 10 J N.D. N.D. N.D.	6 0.5 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane	ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D. N.D. N.D.	6 0.5 1 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1	P-10A Result 10 J N.D. N.D. N.D. N.D.	6 0.5 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. 8 J	6 0.5 1 1 1 1 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 1 3	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1 1 1 3	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 1 3
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1 1 3 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 1 3 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1 1 3 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	6 0.5 1 1 1 1 3 1 1 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D.	6 0.5 1 1 1 1 3 1 1 1 1 0.8	P-9 Result N.D.	MDL 6 0.5 1 1 1 1 1 1 1 0.8	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1 1 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroethane	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D.	6 0.5 1 1 1 1 3 1 1 1 1 0.8	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	MDL 6 0.5 1 1 1 1 1 1 1 0.8 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	MDL 6 0.5 1 1 1 1 1 1 0.8 1 0.8	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1 0.8 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	MDL 6 0.5 1 1 1 1 1 1 0.8 1 0.8 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1 0.8 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	MDL 6 0.5 1 1 1 1 1 1 0.8 1 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	MDL 6 0.5 1 1 1 1 1 1 0.8 1 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	MDL 6 0.5 1 1 1 1 1 1 0.8 1 0.8 1 1 2	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8 1
Acetone Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	P-4 Result 10 J N.D.	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8 1	P-9 Result N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	MDL 6 0.5 1 1 1 1 1 1 0.8 1 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P-10A Result 10 J N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D	6 0.5 1 1 1 1 3 1 1 1 0.8 1 0.8

Page 3 of 12

, . Proji	MWH America ect: GE Patillas SDG: PTL	Puerto Rico	Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25				
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,4-Dichlorobenzene	ug/i	N.D.	. 1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethane	ug/l	N.D.	1	N.D.	1	5 J	1
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	. 1.
1,1-Dichloroethene	ug/l	N.D.	0.8	1 J	8.0	120	8.0
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	Ŋ.D.	0.8	N.D.	8.0
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	8.0	N.D.	8.0
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1 1	N.D.	-1
2,2-Dichloropropane	ug/l	· N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D	1
trans-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1 -	N.D.	1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	8.0
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l .	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Styrene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	8.0
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/i	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	8.0	N.D.	0.8
		6769189		6769190		6769191	
Analysis Name	Units	P-8	MDL	P-15DD	MDL	P-7	MDL
		Result		Result		Result	

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 4 of 12

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL09			Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25				
Acetone	ug/l	N.D.	6	12 J	6	11 J	6
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	· 1
Bromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromoform	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Butanone	ug/l	N.D.	3	7 J	3	6 J	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Carbon Tetrachloride	ug/l	N.D.	. 1	N.D.	1	N.D.	1
Chlorobenzene	ug/l	N.D.	0.8	N.D.	8.0	N.D.	0.8
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	N.D.	. 0.8	N.D.	0.8	N.D.	0.8
Chloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropropane	ug/l	N.D.	2	N.D.	2	N.D.	2
Dibromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D. ,	1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	. 1
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethane	ug/l	11	1	2 J	1	N.D.	1
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethene	ug/l	170	8.0	59	0.8	N.D.	8.0
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	8.0	N.D.	8.0	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	· N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
trans-1,3-Dichloropropene	ug/l	N.D.	. 1	N.D.	1	N.D.	1
Ethylbenzene	ug/l	N.D.	8.0	N.D.	8.0	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N:D.	2	N.D.	2
Isopropylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1

Page 5 of 12

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL09			Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25				
Styrene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	•	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l .	N.D.	0.7	·N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	52	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	` 1	N.D.	1	N.D.	1
		N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D. N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D. N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D. N.D.	0.8	N.D.	0.8	N.D.	0.8
m+p-Xylene	ug/l		0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.6	N.U.	0.6	N.D.	0.8
		6769192		6769193 Water for	,	6769194	
Analysis Name	Units	P-7A	MDL	Vault	MDL	Duplicate	MDL
, maryoto marrio		Result		Result		Result	
Acetone	ug/l	7 J	6	14 J	6	10 J	6
Benzene	ug/l	N.D.	0.5	3 J	0.5	N.D.	0.5
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	Ì
Bromoform	ug/l	N.D.	1	N.D.	1.	N.D.	1
Bromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Butanone	ug/l	7 J	3	N.D.	3	8 J	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Carbon Tetrachloride	ug/l	N.D.	1	N.D.	1	N.D.	1
Chlorobenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
. 2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropropa		N.D.	2	N.D.	2	N.D.	2
Dibromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-010111010001120116							

Page 6 of 12

F	MWH Americas Project: GE Patillas I SDG: PTL0	Puerto Rico		•	ate: 9/7/2012 ate: 8/28/201		
4.4 Diablasahannana		N.D.	4	N.D.	1	N.D.	1
1,4-Dichlorobenzene	· ug/l	N.D.	1 1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	1N.D. 47	1	5 J	1
1,1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichloroethane	ug/l	1N.D. 2 J	0.8	N.D. 9	0.8	120	0.8
1,1-Dichloroethene	ug/l	N.D.	0.8	26	0.8	N.D.	0.8
cis-1,2-Dichloroethene	ug/l	N.D. N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D. N.D.		N.D.	0.8	N.D.	1
1,2-Dichloropropane	ug/l		1		1	N.D. N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.		N.D. N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D. N.D.	1
trans-1,3-Dichloropropene		N.D.	1	N.D.	1		
Ethylbenzene	ug/l	N.D.	8.0	N.D.	8.0	N.D.	8.0
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l	N.D.	. 1	N.D.	1	N.D.	1
p-Isopropyltoluene	· ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ethe		N.D.	0.5	N.D.	0.5	N.D.	. 0.5
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/i	N.D.	2	3 J	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Styrene	ug/l	N.D.	, 1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	-	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	.1	N.D.	1
Tetrachloroethene	ug/l	N.D.	8.0	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	1 J	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	N.D.	8.0	95	0.8	N.D.	8.0
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	. 0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	41	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	Ņ.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	2 J	1	N.D.	1
m+p-Xylene	ug/l	N.D.	8.0	N.D.	0.8	N.D.	8.0
o-Xylene	ug/l	N.D.	0.8	N.D.	8.0	N.D.	8.0
		6769195		6769196		6769197	
Analysis Name	Units	P-16S	MDL	P-16SMS	MDL	P-16SMSD	MDL
		Result		Result		Result	_
Acetone	ug/l	9 J	6	160	6	160	6
Benzene	ug/l	N.D.	0.5	22	0.5	21	0.5
Bromobenzene	ug/l	N.D.	1	20	1	20	1

Page 7 of 12

	MWH Americas, Project: GE Patillas Pr SDG: PTL09	uerto Rico			: 9/7/2012 13: : 8/28/2012 9		
Bromochloromethane	ug/l	N.D.	1	21	1	21	1
Bromodichloromethane	ug/l	N.D.	1	22	1	22	1
Bromoform	ug/l	N.D.	1	21	1	20	1
Bromomethane	ug/l	N.D.	1	12	1	15	1
2-Butanone	ug/l	7 J	3	160	3	160	3
n-Butylbenzene	ug/l	N.D.	1	20	· 1	20	1
sec-Butylbenzene	ug/l	N.D.	1	20	1	20	1
tert-Butylbenzene	ug/l	N.D.	1	20	1	20	1
Carbon Tetrachloride	ug/l	N.D.	1	25	1	25	1
Chlorobenzene	ug/l	N.D.	0.8	22	0.8	22	8.0
Chloroethane	ug/l	N.D.	1	15	1	18	1
Chloroform	ug/l	N.D.	0.8	21	0.8	20	0.8
Chloromethane	ug/l	N.D.	1	15	1	18	1
2-Chlorotoluene	ug/l	N.D.	i	20	1	19	1
4-Chlorotoluene	ug/l	N.D.	. 1	20	. 1	19	1
1,2-Dibromo-3-chloropro	•	N.D.	2	16	2	16	2
Dibromochloromethane	ug/l	N.D.	1	21	1	21	1
1,2-Dibromoethane	ug/l	N.D.	1	21	1	20	1
Dibromomethane	ug/l	N.D.	1	21	i	20	1
	ug/l	N.D.	1	20	1	. 19	1
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ug/l	N.D.	1	21	1	20	i
• •	ug/l	N.D.	1	20	1	20	1
1,4-Dichlorobenzene	•	N.D.	1	17	1	20	1
Dichlorodifluoromethane		N.D.	1	23	1	23	1
1,1-Dichloroethane	ug/l	N.D.	1	22	1	22	1
1,2-Dichloroethane	ug/l	N.D.	0.8	25	0.8	24	0.8
1,1-Dichloroethene	ug/l	N.D. N.D.	0.8	22	0.8	22 .	0.8
cis-1,2-Dichloroethene	ug/l	N.D. N.D.	0.8	23	0.8	23	0.8
trans-1,2-Dichloroethen	_	N.D. N.D.	0.6 1	23 21	1	23	1
1,2-Dichloropropane	ug/l	N.D.	1	20	1	20	1
1,3-Dichloropropane	ug/l		· ·	23	1	23	1
2,2-Dichloropropane	ug/l	N.D.	1	23 21	1 .	23 21	1
1,1-Dichloropropene	ug/l	N.D.	1 1	21	1	21	. 1
cis-1,3-Dichloropropene	-	N.D.	1	20	1	19	1
trans-1,3-Dichloroprope	=	N.D.	· ·	21	0.8	21	0.8
Ethylbenzene	ug/l	N.D.	0.8	21	0.6 2	21	2
Hexachlorobutadiene	ug/l	N.D.	2	22	1	22	1
Isopropylbenzene	ug/l	N.D.	1	20	1	20	1
p-Isopropyltoluene	ug/l	N.D.	1	20	0.5	20	0.5
Methyl Tertiary Butyl Eth		N:D.	0.5				* * *
4-Methyl-2-pentanone	ug/l	N.D.	3	96 33	3 2	95 21	3 2
Methylene Chloride	ug/l	N.D.	2	22			
Naphthalene	ug/l	N.D.	1	16 30	1	16 20	1
n-Propylbenzene	ug/l	N.D.	1	20	1		1
Styrene	ug/l	N.D.	1	20	1	20	1
1,1,1,2-Tetrachloroetha		N.D.	1	22	1	22	.1
1,1,2,2-Tetrachloroetha	ne ug/l	N.D.	1	18	1	18	1

Page 8 of 12

	MWH Americas Project: GE Patillas F SDG: PTL0	Puerto Rico		•	ate: 9/7/2012 ate: 8/28/201		
Tetrachloroethene	ug/l	N.D.	0.8	24	0.8	24	0.8
Toluene	ug/l	N.D.	0.7	21	0.7	21	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	19	1	19	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	. 19	1	19	1
1,1,1-Trichloroethane	ug/l	N.D.	0.8	23	0.8	23	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	20	0.8	20	0.8
Trichloroethene	ug/l	N.D.	1	22	1	22	1
Trichlorofluoromethane	ug/l	N.D.	1	21	1	24	1
1,2,3-Trichloropropane	ug/l	N.D.	1	19	1	18	1
1,2,4-Trimethylbenzene	ug/l	N.D.	i	20	1	19	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	20	1	19	
Vinyl Chloride	ug/l	N.D.	1	16	1	19	1
m+p-Xylene	ug/l	N.D.	0.8	43	0.8	43	0.8
o-Xylene	ug/l	N.D.	0.8	21	0.8	21	0.8
0-Aylene	ugn	14.5.	0.0		0.0		
•		6769198		6769199		6769200	
Analysis Name	Units	P-19D	MDL	P-19S	MDL	P-17D	MDL
7 mary sis Traine	00	Result		Result		Result	
Acetone	ug/l	12 J	6	14 J	6	6 J	6
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
Bromobenzene	ug/l	N.D.	. 1	N.D.	1	N.D.	1
Bromochloromethane	ug/l	N.D.	. 1	N.D.	ነ	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromoform	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Butanone	ug/l	9 J	3	9 J	3	6 J	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	· 1	N.D.	1
Carbon Tetrachloride	ug/l	N.D.	1	N.D.	1	N.D.	1
Chlorobenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloroethane	ug/l	N.D.	. 1	N.D.	1	N.D.	1
Chioroform	ug/l	3 J	0.8	2 J	0.8	N.D.	0.8
Chloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropro	-	N.D.	2	N.D.	. 2	N.D.	2
Dibromochloromethane	ug/l	N.D.	· 1	N.D.	1	N.D.	1
1,2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1.	N.D.	1
1,1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-0101101061110116	39 /-		•		•		

Page 9 of 12

Proje	MWH America				e: 9/7/2012 1 e: 8/28/2012		
·	SDG: PTL	09					
1,1-Dichloroethene	ug/l	2 J	0.8	N.D.	0.8	1 J	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	· N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1 1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	· ₁
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
trans-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l	N.D.	1	N.D.	_ 1	N.D.	· 1
p-Isopropyltoluene	ug/l	N.D.	1.		1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Styrene	· ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	· N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	. ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	N.D.	0.8	· N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/i	N.D.	0.8	N.D.	0.8	N.D.	0.8
0-Xylene	ug/i		0.0				
•		6769201		6769202		6769203	
Analysis Name	Units	P-18S	MDL	P-18D	MDL	P-20S	MDL
Analysis Name	O TINO	Result		Result		Result	
Acetone	ug/l	12 J	6	11 J	6	14 J	6
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromoform'	ug/l	N.D.	. 1	N.D.	1	N.D.	1
Bromomethane	ug/l	N.D.	1	N.D.	1	· N.D.	1
=: =:::=::=::=	- 3						

Page 10 of 12

Proje	MWH America ct: GE Patillas SDG: PTL0	Puerto Rico	•	Report Date Submit Date			
2-Butanone	ug/l	. 8 J	3	9 J	3	9 J	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Carbon Tetrachloride	ug/l	N.D.	1	N.D.	1	N.D.	1
Chlorobenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	3 J	0.8	2 J.	0.8	N.D.	0.8
Chloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1.
1,2-Dibromo-3-chloropropane	ug/l	N.D.	2	N.D.	2	N.D.	2
Dibromochloromethane	ug/l	N.D.	1	N.D.	. 1	N.D.	1
1,2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	. 1	N.D.	1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethane	ug/i	N.D.	1	N.D.	1	N.D.	1
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethene	ug/l	14	0.8	21	8.0	N.D.	8.0
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	8.0	N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	· 1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	. N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
trans-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
isopropylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	, N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l ·	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1.	N.D.	1	N.D.	1
Styrene	ug/i	N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/I	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	Ņ.D.	8.0
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1

Page 11 of 12

Proje	MWH America ect: GE Patillas SDG: PTL(Puerto Rico		•	e: 9/7/2012 13 e: 8/28/2012 9		
1,1,1-Trichloroethane	ug/l	1 J	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
· Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
0-Aylerie	ugn	11.5.	0.0				
Analysia Nama	Units	6769204 P-20D					
Analysis Name	Offics	Result	MDL				
Acetone	ug/l	6 J	6	•			
Benzene	ug/l	N.D.	0.5				
Bromobenzene	ug/l	N.D.	1				
Bromochloromethane	ug/l	N.D.	1	•			
Bromodichloromethane	ug/l	N.D.	1				
Bromoform	ug/l	N.D.	1				
Bromomethane	ug/l	N.D.	1				
	ug/l	6 J	3				
2-Butanone	ug/l	N.D.	1				
n-Butylbenzene	ug/l	N.D.	1				
sec-Butylbenzene	ug/i ug/i	N.D.	1				
tert-Butylbenzene Carbon Tetrachloride	ug/i	N.D.	1				
Chlorobenzene	ug/l	N.D.	0.8				
. Chloroethane	ug/l	N.D.	0.0	•			
Chloroform	ug/l	N.D.	0.8				
Chloromethane	ug/l	N.D.	1	. *			
2-Chlorotoluene	ug/l	N.D.	1				*
4-Chlorotoluene	ug/l	N.D.	1				
1,2-Dibromo-3-chloropropane	•	N.D.	2				
Dibromochloromethane	ug/l	N.D.	1.				
1,2-Dibromoethane	ug/l	N.D.	1				
Dibromomethane	ug/l	N.D.	1				
1,2-Dichlorobenzene	ug/l	N.D.	1				
1,3-Dichlorobenzene	ug/l	N.D.	. 1		-	•	
1,4-Dichlorobenzene	ug/i ug/i	N.D.	1				
Dichlorodifluoromethane	ug/l	N.D.	1		•		
1,1-Dichloroethane	ug/l	- N.D.	1				
1,2-Dichloroethane	ug/l	N.D.	1				
1,2-Dichloroethene	ug/l ug/l	7	0.8				
cis-1,2-Dichloroethene	ug/l	N.D.	0.8				
trans-1,2-Dichloroethene	ug/i ug/l	N.D.	0.8				•
	-	N.D.	1				
1,2-Dichloropropane	ug/l	N.D.	'				

Page 12 of 12

MWH Americas, Inc.
Project: GE Patillas Puerto Rico
SDC: DTI 00

Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25

1,3-Dichloropropane	ug/l	N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1
trans-1,3-Dichloropropene	ug/l	N.D.	1
Ethylbenzene	· ug/l	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2
Isopropylbenzene	ug/l	N.D.	1
p-Isopropyltoluene	ug/i	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5
4-Methyl-2-pentanone	ug/l	N.D.	3
Methylene Chloride	ug/l	N.D.	2
Naphthalene	ug/l	N.D.	. 1
n-Propylbenzene	ug/l	N.D.	1
Styrene	ug/l	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1
Tetrachloroethene	ug/l	N.D.	8.0
Toluene	ug/l	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1
1,1,1-Trichloroethane	ug/l	N.D.	8.0
1,1,2-Trichloroethane	ug/l	N.D.	0.8
Trichloroethene	ug/l	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1
1,2,3-Trichloropropane	. ug/l	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1
Vinyl Chloride	ug/l	N.D.	• 1
m+p-Xylene	ug/l	N.D.	8.0
o-Xylene	ug/l	N.D.	8.0
and the second s			

Analysis Report

age rorz

CAT No.	Analysis Name	Method	Trial ID Batch	Analysis Date/Time	Analyst	Dilution
6769183	TB-082712 Water					
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1348	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1348	Emily R Styer	1
6769184	P-23 Grab Water					•
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1411	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1411	Emily R Styer	1
6769185	5 P-11 Grab Water		• •			
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1435	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1435	Emily R Styer	1
6769186	S P-4 Grab Water		•			
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1458	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1458	Emily R Styer	1
6769187	' P-9 Grab Water			•		
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1521	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1521	Emily R Styer	1
6769188	P-10A Grab Water					
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1545	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1545	Emily R Styer	1
6769189	P-8 Grab Water					
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1608	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1608	Emily R Styer	1
6769190	P-15DD Grab Water					
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1632	Emily R Styer	1 1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1632	Emily R Styer	Į.
6769191	P-7 Grab Water					
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1655	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1655	Emily R Styer	1
6769192	P-7A Grab Water					
10903	Volatiles by 8260	SW-846 8260B	1.N122492AA	9/5/12 1719	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1719	Emily R Styer	ı
	3 Water for Vault Grab Water			0/5/40 47/0	E0- D 05	
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1742	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1742	Emily R Styer	l
	Duplicate Grab Water			0/5/40 4000	Faulty D. Ohyan	4
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1806	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1806	Emily R Styer	•
	5 P-16S Grab Water	0141 0 40 0000	.4.14004004.5	0/5/40 4000	Emily D. Chica	4
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1829	Emily R Styer Emily R Styer	1 1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1829	citility K Styer	1
6769196	P-16SMS Grab Water					
10903	Volatiles by 8260	SW-846 8260B	1 N122492AA	9/5/12 1852	Emily R Styer	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1 N122492AA	9/5/12 1852	Emily R Styer	1

Analysis Report

age z oi z

CAT No.	Analysis Name	Method	Trial ID Batch	Analysis Date/Time	Analyst	Dilution
6769197 10903 01163	7 P-16SMSD Grab Water Volatiles by 8260 GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 N122492AA 1 N122492AA	9/5/12 1916 9/5/12 1916	Emily R Styer Emily R Styer	1
676919 8 10903 01163	8 P-19D Grab Water Volatiles by 8260 GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 N122492AA 1 N122492AA	9/5/12 1939 9/5/12 1939	Emily R Styer Emily R Styer	1
676919 9 10903 01163	9 P-19S Grab Water Volatiles by 8260 GC/MS VOA Water Prep	·SW-846 8260B SW-846 5030B	1 N122492AA 1 N122492AA	9/5/12 2002 9/5/12 2002	Emily R Styer Emily R Styer	1 1
676920 0 10903 01163	O P-17D Grab Water Volatiles by 8260 GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 N122492AA 1 N122492AA	9/5/12 2026 9/5/12 2026	Emily R Styer Emily R Styer	1
676920 10903 01163	1 P-18S Grab Water Volatiles by 8260 GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 N122492AA 1 N122492AA	9/5/12 2049 9/5/12 2049	Emily R Styer Emily R Styer	1
676920 3 10903 01163	2 P-18D Grab Water Volatiles by 8260 GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 N122492AA 1 N122492AA	9/5/12 2112 · 9/5/12 2112	Emily R Styer Emily R Styer	1 1
676920 3 10903 01163	3 P-20S Grab Water Volatiles by 8260 GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 N122492AA 1 N122492AA	9/5/12 2136 9/5/12 2136	Emily R Styer Emily R Styer	1
676920 4 10903 01163	4 P-20D Grab Water Volatiles by 8260 GC/MS VOA Water Prep	SW-846 8260B SW-846 5030B	1 N122492AA 1 N122492AA	9/5/12 2158 9/5/12 2158	Emily R Styer Emily R Styer	1

Page 1 of 4

QC Comment

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

6769183 TB-082712 Water

10903

8260 Std. Water Master
Project defined calibration criteria are not met. The
calibration is compliant with the method defined criteria.

6769184 P-23 Grab Water

10903

8260 Std. Water Master
Project defined calibration criteria are not met. The
calibration is compliant with the method defined criteria.

6769185 P-11 Grab Water

10903

8260 Std. Water Master
Project defined calibration criteria are not met. The
calibration is compliant with the method defined criteria.

6769186 P-4 Grab Water

10903

8260 Std. Water Master
Project defined calibration criteria are not met. The
calibration is compliant with the method defined criteria.

6769187 P-9 Grab Water

10903

8260 Std. Water Master
Project defined calibration criteria are not met. The
calibration is compliant with the method defined criteria.

6769188 P-10A Grab Water

Page 2 of 4

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769189 P-8 Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769190 P-15DD Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769191 P-7 Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769192 P-7A Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769193 Water for Vault Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769194 Duplicate Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

Page 3 of 4

6769195 P-16S Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769196 P-16SMS Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769197 P-16SMSD Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769198 P-19D Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769199 P-19S Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769200 P-17D Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769201 P-18S Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

Page 4 of 4

6769202 P-18D Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769203 P-20S Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

6769204 P-20D Grab Water

10903

8260 Std. Water Master

Project defined calibration criteria are not met. The calibration is compliant with the method defined criteria.

Volatiles by GC/MS Data

Case Narrative/Conformance Summary

Case Narrative/Conformance Summary

CLIENT: MWH Americas, Inc. SDG: PTL09

GC/MS Volatiles

Fraction: Volatiles by GC/MS

		Ma	trix		
Sample #	Client ID	Liquid	Solid	DF	Comments
6769183	TB-082712	X		1	Trip Blank
6769184	P-23	X		1	-
6769185	P-11	X		1	
6769186	P-4	X		1	
6769187	P-9	X		1	
6769188	P-10A	X		1	
6769189	P-8	X		1	
6769190	P-15DD	X		1	
6769191	P-7	X		1	
6769192	P-7A	X		1	
6769193	Water for Vault	X		1	
6769194	Duplicate	X		1	Field Duplicate Sample
6769195	P-16S	X		1	Unspiked
6769196	P-16SMS	X		1	Matrix Spike
6769197	P-16SMSD	X		1	Matrix Spike Duplicate
6769198	P-19D	X		1	
6769199	P-19S	X		1	
6769200	P-17D	X		1	
6769201	P-18S	X		1	
6769202	P-18D	X		1	
6769203	P-20S	X		1	
6769204	P-20D	X		1	

See QC Reference List for Associated Batch QC Samples

SAMPLE RECEIPT:

Samples were received in good condition and within temperature requirements.

HOLDING TIME:

All holding times were met.

PREPARATION/EXTRACTION/DIGESTION:

No problems were encountered.

CALIBRATION/STANDARDIZATION:

9/19/2012 8:58:15 AM Page 1 of 2

Case Narrative/Conformance Summary

CLIENT: MWH Americas, Inc. SDG: PTL09

GC/MS Volatiles

Fraction: Volatiles by GC/MS

Sample numbers: 6769183-6769204: Analysis: 10903)

Project defined calibration criteria are not met. The calibration is compliant with the

method defined criteria.

QUALITY CONTROL AND NONCONFORMANCE SUMMARY:

MS/MSD

All QC is within specification.

SAMPLE ANALYSIS:

No problems were encountered with the analysis of the samples.

Abbreviation Key

UNSPK = Unspiked (for MS/MSD)	LOQ = Limit of Quantitation	
MS = Matrix Spike	MDL = Method Detection Limit	
MSD = Matrix Spike Duplicate	ND = Not Detected	
BKG = Background (for Duplicate)	J = Estimated Value	
D = Duplicate (DUP)	E= out of calibration range	
LCS = Lab Control Sample	RE = Repreparation/Reanalysis	
LCSD = Lab Control Sample Duplicate	* = Out of Specification	

Narrative Reviewed and Approved $\frac{9/19/12}{\text{(Date)}}$ by

Judi Brown

GC/MS VOLATILES CALCULATIONS:

1. Relative response factor (RRF)

Where

Ax = Area of the characteristic ion for the compound to be measured.

Ais = Area of the characteristic ion for the specific internal standard to be measured.

Cis = Concentration of the internal standard.

Cx = Concentration of the compound to be measured.

2. % Relative Standard Deviation (%RSD)

3. % Difference (%D)

Where:

RRFc=Relative response factor from continuing calibration standard.

RRFi = Mean relative response factor from the initial calibration.

4. Concentration

Where:

Ax, Ais, RRF are as given in 1. above.

Is = Concentration of internal standard added in parts per billion (ug/l)

Df = Dilution factor

5. % Recovery (%Rec)

Where:

SSR = Spiked sample result

SR = Sample result

SA = Spike added

6. Relative Percent Difference (RPD)

Where:

MSR = Matrix spike recovery

MSDR = Matrix spike duplicate recovery

Quality Control and Calibration Summary Forms

Quality Control Reference List GC/MS Volatiles

CLIENT: MWH Americas, Inc.

SDG: PTL09

Fraction: Volatiles by GC/MS

Analysis	Batch Number	Sample Number	Analysis Date
Volatiles by 8260	N122492AA	VBLKN08	09/05/2012 12:41:00
·		LCSN08	09/05/2012 13:05:00
		6769183	09/05/2012 13:48:00
		6769184	09/05/2012 14:11:00
		6769185	09/05/2012 14:35:00
		6769186	09/05/2012 14:58:00
		6769187	09/05/2012 15:21:00
		6769188	09/05/2012 15:45:00
		6769189	09/05/2012 16:08:00
		6769190	09/05/2012 16:32:00
		6769191	09/05/2012 16:55:00
		6769192	09/05/2012 17:19:00
		6769193	09/05/2012 17:42:00
		6769194	09/05/2012 18:06:00
		6769195 UNSPK	09/05/2012 18:29:00
		6769196 MS	09/05/2012 18:52:00
		6769197 MSD	09/05/2012 19:16:00
		6769198	09/05/2012 19:39:00
		6769199	09/05/2012 20:02:00
		6769200	09/05/2012 20:26:00
		6769201	09/05/2012 20:49:00
		6769202	09/05/2012 21:12:00
		6769203	09/05/2012 21:36:00
		6769204	09/05/2012 21:58:00

Fraction: Volatiles by GC/MS

Quality Control Summary Method Blank GC/MS Volatiles SDG: PTL09

SDG: PTL09 Matrix: LIQUID

N122492AA / VBLKN08					
Analyte	Analysis Date	Blank Results	Units	MDL	LOQ
Dichlorodifluoromethane	09/05/12	N.D.	ug/l	1	5
Chloromethane	09/05/12	N.D.	ug/l	1	5
Vinyl Chloride	09/05/12	N.D.	ug/l	1	5
Bromomethane	09/05/12	N.D.	ug/l	1	5
Chloroethane	09/05/12	N.D.	ug/l	1	5
Trichlorofluoromethane	09/05/12	N.D.	ug/l	1	5
1,1-Dichloroethene	09/05/12	N.D.	ug/l	0.8	5
Methyl Tertiary Butyl Ether	09/05/12	N.D.	ug/l	0.5	5
Acetone	09/05/12	N.D.	ug/l	6	20
Ethylbenzene	09/05/12	N.D.	ug/l	0.8	5
1,1,1,2-Tetrachloroethane	09/05/12	N.D.	ug/l	1	5
m+p-Xylene	09/05/12	N.D.	ug/l	0.8	5
Methylene Chloride	09/05/12	N.D.	ug/l	2	5
o-Xylene	09/05/12	N.D.	ug/l	0.8	5
trans-1,2-Dichloroethene	09/05/12	N.D.	ug/l	0.8	5
Styrene	09/05/12	N.D.	ug/l	1	5
Bromoform	09/05/12	N.D.	ug/l	1	5
1,1-Dichloroethane	09/05/12	N.D.	ug/l	1	5
Isopropylbenzene	09/05/12	N.D.	ug/l	1	5
2-Butanone	09/05/12	N.D.	ug/l	3	10
1,1,2,2-Tetrachloroethane	09/05/12	N.D.	ug/l	1	5
Bromobenzene	09/05/12	N.D.	ug/l	1	5
cis-1,2-Dichloroethene	09/05/12	N.D.	ug/l	0.8	5
2,2-Dichloropropane	09/05/12	N.D.	ug/l	1	5
1,2,3-Trichloropropane	09/05/12	N.D.	ug/l	1	5
Bromochloromethane	09/05/12	N.D.	ug/l	1	5
n-Propylbenzene	09/05/12	N.D.	ug/l	1	5
Chloroform	09/05/12	N.D.	ug/l	0.8	5
2-Chlorotoluene	09/05/12	N.D.	ug/l	1	5
I, I, I-Trichloroethane	09/05/12	N.D.	ug/l	0.8	5
1,3,5-Trimethylbenzene	09/05/12	N.D.	ug/l	1	5
4-Chlorotoluene	09/05/12	N.D.	ug/l	1	5
1,1-Dichloropropene	09/05/12	N.D.	ug/l	1	5
Benzene	09/05/12	N.D.	ug/l	0.5	5
tert-Butylbenzene	09/05/12	N.D.	ug/l	1	5
Carbon Tetrachloride	09/05/12	N.D.	ug/l	1	5
1.2-Dichloroethane	09/05/12	N.D.	ug/l	1	5
Trichloroethene	09/05/12	N.D.	ug/l	1	5
1,2-Dichloropropane	09/05/12	N.D.	ug/l	1	5
1,2,4-Trimethylbenzene	. 09/05/12	N.D.	ug/l	1	5
sec-Butylbenzene	09/05/12	N.D.	ug/l	1	5
Dibromomethane	09/05/12	N.D.	ug/l	1	5
Bromodichloromethane	09/05/12	N.D.	ug/l	1	5
1,3-Dichlorobenzene	09/05/12	N.D.	ug/l	1	5
cis-1,3-Dichloropropene	09/05/12	N.D.	ug/l	ī	5

Quality Control Summary Method Blank GC/MS Volatiles SDG: PTL09 Matrix: LIQUID

Fraction: Volatiles by GC/MS

N122492AA / VBLKN08					
Analyte	Analysis Date	Blank Results	Units	MDL	LOQ
p-Isopropyltoluene	09/05/12	N.D.	ug/l	1	5
1,4-Dichlorobenzene	09/05/12	N.D.	ug/l	1	5
4-Methyl-2-pentanone	09/05/12	N.D.	ug/l	3	10
Toluene	09/05/12	N.D.	ug/l	0.7	5
n-Butylbenzene	09/05/12	N.D.	ug/l	1	5
trans-1,3-Dichloropropene	09/05/12	N.D.	ug/l	1	5
1,2-Dichlorobenzene	09/05/12	N.D.	ug/l	1	5
1,1,2-Trichloroethane	09/05/12	N.D.	ug/l	0.8	5
1,2-Dibromo-3-chloropropane	09/05/12	N.D.	ug/l	2	5
Tetrachloroethene	09/05/12	N.D.	ug/l	0.8	5
1,3-Dichloropropane	09/05/12	N.D.	ug/l	1	5
1,2,4-Trichlorobenzene	09/05/12	N.D.	ug/l	1	5
Hexachlorobutadiene	09/05/12	N.D.	ug/l	2	5
Naphthalene	09/05/12	N.D.	ug/l	1	5
Dibromochloromethane	09/05/12	N.D.	ug/l	1	5
1.2-Dibromoethane	09/05/12	N.D.	ug/l	1	5
1,2,3-Trichlorobenzene	09/05/12	N.D.	ug/l	1	5
Chlorobenzene	09/05/12	N.D.	ug/i	0.8	5

Quality Control Summary Surrogates GC/MS Volatiles SDG: PTL09

Matrix: LIQUID

Fraction: Volatiles by GC/MS

N122492AA	Dibromoflu	oromethane	1,2-Dichlor	oethane-d4	Tolue	ne-d8	4-Bromoflu	orobenzene
	Spike		Spike		Spike		Spike	
	Added	50 ug/l	Added	50 ug/l	Added	50 ug/l	Added	50 ug/l
	%		%		%		%	
Sample	Recovery	Limits	Recovery	Limits	Recovery	Limits	Recovery	Limits
VBLKN08	101	80 - 116	97	77 - 113	96	80 - 113	97	78 - 113
LCSN08	102	80 - 116	104	77 - 113	102	80 - 113	100	78 - 113
6769183	101	80 - 116	102	77 - 113	96	80 - 113	94	78 - 113
6769184	103	80 - 116	100	77 - 113	95	80 - 113	96	78 - 113
6769185	102	80 - 116	102	77 - 113	95	80 - 113	96	78 - 113
6769186	103	80 - 116	102	77 - 113	95	80 - 113	96	78 - 113
6769187	102	80 - 116	101	77 - 113	94	80 - 113	95	78 - 113
6769188	104	80 - 116	102	77 - 113	95	80 - 113	95	78 - 113
6769189	104	80 - 116	101	77 - 113	95	80 - 113	96	78 - 113
6769190	101	80 - 116	101	77 - 113	94	80 - 113	93	78 - 113
6769191	105	80 - 116	103	77 - 113	96	80 - 113	97	78 - 113
6769192	103	80 - 116	101	77 - 113	95	80 - 113	96	78 - 113
6769193	107	80 - 116	103	77 - 113	95	80 - 113	95	78 - 113
6769194	106	80 - 116	104	77 - 113	95	80 - 113	95	78 - 113
6769195	106	80 - 116	102	77 - 113	94	80 - 113	93	78 - 113
6769196 MS	104	80 - 116	105	77 - 113	102	80 - 113	100	78 - 113
6769197 MSD	103	80 - 116	104	77 - 113	102	80 - 113	100	78 - 113
6769198	103	80 - 116	101	77 - 113	96	80 - 113	97	78 - 113
6769199	105	80 - 116	104	77 - 113	94	80 - 113	94	78 - 113
6769200	105	80 - 116	103	77 - 113	95	80 - 113	95	78 - 113
6769201	104	80 - 116	103	77 - 113	94	80 - 113	94	78 - 113
6769202	104	80 - 116	99	77 - 113	94	80 - 113	95	78 - 113
6769203	106	80 - 116	105	77 - 113	95	80 - 113	95	78 - 113
6769204	106	80 - 116	105	77 - 113	96	80 - 113	96	78 - 113

Quality Control Summary Matrix Spike/Matrix Spike Duplicate

SDG: PTL09 Matrix: LIQUID

GC/MS Volatiles

Fraction: Volatiles by GC/MS

UNSPK: 6769195	Batch: N12	22492AA (Sar	nple number	(s): 6769183	-6769204)			
MS: 6769196	Spike	Unspiked	MS	MSD					
MSD: 6769197	Added	Conc	Conc	Conc	MS	MSD	%Rec		%RPD
Analyte	ug/l	ug/l	ug/l	ug/l	%Rec	%Rec	Limits	%RPD	Limits
Dichlorodifluoromethane	20	N.D.	16.71	19.88	84	99	52-129	17	30
Chloromethane	20	N.D.	14.65	17.96	73	90	67-154	20	30
Vinyl Chloride	20	N.D.	16.09	19.36	80	97	66-133	18	30
Bromomethane	20	N.D.	12.19	15.06	61	75	38-149	21	30
Chloroethane	20	N.D.	14.65	17.88	73	89	51-145	20	30
Trichlorofluoromethane	20	N.D.	20.74	24.26	104	121	64-146	16	30
1,1-Dichloroethene	20	N.D.	24.69	24.47	123	122	85-142	1	30
Methyl Tertiary Butyl Ether	20	N.D.	20.11	19.9	101	100	72-126	1	30
1,1,1,2-Tetrachloroethane	20	N.D.	22.21	22.05	111	110	82-119	l	30
Acetone	150	8.84	155.01	159.17	97	100	52-139	3	30
Ethylbenzene	20	N.D.	21.16	20.82	106	104	71-134	2	30
m+p-Xylene	40	N.D.	43.09	42.87	108	107	79-125	1	30
Methylene Chloride	20	N.D.	21.75	21.26	109	106	78-133	2	30
o-Xylene	20	N.D.	21.03	20.8	105	104	79-125	1	30
Styrene	20	N.D.	20.27	19.9	101	99	78-125	2	30
trans-1,2-Dichloroethene	20	N.D.	23.17	22.58	116	113	87-126	3	30
1,1-Dichloroethane	20	N.D.	23.14	22.88	116	114	84-129	1	30
Bromoform	20	N.D.	20.81	20.34	104	102	48-118	2	30
Isopropylbenzene	20	N.D.	21.71	21.58	109	108	75-128	1	30
1,1,2,2-Tetrachloroethane	20	N.D.	18.18	17.94	91	90	72-128	l	30
2-Butanone	150	6.63	162.05	159.19	104	102	57-138	2	30
Bromobenzene	20	N.D.	20.41	20.02	102	100	82-115	2	30
cis-1,2-Dichloroethene	20	N.D.	22.04	21.75	110	109	85-125	1	30
1,2,3-Trichloropropane	20	N.D.	18.61	18.34	93	92	76-118	1	30
2,2-Dichloropropane	20	N.D.	22.72	22.54	114	113	69-135	l	30
Bromochloromethane	20	N.D.	20.72	20.84	104	104	76-134	1	30
n-Propylbenzene	20	N.D.	20.25	19.91	101	100	74-134	2	30
2-Chlorotoluene	20	N.D.	19.7	19.4	99	97	82-118	2	30
Chloroform	20	N.D.	20.86	20.47	104	102	81-134	2	30
1,1,1-Trichloroethane	20	N.D.	23.29	22.73	116	114	74-131	2	30
1,3,5-Trimethylbenzene	20	N.D.	19.67	19.45	98	97	76-120	1	30
1,1-Dichloropropene	20	N.D.	20.69	20.52	103	103	86-137	1	30
4-Chlorotoluene	20	N.D.	19.68	19.41	98	97	84-122	1	30
1,2-Dichloroethane	20	N.D.	22.46	21.72	112	109	68-131	3	30
Benzene	20	N.D.	22.13	21.26	111	106	72-134	4	30
Carbon Tetrachloride	20	N.D.	25.37	25.11	127	126	72-135	ĺ	30
tert-Butylbenzene	20	N.D.	20.18	19.91	101	100	81-121	1	30
Trichloroethene	20	N.D.	22.22	22.14	111	111	88-133	0	30
1,2,4-Trimethylbenzene	20	N.D.	19.7	19.4	99	97	72-130	2	30
1,2-Dichloropropane	20	N.D.	21.42	20.96	107	105	83-124	2	30
Dibromomethane	20	N.D.	20.78	20.46	104	102	83-119	2	30
sec-Butylbenzene	20	N.D.	20.05	19.95	100	100	79-125	0	30

Results are being reported on an as received basis.

9/19/2012 8:56:20 AM Page 1 of 2

Quality Control Summary Matrix Spike/Matrix Spike Duplicate

SDG: PTL09 Matrix: LIQUID

GC/MS Volatiles

Fraction: Volatiles by GC/MS

UNSPK: 6769195	Batch: N12	2492AA (Sar	nple number	(s): 6769183	-6769204)	_		
MS: 6769196	Spike	Unspiked	MS	MSD					
MSD: 6769197	Added	Conc	Conc	Conc	MS	MSD	%Rec		%RPD
Analyte	ug/l	ug/l	ug/l	ug/l	%Rec	%Rec	Limits	%RPD	Limits
1,3-Dichlorobenzene	20	N.D.	20.53	20.25	103	101	86-121	1	30
Bromodichloromethane	20	N.D.	22.42	22.07	112	110	78-125	2 .	30
cis-1,3-Dichloropropene	20	N.D.	21.26	20.9	106	105	70-116	2	30
p-Isopropyltoluene	20	N.D.	20.4	20.31	102	102	76-123	0	30
1,4-Dichlorobenzene	20	N.D.	19.97	19.64	100	98	85-121	2	30
4-Methyl-2-pentanone	100	N.D.	96.27	95.17	96	95	63-123	1	30
Toluene	20	N.D.	21.43	21.31	107	107	80-125	1	30
n-Butylbenzene	20	N.D.	19.79	19.61	99	98	73-128	1	30
trans-1,3-Dichloropropene	20	N.D.	19.69	19.14	98	96	74-119	3	30
1,1,2-Trichloroethane	20	N.D.	20.48	19.84	102	99	77-124	3	30
1,2-Dichlorobenzene	20	N.D.	19.57	19.23	98	96	84-119	2	30
1.2-Dibromo-3-chloropropane	20	N.D.	15.99	15.98	80	80	54-134	0	30
Tetrachloroethene	20	N.D.	24.17	24.4	121	122	80-128	1	30
1,2,4-Trichlorobenzene	20	N.D.	19.36	19.05	97	95	70-124	2	30
1,3-Dichloropropane	20	N.D.	20.36	20.42	102	102	81-120	0	30
Hexachlorobutadiene	20	N.D.	21.02	20.85	105	104	56-134	1	30
Naphthalene	20	N.D.	16.36	16.45	82	82	52-125	1	30
1,2,3-Trichlorobenzene	20	N.D.	19.37	19.01	97	95	69-119	2	30
1,2-Dibromoethane	20	N.D.	20.65	20.37	103	102	77-116	l l	30
Dibromochloromethane	20	N.D.	21.32	21.12	107	106	74-116	1	30
Chlorobenzene	20	N.D.	21.67	21.67	108	108	87-124	0	30

Lancaster Laboratories

Quality Control Summary Laboratory Control Standard (LCS) Laboratory Control Standard Duplicate(LCSD)

SDG: PTL09 Matrix: LIQUID

GC/MS Volatiles

Fraction: Volatiles by GC/MS

LCS: LCSN08	Batch: N122492AA (Sample number(s): 6769183-6769204)							
	Spike Added	LCS Conc	LCSD Conc	LCS	LCSD	%Rec		%RPD
Analyte	ug/l	ug/l	ug/l	%Rec	%Rec	Limits	%RPD	Limits
Dichlorodifluoromethane	20	15.42		77		47-120		
Chloromethane	20	16.11		81		60-129		
Vinyl Chloride	20	16.49		82		56-123		
Bromomethane	20	13.25		66		44-120		
Chloroethane	20	13.93		70		49-129		
Trichlorofluoromethane	20	19.53		98		56-128		
1,1-Dichloroethene	20	21.1		105		80-120		
Methyl Tertiary Butyl Ether	20	19.88		99		68-121		
1,1,1,2-Tetrachloroethane	20	20.91		105		79-120		
Acetone	150	149.74		100		38-212		
Ethylbenzene	20	19.6		98		79-120		
m+p-Xylene	40	40.33		101		77-120		
Methylene Chloride	20	20.44		102		80-126		
o-Xylene	20	20.02		100		77-120		
Styrene	20	19.4		97		77-120		
trans-1,2-Dichloroethene	20	20.93		105		80-120		
1.1-Dichloroethane	20	20.69		103		79-120		
Bromoform	20	20.67		103		61-120		
Isopropylbenzene	20	20.15		101		77-120		
1,1,2,2-Tetrachloroethane	20	18.33		92		75-123		
2-Butanone	150	148.58		99		53-155		
Bromobenzene	20	19.57		98		80-120		
cis-1,2-Dichloroethene	20	20.33		102		80-120		
1,2,3-Trichloropropane	20	18.44		92		76-120		
2,2-Dichloropropane	20	20.19		101		67-124		
Bromochloromethane	20	19.6		98		77-130		
n-Propylbenzene	20	18.73		94		77-130		
2-Chlorotoluene	20	18.45		92		80-120		
Chloroform	20	19.14		96		77-122		
1,1,1-Trichloroethane	20	20.4		102		70-121		
1,3,5-Trimethylbenzene	20	18.38		92		68-124		
1,1-Dichloropropene	20	18.5		92		80-120		
4-Chlorotoluene	20	18.86		94		80-120		
1,2-Dichloroethane	20	20.58		103		64-130		
Benzene	20	20.23		101		77-121		
Carbon Tetrachloride	20	21.71		109		67-122	1	
tert-Butylbenzene	20	18.58		93	†	80-120		
Trichloroethene	20	20.15		101	 	80-120		
1,2,4-Trimethylbenzene	20	18.51		93	 	69-122	-	
	20	20.43		102	 	80-120	-	
1,2-Dichloropropane	20	20.43		101	 	80-120		
Dibromomethane sec-Butylbenzene	20	18.5		93	 	74-124		

Lancaster Laboratories

Quality Control Summary Laboratory Control Standard (LCS) Laboratory Control Standard Duplicate(LCSD)

SDG: PTL09 Matrix: LIQUID

GC/MS Volatiles

Fraction: Volatiles by GC/MS

LCS: LCSN08	Batch: N12249	92AA (Sample n	umber(s): 6769	183-67692	04)			
	Spike Added	LCS Conc	LCSD Conc	LCS	LCSD	%Rec		%RPD
Analyte	ug/l	ug/l	ug/l	%Rec	%Rec	Limits	%RPD	Limits
1,3-Dichlorobenzene	20	19.54		98		80-120		
Bromodichloromethane	20	21.45		107		73-120		
cis-1,3-Dichloropropene	20	21.24		106		78-120		
p-Isopropyltoluene	20	18.98		95		77-121		
1,4-Dichlorobenzene	20	19.12		96		80-120		
4-Methyl-2-pentanone	100	99.84		100		58-133		
Toluene	20	20.06		100		79-120		
n-Butylbenzene	20	18.25		91		73-130		
trans-1,3-Dichloropropene	20	19.72		99		79-120		
1,1,2-Trichloroethane	20	19.57		98		80-120		
1,2-Dichlorobenzene	20	18.85		94		80-120		
1,2-Dibromo-3-chloropropane	20	16.34		82		56-126		
Tetrachloroethene	20	21.94		110		79-120		
1,2,4-Trichlorobenzene	20	18.63		93		72-120		
1.3-Dichloropropane	20	19.97		100		80-120		
Hexachlorobutadiene	20	18.46		92		58-120		
Naphthalene	20	16.8		84		47-126		
1,2,3-Trichlorobenzene	20	18.64		93		71-120		
1,2-Dibromoethane	20	20.1		101		76-120		
Dibromochloromethane	20	20.64		103		72-120		
Chlorobenzene	20	20.52		103		80-120		

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	Lancaster	Laboratories	s Contract:
				

Lab Code: LANCAS Case No.: SAS No.: SDG No.: PTL09

Lab File ID: ng15t01.d BFB Injection Date: 08/15/12

Instrument ID: HP07159 BFB Injection Time: 11:32

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		========
50	15.0 - 40.0% of mass 95	16.39
75	30.0 - 60.0% of mass 95	44.53
95	Base peak, 100% relative abundance	100.00
96	5.0 - 9.0% of mass 95	6.83
173	Less than 2.0% of mass 174	0.00 (0.00)1
174	Greater than 50.0% of mass 95	76.29
175	5.0 - 9.0% of mass 174	5.67 (7.43)1
176	Greater than 95.0%, but less than 101.0% of mass 174	74.57 (97.74)1
177	5.0 - 9.0% of mass 176	5.13 (6.89)2

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

1	LAB	LAB	DATE	TIME
- 1	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		==========	========	======
01	VSTD50	ng15i03.d	08/15/12	12:42
02	VSTD20	ng15i04.d	08/15/12	13:05
03	VSTD4	ng15i06.d	08/15/12	13:51
04	VSTD1	ng15i07.d	08/15/12	14:15
05	0.5PPB - 0.5PPB	ng15m01.d	08/15/12	14:38
06	VSTD300	ng15i08.d	08/15/12	15:01
07	VSTD100	ng15i09.d	08/15/12	15:24
08	VSTD10	ng15i10.d	08/15/12	16:11
09	LCSNICV	ng15v01.d	08/15/12	16:34

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	Lancaster	Laboratories	Contract:
-----	-------	-----------	--------------	-----------

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:_PTL09___

Lab File ID: ns05t05.d BFB Injection Date: 09/05/12

Instrument ID: HP07159 BFB Injection Time: 12:02

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

1		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====	=======================================	=======================================
50	15.0 - 40.0% of mass 95	17.20
75	30.0 - 60.0% of mass 95	45.86
95	Base peak, 100% relative abundance	100.00
96	5.0 - 9.0% of mass 95	7.01
173	Less than 2.0% of mass 174	0.00 (0.00)1
174	Greater than 50.0% of mass 95	82.97
175	5.0 - 9.0% of mass 174	6.11 (7.37)1
176	Greater than 95.0%, but less than 101.0% of mass 174	80.14 (96.59)1
177	5.0 - 9.0% of mass 176	5.41 (6.75)2
i		

1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	LAB	LAB	DATE	TIME
	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	======================================	=======================================	======	=======
01	VSTD50	ns05c01.d	09/05/12	12:18
02	VBLKN08	ns05b05.d	09/05/12	12:41
03	LCSN08	ns05s31.d	09/05/12	13:05
04	6769183	ns05s32.d	09/05/12	13:48
05	6769184	ns05s33.d	09/05/12	14:11
06	6769185	ns05s34.d	09/05/12	14:35
07	6769186	ns05s35.d	09/05/12	14:58
08	6769187	ns05s36.d	09/05/12	15:21
09	6769188	ns05s37.d	09/05/12	15:45
10	6769189	ns05s38.d	09/05/12	16:08
11	6769190	ns05s39.d	09/05/12	16:32
12	6769191	ns05s40.d	09/05/12	16:55
13	6769192	ns05s41.d	09/05/12	17:19
14	6769193	ns05s42.d	09/05/12	17:42
15	6769194	ns05s43.d	09/05/12	18:06
16	6769195	ns05s44.d	09/05/12	18:29
17	6769196MS	ns05s45.d	09/05/12	18:52
18	6769197MSD	ns05s46.d	09/05/12	19:16
19	6769198	ns05s47.d	09/05/12	19:39
20	6769199	ns05s48.d	09/05/12	20:02
21	6769200	ns05s49.d	09/05/12	20:26
22	, 6769201	ns05s50.d	09/05/12	20:49
		<u> </u>		ll
	· 			l

5A

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab	Name:	Lancaster	Laboratories	Contract:	

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:_PTL09___

Lab File ID: ns05t05.d

BFB Injection Date: 09/05/12

Instrument ID: HP07159

BFB Injection Time: 12:02

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		% RELATIVE
m/e	ION ABUNDANCE CRITERIA	ABUNDANCE
=====		========
50	15.0 - 40.0% of mass 95	17.20
75	30.0 - 60.0% of mass 95	45.86
95	Base peak, 100% relative abundance	100.00
96	5.0 - 9.0% of mass 95	7.01
173	Less than 2.0% of mass 174	0.00 (0.00)1
174	Greater than 50.0% of mass 95	82.97
175	5.0 - 9.0% of mass 174	6.11 (7.37)1
176	Greater than 95.0%, but less than 101.0% of mass 174	80.14 (96.59)1
177	5.0 - 9.0% of mass 176	5.41 (6.75)2
İi		
,,	1-Value is % mass 174 2-Value is % mas	s 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	LAB	LAB	DATE	TIME
	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		=======================================	========	=======
23	6769202	ns05s51.d	09/05/12	21:12
24	6769203	ns05s52.d	09/05/12	21:36
25	6769204	ns05s53.d	09/05/12	21:58

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lav	Name:	Lancaster	Labor	itor res	Contract	·	
			_			nnn 11	

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP07159 Cal

Calibration Date(s): 08/15/12

08/15/12

Heated Purge: (Y/N) Y

Calibration Times: 12:42

16:11

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

RF 20= ng15i04.d RRF 50=	ng15i03	.d R	RF100=	ng15i09	o.d F	RF300=	ng15i08	3.d		
COMPOUND	RRF 1	RRF 4	RRF 10	RRF 20	RRF 50	RRF100	RRF300	RRF	% RSD	CAL. METHOD
							======		=====	======
Dichlorodifluoromethane	0.2693	0.3678	0.2670	0.3612	0.3711	0.3320	0.3327	0.3288	13	AVG
Chloromethane	#0.2610	0.3137	0.3190	0.2977	0.2987	0.2869	0.2721	0.2927	7	AVG
•	*0.2674	0.3101	0.3170	0.3067	0.3162	0.2820	0.2750	0.2963	7	AVG
Bromomethane	0.1808	0.2010	0.2044	0.1888	0.1849	0.1601	0.1351	0.1793	14	AVG
Chloroethane	0.1440	0.1678	0.1705	0.1618	0.1583	0.13//	0.1217	0.1517	12	AVG
[richlorofluoromethane	0.2699	0.3682	0.3004	0.3544	0.3649	0.3287	0.3195	0.3293	11	AVG
thanol		0.0941	0.1047	0.0964	0.1078	0.0978	0.0884	0.0982	. 7	AVG
lcrolein	ļ	1.6942	1.7845	1.6676	1.7139	1.6/1/	1.6241	1.6927	3	AVG
•	÷0.1792	0.2123	0.2297	0.1924	0.2154	0.2040	0.1909	0.2034	8	AVG
reon 113		0.2168	0.2211	0.1901	0.2201	0.2025	0.1899	0.2067	7	AVG
Acetone .		0.0364	0.0424	0.0422	0.0464	0.0446	0.0397	0.0420	8	AVG
fethyl Iodide	0.2981	0.3642	0.4064	0.3494	0.3872	0.3675	0.3436	0.3393	10	AVG
2-Propanol	1	0.6556	0.8539	0.6605	0.7690	0.7206	0.6876	0.7246	. 11	AVG
Carbon Disulfide		8888.0	0.7383	0.6358	0.7287	0.6992	0.6582	0.08/8	6	AVG
Methyl Acetate	1	0.3146	0.3310	0.3059	0.31/3	0.2966	0.2/3/	0.3065	6	AVG
Allyl Chloride		0.4663	0.4632	0.4424	0.4255	0.3942	0.3855	0.4295	8	AVG
Methylene Chloride	0.2638	0.2623	0.2802	0.2510	0.2646	0.2532	0.2380	0.2590	5	AVG
t-Butyl Alcohol	1.2020	1.1709	1.4533	1.2027	1.2/94	1.0780	1.0425	1.2041	11	AVG
Acrylonitrile	1	0.1282	0.1519	0.1495	0.16//	0.1641	0.1546	0.1527	9	AVG
trans-1,2-Dichloroethene	0.1895	0.2424	0.2621	0.2273	0.2511	0.2413	0.2261	0.2343	10	AVG
Methyl Tertiary Butyl Ether	0.7390	0.8219	0.8946	0.8272	0.8735	0.8249	0.7748	0.8223	6	AVG
n-Hexane	0.2517	0.3411	0.3449	0.2970	0.3374	0.3185	0.3047	0.3136	11	AVG
1,2-Dichloroethene (total)	0.2126	0.2549	0.2825	0.2425	0.2661	0.2565	0.2427	0.2511	9	AVG
1,1-Dichloroethane	#0.3663	0.4599	0.4985	0.4385	0.4/50	0.4568	0.4341	0.4470	9	AVG
di-Isopropyl Ether	0.7555	0.8430	0.9163	0.8365	0.8748	0.8394	0.7825	0.8354	6	i .
2-Chloro-1,3-Butadiene	l	0.3493	0.3892	0.3345	0.3801	0.3580	0.3394	0.3584	€	AVG
Ethyl t-Butyl Ether	0.7825	0.8223	0.9090	0.7958	0.8599	0.7984	0.7522	0.8172	6	AVG AVG
cis-1,2-Dichloroethene	0.2356	0.2674	0.3028	0.25//	0.2811	0.2/1/	0.2393	0.2679		1
2-Butanone		0.1622	0.1882	0.1921	0.2209	0.2181	0.2007	0.1980	8	AVG
2,2-Dichloropropane	0.2812	0.3212	0.3588	0.3077	0.34//	0.3317	14.3057	0.3232	8	AVG
Propionitrile								1.2728	6	AVG
Methacrylonitrile	1	0.1599	0.1860	0.1694	0.1790	0.1079	0.1577	0.1701	4	AVG
Bromochloromethane	1						0.1303		3	AVG
Tetrahydrofuran		1.1083	11.1704	1.1703	1.2027	11.1910	1.1972	0 /247		AVG
Chloroform	*0.4195	0.42//	0.4618	0.3997	0.4327	0.4137	0.3700	0.4217		
1,1,1-Trichloroethane	0.3089							0.3469	1	4
Cyclohexane	1	0.4509	0.4570	0.3980	0.4331	0.4293	0.4139	0.4340		AVG
Cyclohexane(mz 84)		0.3683	0.3833	0.3200	0.3010	0.3377	0.3474	0.3614	7	
Cyclohexane(mz 69)	0.70/7	0.1465	0.7431	0.1237	0.1421	0.1310	0.1203	0.1359	6	
1,1-Dichloropropene	0.3963	0.3/84	0.3840	0.3199	0.3387	0.3397	0.3229	0.3371		
Carbon Tetrachloride	0.1839	0.2484	0.2773	0.2423	0.2030	0.2/40	0.2093	0.2542 0.3825	11	AVG
Isobutyl Alcohol		0.3492	0.4592	0.3023	1 0004	1 0250	0.3300	1 0271	8	AVG
Benzene	0.9124	11.0556	11.152/	לכעלים ו	0.7/55	0.3244	0.7007	1.0271 0.3253		AVG
1,2-Dichloroethane	0.2818	0.3231	0.3630	0.3233	0.3433	0.3201	0.3103	0.3233	5	
1,2-Dichloroethane(mz 98)	0 7045	0.0314	0.0332	0.0331	0.033/	0.0343	0.0318	0.0336 0.7889	7	
t-Amyl Methyl Ether	10.7012	0.7720	0.8595	0.7897	0.0007	0.7971	0.7000	0.7007		
n-Heptane	1 4450	0.3436	0.3156	0.20/4	0.2983	0.2703	0.2120	0.2983	24	1
n-Butanol	0.1650	0.2472	0.3680	10.3069	0.3070	0.3308	0.3139	0.2993	8	
Trichloroethene	0.2210	0.2634	0.2840	0.2415	10.20/3	0.2007	0.2437	0.2541	6	
Methylcyclohexane		0.4271	U.4571	0.4270	0.4288	0.3895	10.4017	0.4218	7	
1,2-Dichloropropane	*0.2443	0.2850	10.3106	0.2840	0.3013	0.2887	0.2740	0.2041	6	
Methyl Methacrylate	1	0.2696	0.3111	0.2821	10.3018	10.2835	10.2/31	0.2869	°	7440

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: Lancaster Laboratories Contract:__ Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:_

Instrument ID: HP07159 Calibration Date(s): 08/15/12 Calibration Times: 12:42 Heated Purge: (Y/N) Y

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

RRF 10= ng15i10.d RRF300= ng15i08.d LAB FILE ID: RRF 1 = ng15i07.d RRF 4 = ng15i06.d RRF 20= ng15i04.d RRF 50= ng15i03.d RRF100= ng15i09.d

08/15/12

16:11

COMPOUND	RRF 1	RRF 4		RRF 20		RRF100		RRF	% RSD	CAL. METHOD
======================================		0 1667	0.1903	n 1745	n 1829	0.1769	0 1707	0 1719	9	AVG
1,4-Dioxane	10.1410	0.1007	0.1061	0.0871		0.1002			12	AVG
Bromodichloromethane	n 2042					0.3107			14	AVG -
2-Nitropropane	0.2042					1.8073			12	AVG
		0 1560	0.180%	0 103/	0 2015	0.2139	0 2162	0 1937	12	AVG
2-Chloroethyl Vinyl Ether	0 2720					0.4321			10	AVG
cis-1,3-Dichloropropene	10.3320					0.4571			6	AVG
4-Methyl-2-Pentanone	*0.8413	0.4033	1 0470	0.4173	1 0049	0.9596	0.4140	0.4203	8	AVG
Toluene	10.8413	0.9240	1.0079	0.9493	0 4247	0.5950	0.0032	0.7473	12	AVG
trans-1,3-Dichloropropene	0.4312	0.5209	0.0097	0.5/12	0.0203	0.3930	0.5742	0.3012	8	AVG
Ethyl Methacrylate		0.6076	0.7376	0.6829	0.7515	0.6865	0.0012	0.0002	9	AVG
1,1,2-Trichloroethane	0.3309	0.35/0	0.4248	0.3783	0.4051	0.3700	0.3547	0.3/44		
Tetrachloroethene	0.2912	0.3515	0.4156	0.3558	0.3916	0.3754	0.3490	0.3013	11	AVG
1,3-Dichloropropane	0.5582	0.6007	0.7365	0.6637	0.7076	0.6651	0.6210	0.6504	9	AVG
2-Hexanone	1	0.3482	0.4373	0.4275	0.5237	0.5140	0.4551	0.4510	14	AVG
Dibromochloromethane	0.1915	0.2483	0.3402	0.3373	0.3836	0.3695	0.3638	0.3192	22	1STDEG
1,2-Dibromoethane		0.3515	0.4397	0.4089	0.4329	0.4093	0.3892	0.3888	13	. AVG
Chlorobenzene	#0.8766	1.0064	1.2138	1.0543	1.1285	1.0677	0.9837	1.0473	10	AVG
1,1,1,2-Tetrachloroethane	0.2385	0.2886	0.3713	0.3360	0.3641	0.3472	0.3291	0.3250	14	AVG
thylbenzene	*	1.5810	1.9493	1.6877	1.8567	1.7588	1.5715	1.7342	9	AVG
n+p-Xylene	1	0.6747	0.8088	0.6978	0.7477	0.7026	0.5931	0.7041	10	AVG
Xylene (Total)		0.6701	0.8065	0.6944	0.7425	0.6956	0.5909	0.7000	10	AVG
p-Xylene		0.6608	0.8019	0.6878	0.7321	0.6817	0.5865	0.6918	10	AVG
Styrene		1.0157	1.3047	1.1577	1.2580	1.1728	1.0317	1.1567	10	AVG
3romoform	#	0.1509	0.2360	0.2326	0.2790	0.2730	0.2775	0.2415	20	1STDEG
Sopropylbenzene	ï	1 6488	1.9976	1.6597	1.8029	1.6933	1.4619	1.7107	10	AVG
Cyclohexanone		0.3637	0.3663	0.3724	0.3908	0.3971	0.3659	0.3760	4	AVG
1,1,2,2-Tetrachloroethane	#1 0358	1.0988	1.3521	1.1425	1.2274	1 1253	1.0523	1.1477	10	AVG
rans-1,4-Dichloro-2-Buten		n 2208	0.3259	0 2796	0 3159	0.2958	0.2613	0.2847	13	AVG
Bromobenzene				0.2176	0 8348	0.7906	0.7397	0.8036		AVG
1,2,3-Trichloropropane		0.7070	0.3804	0.7007	0.3438	0.3091	0.2806	0.3211	12	
1,2,3-11-1611toropropane 1-Propylbenzene		3 /327	4 0754	3 4014	3 7650	3.5361	3 0665	3 5464	10	E .
						0.7398			7	AVG
2-Chlorotoluene						2.5927			و ا	AVG
1,3,5-Trimethylbenzene		0 9127	0582	0 7002	0 8455	0.7991	0 7447	n 8251	9	AVG
4-Chlorotoluene			0.6635	0.1702	0.50/1	0.5711	0.7771	0.5752) ģ	AVG
tert-Butylbenzene	1			0.3401	0.3941	0.4667	0.3212	0.3732	l ģ	AVG
Pentachloroethane		0.3004	7 0/5/	0.4309	2 9701	2.6861	2 3731	2 6607		AVG
1,2,4-Trimethylbenzene		2.4907	3.0024	2.3723	7 2240	7 1007	2.3/31	3 100%	10	
sec-Butylbenzene		3.1718	3.7341	2.9140	3.2209	3.1003	2.0242	3.1004	10	
o-Isopropyltoluene		2.4898	2.9915	2.3093	2.8303	2.7074	12.2320	1 7554	12	AVG
1,3-Dichlorobenzene		1.0/38	1.4/0/	1.3090	1.0148	1.4384	1.2001	1.3330	13	
1,4-Dichlorobenzene		11-9654	1.9743	11.6341	7.7093	1.5728	1.4393	11.7129		AVG
1,2,3-Trimethylbenzene		2.7817	3.3216	2.9241	2.9009	2.7357	2.5017	2.8010	9 26	AVG
Benzyl Chloride		0.9912	1.6407	11.7876	2.2263	2.1774	2.1343	1.0203		1STDE
n-Butylbenzene		1.3929	1.6250	1.3680	1.4808	1.3204	1.1606	11.3913	11	AVG
1,2-Dichlorobenzene	1	1.5759	1.7631	1.5160	1.5952	1.4934	1.3912	11.5558	8	AVG
1,3-Diethylbenzene		1.4621	1.8217	1.6891	1.7053	1.6142	1.4876	11.6300	8	AVG
1,4-Diethylbenzene		1.4437	1.7552	1.5790	1.6299	1.5384	1.3940	1.5567	8	
1,2-Diethylbenzene		2.3775	2.3013	1.8705	1.7758	1.6280	1.5078	1.9101	19	1
1,2-Dibromo-3-Chloropropan	2	0.2326	0.2720	0.2545	0.2860	0.2704	0.2609	0.2627	7	AVG
1.2.4-Trichlorobenzene		1.0478	1.2075	1.0568	1.1104	1.0596	0.9061	1.0647	9	1
Hexachlorobutadiene		0.3459	0.4119	0.3707	0.3800	0.3824	0.3274	0.3697	8	
Naphthalene	4.4035	3.8650	4.3403	3.9499	4.1652	3.9114	3.2179	3.9790	10	AVG
	1	1	l .	1	1	l .	l	1	l .	I

Minimum RRF for SPCC(#) = 0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab	Name:	Lancaster	Laboratories	Contract:	

Case No.:____ __ SDG No.:__ Lab Code: LANCAS __ SAS No.:___

Instrument ID: HP07159

Calibration Date(s): 08/15/12

08/15/12

RRF 10= ng15i10.d

RRF 1 = ng15i07.d RRF 4 = ng15i06.d

Heated Purge: (Y/N) Y

LAB FILE ID:

Calibration Times: 12:42

16:11

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

RRF 20= ng15i04.d RRF 50=	ng15i03	3.d F	RRF100=	ng15i09	P.d F	RRF300=	ng15i08	3.d		
		L					205700		%	CAL.
COMPOUND	RRF 1	RRF 4	RRF 10	RRF 20	RRF 50	RRF1UU	RKF300	RRF	RSD	METHOD
1,2,3-Trichlorobenzene		1.0716	1.2130	1.0810	1.1073	1.0514	0.8872	1.0686	10	AVG
2-Methylnaphthalene		2.6497	2.5650	2.4506	2.3149	2.2217	1.7964	2.3330	13	AVG
***************************************	=====	=====	=====	=====		1	======		=====	======
Dibromofluoromethane	0.2215	0.2259	0.2234	0.2207	0.2241	0.2239	0.2249	0.2235	1	AVG
Dibromofluoromethane(mz111)	0.2269	0.2277	0.2296	0.2268	0.2286	0.2286	0.2298	0.2283	1	AVG
Toluene-d8(mz100)	0.8970	0.8910	0.9413	0.9557	0.9556	0.9564	0.9519	0.9356	3	AVG
1.2-Dichloroethane-d4	0.0594	0.0611	0.0609	0.0605	0.0590	0.0579	0.0598	0.0598	2	AVG
1,2-Dichloroethane-d4(mz104)	0.0379	0.0382	0.0377	0.0372	0.0379	0.0383	0.0383	0.0380	1	AVG
1,2-Dichloroethane-d4(mz65)	10.2626	0.2676	0.2691	0.2699	0.2552	0.2553	0.2586	0.2626	2	AVG
Toluene-d8	1 3520	1.3400	1.4103	1.4465	1.4222	1.4220	1.3986	1.3989	. 3	AVG
								0.5086		AVG
4-Bromofluorobenzene(mz174)	0.3857	0.3760	0.4124	0.4053	0.3993	0.4045	0.4051	0.3983	3	AVG

Average %RSD

Minimum RRF for SPCC(#) = 0.10(0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %RSD for CCC(*) = 30%

Internal Standard Area and Retention Time Summary

Initial Calibration Standards:

```
/chem/HP07159.i/12aug15a.b/ng15i08.d VSTD300
/chem/HP07159.i/12aug15a.b/ng15i09.d VSTD100
/chem/HP07159.i/12aug15a.b/ng15i03.d VSTD050
/chem/HP07159.i/12aug15a.b/ng15i04.d VSTD020
/chem/HP07159.i/12aug15a.b/ng15i10.d VSTD010
/chem/HP07159.i/12aug15a.b/ng15i06.d VSTD004
/chem/HP07159.i/12aug15a.b/ng15i07.d VSTD001
```

Area Summary

File ID:

........

Internal Standard Name	ng15i08.d	ng15i09.d	ng15i03.d	ng15i04.d	ng15i10.d	ng15i06.d	ng15i07.d	Avg. Area	&RS	
=======================================			==========				=========	=======	====	
t-Butyl Alcohol-d10	373652	403539	402809	377056	374335	352356	368544	378899	5	
Fluorobenzene	1518971	1515397	1495760	1495429	1467854	1473777	1494775	1494566	1	
Chlorobenzene-d5	1067454	1045923	1031045	1012774	1023982	1095636	1064322	1048734	. 3	
1,4-Dichlorobenzene-d4	580637	584303	575556	576736	569627	575820	572672	576479	1	

%RSD of internal standard area is flagged out of spec if greater than 30.

RT Summary

File ID:

****======

Internal Standard Name	ng15i08.d	ng15i09.d	ng15i03.d	ng15i04.d	ng15i10.d	ng15i06.d	ng15i07.d	Avg. RT
		=======================================	========	=========	*********		========	=========
t-Butyl Alcohol-d10	4.179	4.170	4.179	4.188	4.181	4.197	4.204	4.185
Fluorobenzene	7.653	7.656	7.659	7.667	7.655	7.664	7.665	7.660
Chlorobenzene-d5	11.127	11.130	11.133	11.135	11.135	11.138	11.139	11.134
1,4-Dichlorobenzene-d4	13.000	13.003	13.006	13.009	13.008	13.018	13.025	13.010

Report generated on 08/17/2012 at 15:09.

^{*} indicates the retention time is greater than 30 seconds from the average RT.

INITIAL CALIBRATION VERIFICATION

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:___

Lab File ID: ng15v01.d Init. Calib. Date(s): 08/15/12 08/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

٦			1	ACTUAL	TRUE	8
i	COMPOUND	RRF	 RRF	CONC.	CONC.	DRIFT
j,			!	=====		======
i	Dichlorodifluoromethane	!	0.2404		20	
#	Chloromethane	0.2927	0.2375	16.22	20	-19
*	Vinyl Chloride	0.2963	0.2515	16.98	20	-15
	Bromomethane		0.1014		20	-43
ĺ	Chloroethane		0.0913		20	-40
i	Trichlorofluoromethane		0.3010		20	-9
i	Ethanol		0.1233		500	26
i	Acrolein		1.4895		150	-12
*	1,1-Dichloroethene		0.2186		20	7 ,
1	Freon 113	•	0.2020		20	-2
i	Acetone		0.0480		150	14
i	Methyl Iodide	•	0.3738		20	4
i	2-Propanol	0.7246	0.6801	140.81	150	-6
i	Carbon Disulfide	0.6878	0.6791	19.75	20	-1
İ	Methyl Acetate		0.2545		20	-17
İ	Allyl Chloride	0.4295	0.4032	18.77	20	-6
i	Methylene Chloride	0.2590	0.2642	20.40	20	2
ĺ	t-Butyl Alcohol	1.2041	1.0972	182.25	200	-9
ĺ	Acrylonitrile	0.1527	0.1524	99.84	100	0
İ	trans-1,2-Dichloroethene	0.2343	0.2478	21.15	20	6
Ì	Methyl Tertiary Butyl Ether	0.8223	0.8340	20.29	20	1
İ	n-Hexane	0.3136	0.2985	19.04	20	-5
Ì	1,2-Dichloroethene (total)	0.2511	0.2642	42.10	40	5
#	1,1-Dichloroethane	0.4470	0.4684	20.96	20	5 ‡
1	di-Isopropyl Ether	0.8354	0.8461	20.26	20	1
Ì	2-Chloro-1,3-Butadiene	0.3584	0.3563	19.88	20	-1
Ì	Ethyl t-Butyl Ether	0.8172	0.8333	20.40	20	2
İ	cis-1,2-Dichloroethene	0.2679	0.2806	20.94	20	5
İ	2-Butanone	0.1980	0.2094	158.65	150	6
ĺ	2,2-Dichloropropane	0.3232	0.3328	20.59	20	3
Ì	Propionitrile	1.2728	1.0846	127.83	150	-15
ĺ	Methacrylonitrile	0.1701	0.1683	148.46	150	-1
Ĺ	Bromochloromethane	0.1375	0.1319	19.19	20	-4
İ	Tetrahydrofuran	1.1734	1.1070	94.34	100	-6
*	Chloroform	0.4217	0.4100	19.45	20	-3
	1,1,1-Trichloroethane	0.3469	0.3585	20.67	20	3
1.			<u></u>			

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 1 of 3

INITIAL CALIBRATION VERIFICATION

Lab	Name:	Lancaster	Laboratories	Contract:
-----	-------	-----------	--------------	-----------

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Lab File ID: ng15v01.d Init. Calib. Date(s): 08/15/12 08/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

ī				ACTUAL	TRUE	8
1	COMPOUND	RRF	RRF	CONC.	CONC.	DRIFT
			!		======	
-	Cyclohexane		0.4232			-2
i	1,1-Dichloropropene		0.3384			_ !
ŀ	Carbon Tetrachloride	!	0.2554			0 1
-	Isobutyl Alcohol		0.3438			-10
1	Benzene		1.0630			3
1	1.2-Dichloroethane		0.3361			3
i	t-Amyl Methyl Ether		0.7916			- !
-	n-Heptane		0.2641	17.70		-11
1	n-Butanol		0.3009	908.29		
1	Trichloroethene		0.2634			
i	Methylcyclohexane		0.3968			!
 ★	1,2-Dichloropropane		0.2909			'
ī	Methyl Methacrylate	!	0.2679			
ł	Dibromomethane		0.1745			!!
i	1,4-Dioxane	!	0.1000	!		! !
!	Bromodichloromethane	!	0.2891	!	!	1 1
ŀ	2-Nitropropane	•	1.3196	!	!	-21
i	2-Chloroethyl Vinyl Ether	!	0.1805		!	! !
ï	cis-1,3-Dichloropropene	:	0.4482	!		: :
i	4-Methyl-2-Pentanone		0.4302	:	!	:
*	Toluene	!	0.9826	!	1	4 *
ŀ	trans-1,3-Dichloropropene	!	0.5762		20	3
i	Ethyl Methacrylate	:	0.6716		20	-2
i	1,1,2-Trichloroethane	:	0.3791		20	1
i	Tetrachloroethene	!	0.3792		20	5
i	1,3-Dichloropropane	0.6504	0.6724	20.68	20	3
i	2-Hexanone	!	0.4826	!	100	7
i	Dibromochloromethane	•	0.3358	•	20	-7
i	1,2-Dibromoethane	:	0.4036	i	20	4
#	Chlorobenzene	!	1.0713	!	20	2 #
Ï	1,1,1,2-Tetrachloroethane	!	0.3283		20	1
*	Ethylbenzene	•	1.7553	<u>.</u>	20	1 *
l	m+p-Xylene	0.7041	0.7170	40.73	40	2
ĺ	Xylene (Total)	•	0.4858	:	60	1
İ	o-Xylene	0.6918	0.6974	20.16	20	1
i	Styrene	:	1.1668	:	20	1
İ		İ	i .			ll

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

INITIAL CALIBRATION VERIFICATION

Control of the second control of the second

Dau	Name.	Dancascer	Dabotacorics		
Lab	Code:	LANCAS	Case No.:	SAS No.:	SDG No.:
Inst	rumen	t ID: HP07	159	ICV Date: 08/15/12	Time: 16:34

Lab File ID: ng15v01.d Init. Calib. Date(s): 08/15/12 08/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

			ACTUAL	TRUE	8
COMPOUND	RRF	RRF	CONC.	CONC.	DRIFT
	=====	=====	======	======	======
# Bromoform	0.2415	0.2141	17.15	20	-14
Isopropylbenzene	1.7107	1.7345	20.28	20	1
Cyclohexanone	0.3760	0.4384	582.99	500	17
# 1,1,2,2-Tetrachloroethane	1.1477	1.1154	19.44	20	- 3
trans-1,4-Dichloro-2-Butene	0.2847	0.2806	98.55	100	-1
Bromobenzene	0.8036	0.7830	19.49	20	- 3
1,2,3-Trichloropropane	0.3211	0.3093	19.26	20	-4
n-Propylbenzene	3.5464	3.5341	19.93	20	0
2-Chlorotoluene	0.7544	0.7326	19.42	20	· -3
1,3,5-Trimethylbenzene	2.6329	2.5684			-2
4-Chlorotoluene	0.8251	0.8067	19.56	20	-2
tert-Butylbenzene	0.5752	0.5626	. 19.56	20	-2
Pentachloroethane	0.4605	0.4144	18.00	20	-10
1,2,4-Trimethylbenzene	2.6697	2.6210	19.64	20	-2
sec-Butylbenzene	3.1004	3.0156	19.45	20	-3
p-Isopropyltoluene	2.6378	2.6472	20.07	20	0
1,3-Dichlorobenzene	1.3556	1.3682	20.19	20	1
1,4-Dichlorobenzene	1.7159	1.6367	19.08	20	-5
1,2,3-Trimethylbenzene	2.8610	2.7561	19.27	20	-4
Benzyl Chloride	1.8263	1.6463	16.54	20	-17
n-Butylbenzene	1.3913	1.3653	19.63	20	-2
1,2-Dichlorobenzene	1.5558	1.5226	19.57	20	-2
1,3-Diethylbenzene	1.6300	1.5392	. 18.89	20	-6
1,4-Diethylbenzene	1.5567	1.4920	19.17	20	-4
1,2-Diethylbenzene	1.9101	1.7952	18.80	. 20	-6
1,2-Dibromo-3-Chloropropane	0.2627	0.2321	17.67	20	-12
1,2,4-Trichlorobenzene	1.0647	1.0488	19.70	20	-1
Hexachlorobutadiene	0.3697	0.3505	18.96	20	-5
Naphthalene	3.9790	3.7268	18.73	20	-6
1,2,3-Trichlorobenzene	1.0686	1.0310	19.30	20	-4
2-Methylnaphthalene	2.3330	2.0620	17.68	20	-12
<u> </u>	1		ļ.		
	l	l	l		l <u></u> _

Average %Drift

-

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

VOLATILE CONTINUING CALIBRATION CHECK

Tab Cada Tancac	a 37 -	030 37	

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP07159 Calibration Date: 09/05/12 Time: 12:18

Lab Name: Lancaster Laboratories Contract:

Lab File ID: ns05c01.d Init. Calib. Date(s): 08/15/12 08/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

-				ACTUAL	TRUE	용
Ì	COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
Ì	=======================================	=====	=====	======	======	======
1	Dichlorodifluoromethane	0.3288	0.3273	49.78	50	0
#	Chloromethane	0.2927	0.2706	46.22	50	-8
*	Vinyl Chloride	0.2963	0.2821	47.60	50	-5
-	Bromomethane	0.1793	0.1805	50.32	50	1
	Chloroethane	0.1517	0.1533	50.52	. 50	1
	Trichlorofluoromethane	0.3295	0.3448	52.32	50	5
1	Ethanol	0.0982	0.0907	1154.53	1250	· ~8
	Acrolein	1.6927	1.7233	509.05	500	2
*	1,1-Dichloroethene	0.2034	0.2202	54.12	50	8
1	Freon 113	0.2067	0.2256	54.56	50	9
	Acetone	0.0420	0.0462	110.00	100	10
1	Methyl Iodide	0.3595	0.4029	56.04	50	12
Ì	2-Propanol	0.7246	0.6836	235.87	250	-6
	Carbon Disulfide	0.6878	0.7713	56.07	50	12
1	Methyl Acetate	0.3065	0.2924	47.71	50	-5
	Allyl Chloride	0.4295	0.4119	47.95	50	-4
	Methylene Chloride	0.2590	0.2641	50.98	50	2
	t-Butyl Alcohol	1.2041	1.0892	226.14	250	-10
ĺ	Acrylonitrile	0.1527	0.1575	51.57	50	3
	trans-1,2-Dichloroethene	0.2343	0.2521	53.82	50	8
-	Methyl Tertiary Butyl Ether	0.8223	0.8421	51.21	50	2
	n-Hexane	0.3136	0.3557	56.72	50	13
	1,2-Dichloroethene (total)	0.2511	0.2636	105.15	100	5
#	1,1-Dichloroethane	0.4470	0.4722	52.81	50	6 :
	di-Isopropyl Ether	0.8354	0.8744	52.33	50	5
1	2-Chloro-1,3-Butadiene	0.3584	0.3604	50.28	50	1
Į	Ethyl t-Butyl Ether	0.8172	0.8216	50.27	50	1
1	cis-1,2-Dichloroethene	0.2679	0.2751	51.33	50	3
Ì	2-Butanone	0.1980	0.2099	105.98	100	6
	2,2-Dichloropropane	0.3232	0.3401	52.62	50	5
ĺ	Propionitrile	1.2728	1.1416	224.23	250	-10
	Methacrylonitrile	0.1701	0.1600	117.57	125	-6
	Bromochloromethane	0.1375	0.1413	51.39	50	3
	Tetrahydrofuran	1.1734	1.2401	105.69	100	6
*	Chloroform	0.4217	0.4270	50.63	50	1
-	1,1,1-Trichloroethane	0.3469	0.3434	49.49	50	-1
١.						

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

page 1 of 4

7A VOLATILE CONTINUING CALIBRATION CHECK

ab	Name:	Lancaster	Laboratories	Contract:	
			-andra con a co	concrace.	

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP07159 Calibration Date: 09/05/12 Time: 12:18

Lab File ID: ns05c01.d Init. Calib. Date(s): 08/15/12 08/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

 					TRUE	~
==	COMPOUND	RRF	RRF50	ACTUAL CONC.	CONC.	DRIFT
			!		======	
İ	Cyclohexane		0.4537	!	!	
!	Cyclohexane(mz 84)		0.3726	!		!
•	Cyclohexane(mz 69)		0.1380	!		
:	.,1-Dichloropropene		0.3496	!	!	
:	Carbon Tetrachloride		0.2904			_
!	sobutyl Alcohol		0.3690			
:	Benzene		1.0561			
:	.,2-Dichloroethane		0.3441			_
!	,2-Dichloroethane(mz 98)		0.0349	!		4
:	-Amyl Methyl Ether		0.7907			
:	- Heptane		0.3037			-
:	a-Butanol		•	1157.53		
!	richloroethene		0.2602			
! -	Methylcyclohexane		0.4034			
•	,,2-Dichloropropane		0.2956			
	Methyl Methacrylate		0.2720			
!	bromomethane		0.1789			
:	.,4-Dioxane		0.1039			
!	romodichloromethane		0.3209			12
:	-Nitropropane		2.1902			31
•	~ ~		0.1984			
:	· · · · · · · · · · · · · · · · · · ·		0.4293			
:	-Methyl-2-Pentanone		0.4608			8.
'	oluene		0.9548			1
	rans-1,3-Dichloropropene		0.5847		50	4
•	thyl Methacrylate		0.6351		50	-7
:	,1,2-Trichloroethane		0.3775			1
!	etrachloroethene		0.4028	:		11
,	,3-Dichloropropane		0.4028	. :		2
:	-Hexanone		0.4929			9
!	ibromochloromethane		0.3884	:		7
!	,2-Dibromoethane		0.4032	:	:	
•	hlorobenzene		1.0762		:	3
	,1,1,2-Tetrachloroethane		0.3537		:	9
	thylbenzene		1.7557	:		1
	+p-Xylene		0.7143	101.45	100	1
, 	ub warene	0./041	 	102.401	±00	1

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 2 of 4

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab	Name:	Lancaster	Laboratories	Contract:	

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Instrument ID: HP07159 Calibration Date: 09/05/12 Time: 12:18

Lab File ID: ns05c01.d Init. Calib. Date(s): 08/15/12 08/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

		<u> </u>	ACTUAL	TRUE	%
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
	=====	=====	======	======	======
Xylene (Total)	0.7000	0.7077	151.64	150	1
o-Xylene	0.6918	0.6944	50.19	50	0
Styrene	1.1567	1.1699	50.57	50	1
# Bromoform	0.2415	0.2993	55.41	50	11
Isopropylbenzene	1.7107	1.7357	50.73	50	1
Cyclohexanone	0.3760	0.2841	472.15	625	-24
# 1,1,2,2-Tetrachloroethane	1.1477	1.0327	44.99	50	-10
trans-1,4-Dichloro-2-Butene	0.2847	0.2627	115.34	125	-8
Bromobenzene	0.8036	0.7882	49.04	50	-2
1,2,3-Trichloropropane	0.3211	0.2921	45.48	50	-9
n-Propylbenzene	3.5464	3.4017	47.96	50	-4
2-Chlorotoluene	0.7544	0.7086	46.97	50	-6
1,3,5-Trimethylbenzene	2.6329	2.4718	46.94	50	-6
4-Chlorotoluene	0.8251	0.7766	47.06	50	-6
tert-Butylbenzene	0.5752	0.5594	48.63	50	-3
Pentachloroethane	0.4605	0.4770	51.79	50	4
1,2,4-Trimethylbenzene	2.6697	2.5808	48.34	50	-3
sec-Butylbenzene	3.1004	2.9584	47.71	50	-5
p-Isopropyltoluene	2.6378	2.6200	49.66	. 50	-1
1,3-Dichlorobenzene	1.3556	1.3983	51.58	50	3
1,4-Dichlorobenzene	1.7159	1.5812	46.08	50	-8
1,2,3-Trimethylbenzene	2.8610	2.6872	46.96	50	-6
Benzyl Chloride	1.8263	1.8246	43.63	50	-13
n-Butylbenzene	1.3913	1.3171	47.34	50	-5
1,2-Dichlorobenzene	1.5558	1.4617	46.98	50	-6
1,3-Diethylbenzene	1.6300	1.5491	47.52	50	-5
1,4-Diethylbenzene	1.5567	1.4564	46.78	50	-6
1,2-Diethylbenzene	1.9101	1.5753	45.31	50	· -9
1,2-Dibromo-3-Chloropropane	0.2627	0.2273	43.26	50	-13
1,2,4-Trichlorobenzene	1.0647	0.9982	46.88	50	-6
Hexachlorobutadiene	0.3697	0.3746	50.66	50	1
Naphthalene	3.9790	3.5331	44.40	50	-11
1,2,3-Trichlorobenzene	1.0686	1.0033	46.94	50	-6
2-Methylnaphthalene	· ·	1.8848		50	-19
=======================================	3	=====		======	!
Dibromofluoromethane	0.2235	0.2308	51.63	50	3
	l	l		l	l

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(*)=20%

page 3 of 4

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab	Name: Lancaster	o Na	Laboratories	Contract:
Lab	Name: Lancaster	o Na	Laboratories	Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Instrument ID: HP07159 Calibration Date: 09/05/12 Time: 12:18

Lab File ID: ns05c01.d Init. Calib. Date(s): 08/15/12 08/15/12

Matrix: (soil/water) WATER Level: (low/med) LOW GC Column: DB-624 ID: .25

	l		ACTUAL	TRUE	ક
COMPOUND	RRF	RRF50	CONC.	CONC.	DRIFT
=======================================	=====	======	======	======	======
Dibromofluoromethane(mz111)	0.2283	0.2352	51.51	50	3
Toluene-d8 (mz100)	0.9356	0.9449	50.50	50	1
1,2-Dichloroethane-d4	0.0598	0.0599	50.09	50	0
1,2-Dichloroethane-d4(mz104)	0.0380	0.0389	51.30	50	3
1,2-Dichloroethane-d4(mz65)	0.2626	0.2637	50.20	50	0
Toluene-d8	1.3989	1.4142	50.55	50	1
4-Bromofluorobenzene	0.5086	0.5131	50.44	50	1
4-Bromofluorobenzene (mz174)	0.3983	0.4391	55.12	50	10
<u> </u>	ĺ		ĺ	ĺ	

Average %Drift

Minimum RRF for SPCC(#)=0.10 (0.30 for Chlorobenzene, 1,1,2,2-Tetrachloroethane) Maximum %Drift for CCC(#)=20%

page 4 of 4

Lancaster Laboratories Continuing Calibration Internal Standard Check

Initial Calibration Standards:

```
/chem/HP07159.i/12aug15a.b/ng15i07.d
/chem/HP07159.i/12aug15a.b/ng15i06.d
/chem/HP07159.i/12aug15a.b/ng15i10.d
/chem/HP07159.i/12aug15a.b/ng15i04.d
/chem/HP07159.i/12aug15a.b/ng15i03.d
/chem/HP07159.i/12aug15a.b/ng15i09.d
/chem/HP07159.i/12aug15a.b/ng15i08.d
```

File /chem/HP07159.i/12aug15a.b/ng15i03.d is Mid Level Calibration Standard used for comparison.

Current Continuing Calibration Standard:

/chem/HP07159.i/12sep05b.b/ns05c01.d

RT Summary

File ID:

Internal Standard Name	ns05c01.d	ICAL RT	In Spec
=======================================	=========	=======	=======
t-Butyl Alcohol-d10	4.237	4.179	Yes .
Fluorobenzene	7.711	7.659	Yes
Chlorobenzene-d5	11.166	11.133	Yes
1,4-Dichlorobenzene-d4	13.028	13.006	Yes

A "No" indicates the retention time is greater than 30 seconds from the referenced ICAL standard.

Area Summary

File ID:

Internal Standard Name	ns05c01.d	ICAL Area	Low Limit	High Limit	In Spec
=======================================	========		==========	=========	=======
t-Butyl Alcohol-d10	379512	402809	201404	805618	Yes
Fluorobenzene	1511702	1495760	747880	2991520	Yes
Chlorobenzene-d5	1061639	1031045	515522	2062090	Yes
1,4-Dichlorobenzene-d4	629939	575556	287778	1151112	Yes

A "No" indicates the internal standard area is outside acceptable QC limits.

Comments:		
COMMETICS:		

report generated on 09/05/2012 at 13:42

ЯΔ VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.: PTL09

Date Analyzed: 09/05/12 Lab File ID (Standard): ns05c01.d

Instrument ID: HP07159 Time Analyzed: 12:18

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

		IS1(FBZ)		IS2 (CBZ)		IS3 (DCB)	1	IS4 (TBA)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #	AREA #	RT #
	========	AREA #	======	AKEA # =======	======	ANDA	======	========	======
1	12 HOUR STD	1511702	7.711	1061639	11.166	629939	13.028	379512	4.237
	UPPER LIMIT	3023404	8.211	2123278	11.1666	1259878	13.528	759024	4.737
ļ	LOWER LIMIT	755851	7.211	530820	10.666	314970	12.528	189756	3.737
				530620 ========	10.666 ======	314970 	======	=======	3.737
ļ	LAB SAMPLE	=======	======	= = = = = = 	-	 			
	ID								
			======	 ========		 == ==== ======	======	========	======
01	VBLKN08	======= 1488774	7.716	1071249	11.177	!	13.057	362023	4.260
01	LCSN08	1472353	7.718	1071249	11.177	603754	13.037	372042	4.247
02	6769183	1517353	7.708	1021474	11.104		13.060	360404	4.252
04	6769183	1478279	7.713	1055396	11.178		13.064	349191	4.255
05	6769185	14/82/9	7.716	1033338	11.178 11.181	588743	13.061	343242	4.252
06	6769186	1435372	7.714	1039166	11.180	583185	13.060	'	4.257
07	6769187	1433372	7.715	1039100	11.182	574669	13.062	336169	4.259
081	6769188	1421023	7.713 7.718	1028312	11.179		13.059	322974	4.256
09	6769189	1418412	7.715	1010000	11.177		13.062	322075	4.254
!	6769189	1406724	7.715	1010000	11.177		13.064	319483	4.255
10		1348910	7.717	959829	11.176		13.061	308424	4.265
11	6769191	1348910	7.714	979637	11.170	555730	13.061	301894	4.258
12	6769192 6769193	1343036	7.713	980562	11.181	549973	13.061	318279	4.246
13	6769193	1343036	7.714	975949	11.131		13.062	306792	4.259
14	6769194	1343678	7.720	970756	11.170		13.061	313460	4.258
15	6769195 6769196MS	1346092	7.720	933556	11.165		13.032	332915	4.236
16 17	6769196MS 6769197MSD	1374043	7.709	946971	11.170		13.032		4.241
	6769197MSD	1374043	7.708	978369	11.176	560783	13.057	331249	4.259
18	6769198	1392400	7.714	988347	11.178		13.061	308232	4.258
19	6769199	1358923	7.714	978395	11.176		13.061	315175	4.259
20		1341635	7.719	970602	11.170		13.062	303157	4.251
21	6769201		7.719	967250	11.180	542832	13.062	301102	4.259
22	6769202	1343545	/ · / 1 4	30/230 	11.102	2502FC	13.002	501102	1.235

UPPER LIMIT = + 100%

of internal standard area.

IS1 (FBZ) = Fluorobenzene
IS2 (CBZ) = Chlorobenzene - d5
IS3 (DCB) = 1,4 - Dichlorobenzene - d4

LOWER LIMIT = - 50%

IS4 (TBA)=t-Butyl Alcohol-d10

of internal standard area.

[#] Column used to flag values outside QC limits with an asterisk

^{*} Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.: PTL09

Date Analyzed: 09/05/12 Lab File ID (Standard): ns05c01.d

Time Analyzed: 12:18 Instrument ID: HP07159

Matrix: (soil/water) WATER Level: (low/med) LOW Column: (pack/cap) CAP

- 1		IS1(FBZ)		IS2 (CBZ)		IS3 (DCB)		IS4 (TBA)	
ĺ	ĺ	AREA #	RT #	AREA #	RT #	AREA #	RT #	AREA #	RT #
ĺ	=======================================	========	======	=======	======		======	=======	======
j	12 HOUR STD	1511702	7.711	1061639	11.166	629939	13.028	379512	4.237
i	UPPER LIMIT	3023404	8.211	2123278	11.666	1259878	13.528	759024	4.737
Ì	LOWER LIMIT	755851	7.211	530820	10.666	314970	12.528	189756	3.737
Í	=======================================	========	======		======	========	======	=======	======
j	LAB SAMPLE								
Ì	ID								
ĺ		========	======	========	======	=======	======	========	======
23	6769203	1309650	7.717	946375	11.178	534443	13.064	308957	4.256
24	6769204	1307010	7.716	926400	11.178	529556	13.064	304596	4.255
İ			l		·				

IS1 (FBZ) = Fluorobenzene

IS2 (CBZ) =Chlorobenzene-d5

IS3 (DCB) = 1,4-Dichlorobenzene-d4

IS4 (TBA) = t - Butyl Alcohol - d10

UPPER LIMIT = + 100%

of internal standard area.

of internal standard LOWER LIMIT = - 50%

of internal standard area.

Column used to flag values outside QC limits with an asterisk

* Values outside of QC limits.

page 2 of 2

Sample Data

Lancaster Laboratories

LOQ/MDL Summary GC/MS Volatiles

SDG: PTL09

Fraction: Volatiles by GC/MS

10903: Volatiles by 8260 Analyte Name	Default MDL	Default LOQ	Units
Dichlorodifluoromethane	2	5	ug/l
Chloromethane	1	5	ug/l
Vinyl Chloride	1	5	ug/l
Bromomethane	1	5	ug/l
Chloroethane	1	5	ug/l
Trichlorofluoromethane	2	5	ug/l
1,1-Dichloroethene	0.8	5	ug/l
Acetone	6	20	ug/l
Methylene Chloride	2	5	ug/l
trans-1,2-Dichloroethene	0.8	5	ug/l
Methyl Tertiary Butyl Ether	0.5	5	ug/l
1,1-Dichloroethane	1	5	ug/l
2-Butanone	3	10	ug/l
cis-1,2-Dichloroethene	0.8	5	ug/l
2,2-Dichloropropane	1	5	ug/l
Bromochloromethane	1	5	ug/l
Chloroform	0.8	5	ug/l
1,1,1-Trichloroethane	0.8	5	ug/l
1,1-Dichloropropene	1	5	ug/l
Carbon Tetrachloride	1	5	ug/l
Benzene	0.5	5	ug/l
1,2-Dichloroethane	1	5	ug/l
Trichloroethene	1	5	ug/i
1,2-Dichloropropane	1	5	ug/l
Dibromomethane	1	5	ug/l
Bromodichloromethane	1	5	ug/l
cis-1,3-Dichloropropene	1	5	ug/l
4-Methyl-2-pentanone	3	10	ug/l
Toluene	0.7	5	ug/l
trans-1,3-Dichloropropene	1	5	ug/l
1,1,2-Trichloroethane	0.8	5	ug/l
Tetrachloroethene	0.8	5	ug/l
1,3-Dichloropropane	i	5	ug/l
Dibromochloromethane	1	5	ug/l
1,2-Dibromoethane	1	5	ug/l
Chlorobenzene	0.8	5	ug/l
1,1,1,2-Tetrachloroethane	1	5	ug/l
Ethylbenzene	0.8	5	ug/l
m+p-Xylene	0.8	5	ug/l
o-Xylene	0.8	5	ug/l
Styrene	1	5	ug/l
Bromoform		5	ug/l
Isopropylbenzene	1	5	ug/l
Bromobenzene	1	5	ug/l
1,1,2,2-Tetrachloroethane	1	5	ug/l
1,2,3-Trichloropropane	1	5	ug/l
n-Propylbenzene	1	5	ug/l

Lancaster Laboratories

LOQ/MDL Summary GC/MS Volatiles

SDG: PTL09

Fraction: Volatiles by GC/MS

10903: Volatiles by 8260	Default	Default	Tinita
Analyte Name	MDL	LOQ	Units
2-Chlorotoluene	1	5	ug/l
1,3,5-Trimethylbenzene	1	5	ug/l
4-Chlorotoluene	1	_ 5	ug/l
tert-Butylbenzene	1	5	ug/l
1,2,4-Trimethylbenzene	1	5	ug/l
sec-Butylbenzene	1	5	ug/l
1.3-Dichlorobenzene	1	5	ug/l
p-Isopropyltoluene	1	5	ug/l
1,4-Dichlorobenzene	1	5	ug/l
n-Butylbenzene	1	5	ug/l
1,2-Dichlorobenzene	1	5	ug/l
1,2-Dibromo-3-chloropropane	2	5	ug/l
1,2,4-Trichlorobenzene	1	5	ug/l
Hexachlorobutadiene	2	5	ug/l
Naphthalene	1	5	ug/l
1.2.3-Trichlorobenzene	1	5	ug/l

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769183

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s32.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

CAS NO. COMPOUND (ug/l of ug/k)	g, ug, 1	Q
75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	U
75-01-4Vinyl Chloride	5	U
74-83-9Bromomethane	5	U
75-00-3Chloroethane	5	U
75-69-4Trichlorofluoromethane	5	U
75-35-41,1-Dichloroethene	5	U
67-64-1Acetone	20	ט
75-09-2Methylene Chloride	5	ט
156-60-5trans-1,2-Dichloroethene	5	ט
1634-04-4Methyl Tertiary Butyl Ether	5	ן ט
75-34-31,1-Dichloroethane	5	U
156-59-2cis-1,2-Dichloroethene	5	U
78-93-32-Butanone	10	U
594-20-72,2-Dichloropropane	5	U
74-97-5Bromochloromethane	5	U
67-66-3Chloroform	5	ן ט
71-55-61,1,1-Trichloroethane	5	ן ט
563-58-61,1-Dichloropropene	5	U
56-23-5Carbon Tetrachloride	5	U
71-43-2Benzene	5	U
107-06-21,2-Dichloroethane	5	U
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	Ū
74-95-3Dibromomethane	5	U
75-27-4Bromodichloromethane	5	U
10061-01-5cis-1,3-Dichloropropene	5	ט
108-10-14-Methyl-2-Pentanone	10	U
108-88-3Toluene	5	ָ <u>װ</u>
10061-02-6trans-1,3-Dichloropropene	5	ן די
		İ
	,	

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.

	Į.	
	PAT-T	
ontract:		

Lab Name: Lancaster Laboratories Contract

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769183

CAS NO. COMPOUND

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s32.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L

79-00-5	1,1,2-Trichloroethane	5	ע
127-18-4	Tetrachloroethene	5	U
142-28-9	1,3-Dichloropropane	5	U
124-48-1	Dibromochloromethane	5	U
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	U
630-20-6	1,1,1,2-Tetrachloroethane	5	U
100-41-4	Ethylbenzene	5	U
179601-23-1	m+p-Xylene	5	ָ <u>ע</u>
95-47-6	o-Xylene	5	ָ ט
100-42-5	Styrene	5	ָ ט
75-25-2	Bromoform	5	ָ <u>.</u>
98-82-8	Isopropylbenzene	5	ָ ד
	1,1,2,2-Tetrachloroethane	5	U
	Bromobenzene	5	υ
96-18-4	1,2,3-Trichloropropane	5	Ū
103-65-1	n-Propylbenzene	5	U
	2-Chlorotoluene	5	ן ע
	1,3,5-Trimethylbenzene	5	İυ
	4-Chlorotoluene	5	İυ
98-06-6	tert-Butylbenzene	5	įυ
	1,2,4-Trimethylbenzene	j 5	jυ
	sec-Butylbenzene	5	ָן ט
	p-Isopropyltoluene	5	i ט
	1,3-Dichlorobenzene	5	ָ ט
	1,4-Dichlorobenzene	5	ָ ט
	n-Butylbenzene	j 5	υ
	1,2-Dichlorobenzene	j 5	U
	1,2-Dibromo-3-Chloropropane	5	U
	1,2,4-Trichlorobenzene	j	ĺυ

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PAT-T

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769183

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s32.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 87-68-3-----Hexachlorobutadiene 5 | U 5 91-20-3-----Naphthalene U 5 | U 87-61-6-----1,2,3-Trichlorobenzene

PAT-T

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769183

Data file: /chem/HP07159.i/12sep05b.b/ns05s32.d Inje
Data file Sample Info. Line: PAT-T;6769183;1;0;;PTL09;PLM;;ns05b05; Inst
Date, time and analyst ID of latest file update: 05-Sep-2012 17:07 ers02237 Injection date and time: 05-SEP-2012 13:48 Instrument ID: HP07159.i Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time (Last Method Edit): 05-SEP-2012 13:23 Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.252(-0.014)	438	65	360404 (-5)	250.00	
70) Fluorobenzene	7.713(-0.002)	1007	96	1517353 (0)	50.00	
98) Chlorobenzene-d5	11.175 (-0.008)	1576	117	1090123 (3)	50.00	
130) 1,4-Dichlorobenzene-d4	13.061 (-0.033)	1886	152	616390 (-2)	50.00	

Surrogate Standards	I.S. Ref. =====	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51) Dibromofluoromethane	(1)	6.795 (-0.001)	113	341920	50.411	101%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	7.251 (0.000)	102	92308	50.883	102%		77 - 113
86) Toluene-d8	(2)	9.733(0.000)	98	1456837	47.766	96%		80 - 113
114) 4-Bromofluorobenzene	(2)	12.178 (-0.001)	95	523870	47.243	94%		78 - 113

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ
	Dichlorodifluoromethane	(1)				Not Detected			======	======	1	5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					î	5
5)	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
19)	Acetone	(1)				Not Detected					6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)				Not Detected					3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
	Trichloroethene	(1)				Not Detected					1	5
	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
	Toluene	(2)				Not Detected					0.7	5
	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

PAT-T Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769183

Data file: /chem/HP07159.i/12sep05b.b/ns05s32.d Injection date and time: 05-SEP-2012 13:48
Data file Sample Info. Line: PAT-T;6769183;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 05-Sep-2012 17:07 ers02237

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT (+/-	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sa	LOQ emple)
93) Tetrachloroethene	(2)		 =====	Not Detected					0.8	5
94) 1,3-Dichloropropane	(2)			Not Detected	i				1	5
96) Dibromochloromethane	(2)			Not Detected	i				1	5
97) 1,2-Dibromoethane	(2)			Not Detected	i				1	5
100) Chlorobenzene	(2)			Not Detected	ì				0.8	5
101) 1,1,1,2-Tetrachloroethane	(2)			Not Detected	i				1	5
102) Ethylbenzene	(2)			Not Detected	i				0.8	5
103) m+p-Xylene	(2)			Not Detected	i				0.8	5
106) o-Xylene	(2)			Not Detected	i				0.8	5
109) Styrene	(2)			Not Detected	i				1	5
110) Bromoform	(2)			Not Detected	i				1	5
111) Isopropylbenzene	(2)			Not Detected	i				1	5
116) 1,1,2,2-Tetrachloroethane	(3)			Not Detected	i				1	5
117) Bromobenzene	(3)			Not Detected	i				1	5
119) 1,2,3-Trichloropropane	(3)			Not Detected	i				1	5
120) n-Propylbenzene	(3)			Not Detected	i				1	5
121) 2-Chlorotoluene	(3)			Not Detected	i				1	5
122) 1,3,5-Trimethylbenzene	(3)			Not Detected	i				1	5
123) 4 Chlorotoluene	(3)			Not Detected	i				1	5
124) tert-Butylbenzene	(3)			Not Detected	3				1	5
126) 1,2,4-Trimethylbenzene	(3)			Not Detected	3				1	5
127) sec-Butylbenzene	(3)			Not Detected	3				1	5
128) p-Isopropyltoluene	(3)			Not Detected	1				1	5
129) 1,3-Dichlorobenzene	(3)			Not Detected	i				1	5
131) 1,4-Dichlorobenzene	(3)			Not Detected	i				1	5
136) n-Butylbenzene	(3)			Not Detected	i				1	5
137) 1,2-Dichlorobenzene	(3)			Not Detected	i				1	5
139) 1,2-Dibromo-3-Chloropropane	(3)			Not Detected	3				2	5
140) 1,2,4-Trichlorobenzene	(3)			Not Detected	i				1	5
141) Hexachlorobutadiene	(3)			Not Detected	3				2	5
142) Naphthalene	(3)			Not Detected	i				1	5
144) 1,2,3-Trichlorobenzene	(3)			Not Detected	i .				1	5

Total number of targets = 63

Digitally signed by Emily R. Styer on 09/05/2012 at 17:17. Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s32.d Injection date and time: 05-SEP-2012 13:48

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:07 ers02237

Sample Name: PAT-T Lab Sample ID: 6769183

Digitally signed by Emily R. Styer on 09/05/2012 at 17:17.
Target 3.5 esignature user ID: ers02237

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s32.d Injection date and time: 05-SEP-2012 13:48

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23 Date, time and analyst ID of latest file update: 05-Sep-2012 17:07 ers02237

Lab Sample ID: 6769183 Sample Name: PAT-T

Digitally signed by Emily R. Styer on 09/05/2012 at 17:17. Target 3.5 esignature user ID: ers02237

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s32.d Injection date and time: 05-SEP-2012 13:48

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:07 ers02237

Sample Name: PAT-T Lab Sample ID: 6769183

Compounds	I.S. Ref. =====	RT ======	QIon	Area =======	On-Column Amount (ng)
26) *t-Butyl Alcohol-d10	(4)	4.252	65	360404	250.000
51) \$Dibromofluoromethane	(1)	6.795	113	341920	50.411
62) \$1,2-Dichloroethane-d4	(1)	7.251	102	92308	50.883
70) *Fluorobenzene	(1)	7.713	96	1517353	50.000
86) \$Toluene-d8	(2)	9.733	98	1456837	47.766
98) *Chlorobenzene-d5	(2)	11.175	117	1090123	50.000
114)\$4-Bromofluorobenzene	(2)	12.178	95	523870	47.243
130) *1,4-Dichlorobenzene-d4	(3)	13.061	152	616390	50.000

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Emily R. Styer on 09/05/2012 at 17:17. Target 3.5 esignature user ID: ers02237

^{\$ =} Compound is a surrogate standard.

EPA	SAMPLE	NO.

Lab	Name:	Lancaster	Laboratories

Contract:____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

PAT23

Matrix: (soil/water) WATER Lab Sample ID: 6769184

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP07159.i/12sep05b.b/ns05s33.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

(ug, 2 02 ug, 1	-3, - 3, -	*
75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	U
75-01-4Vinyl Chloride	5	U
74-83-9Bromomethane	5	U
75-00-3Chloroethane	5	U
75-69-4Trichlorofluoromethane	5	U
75-35-41,1-Dichloroethene	5	U
67-64-1Acetone	28	İ
75-09-2Methylene Chloride	5	U
156-60-5trans-1,2-Dichloroethene	5	U
1634-04-4Methyl Tertiary Butyl Ether	5	U
75-34-31,1-Dichloroethane	5	U
156-59-2cis-1,2-Dichloroethene	5	U
78-93-32-Butanone	13	ĺ
594-20-72,2-Dichloropropane	5	U
74-97-5Bromochloromethane	5	U
67-66-3Chloroform	5	U
71-55-61,1,1-Trichloroethane	5	ָ <u>'</u>
563-58-61,1-Dichloropropene	5	U
56-23-5Carbon Tetrachloride	5	U
71-43-2Benzene	5	U
107-06-21,2-Dichloroethane	5	U
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	U
74-95-3Dibromomethane	5	U
75-27-4Bromodichloromethane	5	U
10061-01-5cis-1,3-Dichloropropene	5	Ū
108-10-14-Methyl-2-Pentanone	10	ט
108-88-3Toluene	5	ד
10061-02-6trans-1,3-Dichloropropene	5	ד
		l
· · · · · · · · · · · · · · · · · · ·		

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:

Matrix: (soil/water) WATER

Lab Sample ID: 6769184

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s33.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

T9-00-5			CONCENT	TRATION	UNITS:		
127-18-4Tetrachloroethene	CAS NO.	COMPOUND	(ug/L or	ug/Kg)	ug/L		Q
142-28-91,3-Dichloropropane 5 U 124-48-1Dibromochloromethane 5 U 106-93-41,2-Dibromoethane 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 179601-23-1	79-00-5	1,1,2-Trichl	oroethane			5	U
124-48-1	127-18-4	Tetrachloroe	thene	į		5	ן ט
124-48-1	142-28-9	1,3-Dichlord	propane	İ		5	ן ט ן
108-90-7	124-48-1	Dibromochlor	omethane	ĺ		5	ן ע
108-90-7	106-93-4	1,2-Dibromoe	thane	İ		5	ן ט ן
100-41-4Ethylbenzene	•			İ		5	ן ט
179601-23-1m+p-Xylene	630-20-6	1,1,1,2-Tetr	achloroethai	ne		5	ן ט
95-47-6	100-41-4	Ethylbenzene	:	į		5	ן ע
95-47-6	179601-23-1-	m+p-Xylene		j		5	ן טן
100-42-5				į		5	ן ט ן
98-82-8	1	-		į		5	ן ט ן
79-34-51,1,2,2-Tetrachloroethane 5 U 108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-6	75-25-2	Bromoform		į		5	ן ט ן
79-34-51,1,2,2-Tetrachloroethane 5 U 108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-6	98-82-8	Isopropylben	zene	į		5	ן ען
108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 98-06-6tert-Butylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 135-98-6	•			ne İ		5	וֹ שׁ וֹ
103-65-1n-Propylbenzene	108-86-1	Bromobenzene		j		5	ן ען
95-49-82-Chlorotoluene	96-18-4	1,2,3-Trichl	oropropane	ĺ		5	ן טן
108-67-81,3,5-Trimethylbenzene	103-65-1	n-Propylbenz	ene	j		5	ן ען
106-43-44-Chlorotoluene	95-49-8	2-Chlorotolu	ene	j		5	ן ט
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-6	108-67-8	1,3,5-Trimet	hylbenzene	j		5	ן ט ן
95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-6p-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8	106-43-4	4-Chlorotolu	ene	j		5	ן טן
95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-6p-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8	98-06-6	tert-Butylbe	nzene	j		5	ן ע ן
135-98-8sec-Butylbenzene	•	_		į		5	ן טן
541-73-11,3-Dichlorobenzene	135-98-8	sec-Butylben	zene	j		5	ן ען
106-46-71,4-Dichlorobenzene	99-87-6	p-Isopropylt	oluene	j		5	ן טן
104-51-8n-Butylbenzene 5 U	541-73-1	1,3-Dichloro	benzene	İ		5	ן טן
·	106-46-7	1,4-Dichloro	benzene	j		5	ן ע
1 05 50 1 1 2 Dishlambanana 5 W	104-51-8	n-Butylbenze	ne	İ		5	U
95-50-11,2-Dichlorobenzene	95-50-1	1,2 - Dichloro	benzene	ĺ		5	ן ט
96-12-81,2-Dibromo-3-Chloropropane 5 U	96-12-8	1,2-Dibromo-	3-Chloroprop	pane		5	ן די
120-82-11,2,4-Trichlorobenzene	120-82-1	1,2,4-Trichl	orobenzene	j		5	U
	ĺ			i_			lİ

EPA	SAMPLE	NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769184

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s33.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.	COMPOUND	(ug/L or)	ug/Kg) ug/L		Q
87-68-3	Hexachlorob	utadiene		5	U
91-20-3	Naphthalene		j	5	U
87-61-6	1,2,3-Trich	lorobenzene	İ	5	U
İ					

PAT23 Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769184

Data file: /chem/HP07159.i/12sep05b.b/ns05s33.d Injection date and time: 05-SEP-2012 14:11
Data file Sample Info. Line: PAT23;6769184;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:25 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.255 (-0.018)	438	65	349191 (-8)	250.00	
70) Fluorobenzene	7.716(-0.005)	1007	96	1478279 (-2)	50.00	
98) Chlorobenzene-d5	11.178 (-0.011)	1576	117	1055396 (-1)	50.00	
130) 1,4-Dichlorobenzene-d4	13.064 (-0.036)	1886	152	591365 (-6)	50.00	

	rrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.798 (-0.001)	113	339539	51.383	103%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.254 (0.000)	102	88743	50.211	100%		77 - 113
86)	Toluene-d8	(2)	9.730(0.000)	98	1408719	47.708	95%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.188(-0.002)	95	513542	47.835	96%		78 - 113

Tar	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	roo
			=====	========						======	=======	
1)	Dichlorodifluoromethane	(1)				Not Detected					1	5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
19)	Acetone	(1)	3.65	3(-0.004)	58	34998	28.211	28.21			6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)	6.33	6(-0.024)	43	73362MA	12.531	12.53			3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1.	5
	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
	1,2-Dichloroethane	(1)				Not Detected					1	5
	Trichloroethene	(1)				Not Detected					1	5
	1,2-Dichloropropane	(1)				Not Detected					1	5
	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
	Toluene	(2)				Not Detected					0.7	5
	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

 ${\tt M} = {\tt Compound}$ was manually integrated. A = User selected an alternate peak.

PAT23

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769184

Injection date and time: 05-SEP-2012 14:11 Instrument ID: HP07159.i Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732
Calibration date and time (Last Method Edit): 05-SEP-2012 13:23
Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Com	npounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sam	LOQ nple)
93) Tetrac	chloroethene	(2)				Not Detected					0.8	5
94) 1,3-Di	chloropropane	(2)				Not Detected					1	5
96) Dibrom	nochloromethane	(2)				Not Detected					1	5
97) 1,2-Di	bromoethane	(2)				Not Detected					1	5
100) Chloro	benzene	(2)				Not Detected					0.8	5
101) 1,1,1,	2-Tetrachloroethane	(2)				Not Detected					1	5
102) Ethylb	enzene	(2)				Not Detected					0.8	5
103) m+p-Xy	/lene	(2)				Not Detected					0.8	5
106) o-Xyle	ene	(2)				Not Detected					0.8	5
109) Styren	ne	(2)				Not Detected					1	5
110) Bromof	form	(2)				Not Detected					1	5
111) Isopro	pylbenzene	(2)				Not Detected					1	5
116) 1,1,2,	2-Tetrachloroethane	(3)				Not Detected					1	5
117) Bromob	penzene	(3)				Not Detected					1	5
119) 1,2,3-	Trichloropropane	(3)				Not Detected					1	5
120) n-Prop	ylbenzene	(3)				Not Detected					1	5
121) 2-Chlc	protoluene	(3)				Not Detected					1	5
122) 1,3,5-	-Trimethylbenzene	(3)				Not Detected					1	5
123) 4-Chlo	protoluene	(3)				Not Detected					1	5
124) tert-B	Butylbenzene	(3)				Not Detected					1	5
126) 1,2,4-	Trimethylbenzene	(3)				Not Detected					1	5
127) sec-Bu	itylbenzene	(3)				Not Detected					1	5
128) p-Isop	propyltoluene	(3)				Not Detected					1	5
129) 1,3-Di	chlorobenzene	(3)				Not Detected					1	5
131) 1,4-Di	chlorobenzene	(3)				Not Detected					1	5
136) n-Buly	lbenzene	(3)				Not Detected					1	5
137) 1,2-Di	chlorobenzene	(3)				Not Detected					1	5
139) 1,2-Di	bromo-3-Chloropropane	(3)				Not Detected					2	5
140) 1,2,4-	Trichlorobenzene	(3)				Not Detected					1	5
141) Hexach	lorobutadiene	(3)				Not Detected					2	5
142) Naphth	nalene	(3)				Not Detected					1	5
144) 1,2,3-	Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:26. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s33.d Injection date and time: 05-SEP-2012 14:11

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:25 sag03174

Sample Name: PAT23 Lab Sample ID: 6769184

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:26.
Target 3.5 esignature user ID: sag03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s33.d Instrument ID: HP07159.i

Analyst ID: ERS02237

Injection date and time: 05-SEP-2012 14:11

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:25 sag03174

Sample Name: PAT23 Lab Sample ID: 6769184

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:26. Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s33.d Injection date and time: 05-SEP-2012 14:11

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:25 sag03174

Sample Name: PAT23 Lab Sample ID: 6769184

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
19) Acetone	(1)	3.653	58	34998	28.211
26) *t-Butyl Alcohol-d10	(4)	4.255	65	349191	250.000
42) 2-Butanone	(1)	6.335	43	73362MA	12.531
51) \$Dibromofluoromethane	(1)	6.798	113	339539	51.383
62)\$1,2-Dichloroethane-d4	(1)	7.254	102	88743	50.211
70)*Fluorobenzene	(1)	7.716	96	1478279	50.000
86)\$Toluene-d8	(2)	9.730	98	1408719	47.708
98)*Chlorobenzene-d5	(2)	11.178	117	1055396	50.000
114)\$4-Bromofluorobenzene	(2)	12.188	95	513542	47.835
130) *1,4-Dichlorobenzene-d4	(3)	13.064	152	591365	50.000

M = Compound was manually integrated.

A = User selected an alternate hit.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:26. Target 3.5 esignature user ID: sag03174

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Data File: /chem/HP07159.i/12sep05b.b/ns05s33.d Injection date and time: 05-SEP-2012 14:11

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:25 sag03174

Sample Name: PAT23 Lab Sample ID: 6769184

Compound Number : 19
Compound Name : Acetone
Scan Number : 339
Retention Time (minutes): 3.653
Relative Retention Time :-0.00431
Quant Ion : 58.00
Area (flag) : 34998
On-Column Amount (ng) : 28.2111

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:26. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s33.d Injection date and time: 05-SEP-2012 14:11

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:25 sag03174

Sample Name: PAT23 Lab Sample ID: 6769184

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.335
Relative Retention Time :-0.02458
Quant Ion : 43.00
Area (flag) : 73362AM
On-Column Amount (ng) : 12.5308

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:26. Target 3.5 esignature user ID: sag03174

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s33.d Injection date and time: 05-SEP-2012 14:11

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:25 sag03174

Sample Name: PAT23 Lab Sample ID: 6769184

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.335
Quant Ion : 43.00
Area (flag) : 73362AM
On-Column Amount (ng) : 12.5308

Integration start scan : 756 Integration stop scan: 814 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:26.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Data File: /chem/HP07159.i/12sep05b.b/ns05s33.d Injection date and time: 05-SEP-2012 14:11

Instrument ID: HP07159.i Analyst ID: ERS02237

Sublist used: 8732 Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 14:31 Automation

Lab Sample ID: 6769184 Sample Name: PAT23

: 42 Compound Number

Compound Name : 2-Butanone

: 780 Scan Number Retention Time (minutes): 6.335 Quant Ion 43.00 86875 Area 14.8389 On-column Amount (ng)

756 Integration stop scan: Integration start scan Y at integration start 0 Y at integration end:

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:26. Target 3.5 esignature user ID: sag03174

EPA SAMPLE NO.

T.ah	Name ·	Lancast	er Lal	horato	riec
Lao	name:	Lancast	ег цал	oorato	ries

Contract:____

PAT11

Matrix: (soil/water) WATER Lab Sample ID: 6769185

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s34.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.	COMPOUND (ug/L or ug/K	(g) ug/L		Q
75-71-8	Dichlorodifluoromethane		5	U
74-87-3	Chloromethane		5	ן ע
75-01-4	Vinyl Chloride		5	ן ט
74-83-9	Bromomethane		5	ן ט ן
75-00-3	Chloroethane		5	ן ט
75-69-4	Trichlorofluoromethane		5	ן די
75-35-4	1,1-Dichloroethene		5	ן ט
67-64-1	Acetone		9	J
75-09-2	Methylene Chloride		5	ן ט
156-60-5	trans-1,2-Dichloroethene		5	ן ט
1634-04-4	Methyl Tertiary Butyl Ether		5	ן טן
75-34-3	1,1-Dichloroethane		5	ן ט
156-59-2	cis-1,2-Dichloroethene		5	ן ט
78-93-3	2-Butanone	1	6	J
594-20-7	2,2-Dichloropropane	1	5	ן ט
74-97-5	Bromochloromethane		5	ן ט
67-66-3	Chloroform		5	ן ט
71-55-6	1,1,1-Trichloroethane		5	ן ש
563-58-6	1,1-Dichloropropene		5	ן ט
56-23-5	Carbon Tetrachloride		5	ן ט
71-43-2	Benzene		5	ן ט
107-06-2	1,2-Dichloroethane		5	ן ט
79-01-6	Trichloroethene		5	ן ט
78-87-5	1,2-Dichloropropane		5	ן ט
74-95-3	Dibromomethane		5	ן ט
75-27-4	Bromodichloromethane	1	5	ן ט
10061-01-5	cis-1,3-Dichloropropene		5	ן ט
108-10-1	4-Methyl-2-Pentanone		10	ן ט
108-88-3	Toluene	1	5	ן ט ן
10061-02-6	trans-1,3-Dichloropropene		5	ן ש
<u></u>				l

EPA S	SAMPLE	NO.
-------	--------	-----

 PAT11	

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769185

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s34.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

CAS NO.	COMPOUND	(ug/L or ug/kg) ug/L	Q
79-00-5	-1,1,2-Trichlore	oethane	5	U
127-18-4	-Tetrachloroethe	ene	5	ָוֹ <u>ע</u>
142-28-9	-1,3-Dichloropro	pane	5	U
124-48-1	Dibromochlorome	ethane	5	ע
106-93-4	-1,2-Dibromoetha	ane	5	ן ע
108-90-7	-Chlorobenzene		5	ן ט
630-20-6	1,1,1,2-Tetracl	loroethane	5	U
100-41-4	Ethylbenzene		5	U
179601-23-1	m+p-Xylene		5	U
95-47-6	o-Xylene		5	ן ט
100-42-5	Styrene		5	ט
75-25-2	Bromoform		5	ן ט
98-82-8	Isopropylbenzer	ne	5	ט
79-34-5	1,1,2,2-Tetracl	loroethane	5	U
108-86-1	-Bromobenzene		5	ן ט
96-18-4	-1,2,3-Trichlore	opropane	5	U
103-65-1	-n-Propylbenzene		5	ן ע
95-49-8	2-Chlorotoluene		5	U
108-67-8	-1,3,5-Trimethy	benzene	5	U
106-43-4	-4-Chlorotoluene		5	ן ט
98-06-6	-tert-Butylbenze	ene	5	ן ט
95-63-6	-1,2,4-Trimethy	benzene	5	U
135-98-8	-sec-Butylbenzer	ne	5	ן ט
99-87-6	-p-Isopropyltolu	iene	5	ן ט
541-73-1	-1,3-Dichlorober	nzene	5	U
106-46-7	-1,4-Dichlorober	nzene	5	ן ט
104-51-8	-n-Butylbenzene		5	ן ד
95-50-1	-1,2-Dichlorober	nzene	5	U
96-12-8	-1,2-Dibromo-3-0	Chloropropane	5	U
120-82-1	-1,2,4-Trichlore	benzene	5	ן ד

EPA SAMPLE NO.

PAT11	
-------	--

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769185

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s34.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 87-68-3-----Hexachlorobutadiene 91-20-3-----Naphthalene 5 lυ 5 | U 87-61-6-----1,2,3-Trichlorobenzene

PAT11

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769185

Data file: /chem/HP07159.i/12sep05b.b/ns05s34.d Injection date and time: 05-SEP-2012 14:35
Data file Sample Info. Line: PAT11;6769185;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A N

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on~column)	QC Flag
26) t-Butyl Alcohol-d10	4.252 (-0.015)	438	65	343242 (-10)	250.00	
70) Fluorobenzene	7.714 (~0.003)	1007	96	1460843 (-3)	50.00	
98) Chlorobenzene-d5	11.181(-0.015)	1577	117	1044569 (-2)	50.00	
130) 1,4-Dichlorobenzene-d4	13.061 (~0.033)	1886	152	588743 (-7)	50.00	

Surrogate Standards ·	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51) Dibromofluoromethane	(1)	6.795 (-0.001)	113	332842	50.971	102%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	7.258 (-0.001)	102	88713	50.793	102%		77 - 113
86) Toluene-d8	(2)	9.734 (0.000)	98	1394488	47.715	95%		80 - 113
114) 4-Bromofluorobenzene	(2)	12.185(-0.001)	95	508262	47.834	96%		78 - 113

		I.S.					Conc.	Conc.	Blank		Reporting Limit	ng LOQ
Tar	get Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	ample)
=====			=======			=======================================				======	======	
1)	Dichlorodifluoromethane	(1)				Not Detected					1	.5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
19)	Acetone	(1)	3.699	(-0.010)	58	11003	8.975	8.98		J	6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
	2-Butanone	(1)	6.363	(-0.028)	43	32635MA	5.641	5.64		J	3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PAT11

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769185

Data file: /chem/HP07159.i/12sep05b.b/ns05s34.d Injection date and time: 05-SEP-2012 14:35
Data file Sample Info. Line: PAT11;6769185;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ mple)
93) Tetrachloroethene	(2)				Not Detected					0.8	5
94) 1,3-Dichloropropane	(2)				Not Detected					1	5
96) Dibromochloromethane	(2)				Not Detected					1	5
97) 1,2-Dibromoethane	(2)				Not Detected					1	5
100) Chlorobenzene	(2)				Not Detected					0.8	5
101) 1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
102) Ethylbenzene	(2)				Not Detected					0.8	5
103) m+p-Xylene	(2)				Not Detected					0.8	5.
106) o-Xylene	(2)				Not Detected					0.8	5
109) Styrene	(2)				Not Detected					1	5
110) Bromoform	(2)				Not Detected					1	5
111) Isopropylbenzene	(2)				Not Detected					1	5
116) 1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
117) Bromobenzene	(3)				Not Detected					1	5
119) 1,2,3-Trichloropropane	(3)				Not Detected					1	5
120) n-Propylbenzene	(3)				Not Detected					1	5
121) 2-Chlorotoluene	(3)				Not Detected					1	5
122) 1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
123) 4-Chlorotoluene	(3)				Not Detected					1	5
124) tert-Butylbenzene	(3)				Not Detected					1	5
126) 1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
127) sec-Butylbenzene	(3)				Not Detected					1	5
128) p-Isopropyltoluene	(3)				Not Detected					1	5
129) 1,3-Dichlorobenzene	(3)				Not Detected					1	5
131) 1,4-Dichlorobenzene	(3)				Not Detected					1	5
136) n-Butylbenzene	(3)				Not Detected					1	5
137) 1,2-Dichlorobenzene	(3)				Not Detected					1	5
139) 1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
140) 1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
141) Hexachlorobutadiene	(3)				Not Detected					2	5
142) Naphthalene	(3)				Not Detected					1	5
144) 1,2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:28. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s34.d Instrume Injection date and time: 05-SEP-2012 14:35 Analyst

Instrument ID: HP07159.i Analyst ID: ERS02237

0.i/12sep05b.b/N826W.m Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT11 Lab Sample ID: 6769185

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:28.
Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s34.d Injection date and time: 05-SEP-2012 14:35

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT11 Lab Sample ID: 6769185

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:28.
Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s34.d Injection date and time: 05-SEP-2012 14:35

Instrument ID: HP07159.i Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT11 Lab Sample ID: 6769185

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
19) Acetone	(1)	3.699	58	11003	8.975
26) *t-Butyl Alcohol-d10	(4)	4.252	65	343242	250.000
42) 2-Butanone	(1)	6.363	43	32635MA	5.641
51) \$Dibromofluoromethane	(1)	6.795	113	332842	50.971
62) \$1,2-Dichloroethane-d4	(1)	7.258	102	88713	50.793
70) *Fluorobenzene	(1)	7.714	96	1460843	50.000
86)\$Toluene-d8	(2)	9.734	98	1394488	47.715
98) *Chlorobenzene-d5	(2)	11.181	117	1044569	50.000
114)\$4-Bromofluorobenzene	(2)	12.185	95	508262	47.834
130) *1,4-Dichlorobenzene-d4	(3)	13.061	152	588743	50.000

M = Compound was manually integrated.

A = User selected an alternate hit.

* = Compound is an internal standard.

\$ = Compound is a surrogate standard.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:28. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s34.d Injection date and time: 05-SEP-2012 14:35

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT11 Lab Sample ID: 6769185

Compound Number : 19

Compound Name : Acetone Scan Number : 347
Retention Time (minutes): 3.699
Relative Retention Time :-0.01045
Quant Ion : 58.00
Area (flag) : 11003
On-Column Amount (ng) : 8.9751

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:28. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s34.d Injection date and time: 05-SEP-2012 14:35

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT11 Lab Sample ID: 6769185

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 785
Retention Time (minutes): 6.363
Relative Retention Time :-0.02846
Quant Ion : 43.00
Area (flag) : 32635AM
On-Column Amount (ng) : 5.6409

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:28. Target 3.5 esignature user ID: sag03174

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s34.d Injection date and time: 05-SEP-2012 14:35

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT11 Lab Sample ID: 6769185

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 785
Retention Time (minutes): 6.363
Quant Ion : 43.00
Area (flag) : 32635AM
On-Column Amount (ng) : 5.6409

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:28.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s34.d Injection date and time: 05-SEP-2012 14:35

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 14:55 Automation

Sample Name: PAT11 Lab Sample ID: 6769185

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 785
Retention Time (minutes): 6.363
Quant Ion : 43.00
Area : 57815
On-column Amount (ng) : 9.9932

On-column Amount (ng) : 9.9932
Integration start scan : 769 Integration stop scan: 829
Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:28. Target 3.5 esignature user ID: sag03174

EPA SAMPLE NO.

PAT-4	
-------	--

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:_____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769186

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s35.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO.	COMPOUND (ug	g/L or ug/Kg	g) ug/L		Q
75-71-8	Dichlorodifluorome	thane		5	U
74-87-3	Chloromethane	l		5	ן ט
75-01-4	Vinyl Chloride	l		5	ן ע
74-83-9	Bromomethane			5	ן ט
75-00-3	Chloroethane			5	ן ע
75-69-4	Trichlorofluoromet	hane		5	ן ע
75-35-4	1,1-Dichloroethene	:		5	ן ע
67-64-1	Acetone			10	J
75-09-2	Methylene Chloride)		5	ן ע
156-60-5	trans-1,2-Dichloro	ethene		5	ן ע
1634-04-4	Methyl Tertiary Bu	tyl Ether		5	U
75-34-3	1,1-Dichloroethane	:		5	ן ע
156-59-2	cis-1,2-Dichloroet	hene		5	ן ט
78-93-3	2-Butanone	, i		8	J
594-20-7	2,2-Dichloropropar	ne		5	U
74-97-5	Bromochloromethane	e İ		5	ן ט
67-66-3	Chloroform	Ì		5	ן ע
71-55-6	1,1,1-Trichloroeth	nane		5	ן ט ן
563-58-6	1,1-Dichloroproper	ne i		5	ט
	Carbon Tetrachlori	:		5	ע
71-43-2	Benzene	İ		5	ן ט
107-06-2	1,2-Dichloroethane	:		5	ע
79-01-6	Trichloroethene	İ		5	ן ט
78-87-5	1,2-Dichloropropar	ne j		5	ָן ט
74-95-3	Dibromomethane	j		5	ן ט ן
75 - 27-4	Bromodichlorometha	ne		5	ע
10061-01-5	cis-1,3-Dichloropa	ropene		5	ָ ע <u> </u>
108-10-1	4-Methyl-2-Pentand	one		10	U
108-88-3	<u>-</u>	j		5	ָ ע ו
10061-02-6	trans-1,3-Dichloro	propene		5	ָן ט
	·				İİ

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769186

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s35.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

		CONCERN	RATION UNII	.	
CAS NO.	COMPOUND	(ug/L or	ug/Kg) ug/L	ı	Q
79-00-5	1,1,2-Trich	loroethane		5	U
127-18-4	Tetrachloro	ethene		5	U
142-28-9	1,3-Dichlore	opropane	İ	5	ן ט
124-48-1	Dibromochlo	romethane		5	U
106-93-4	1,2-Dibromo	ethane		5	ט
108-90-7	Chlorobenze	ne		5	ן ט
630-20-6	1,1,1,2-Tet:	rachloroethan	e	5	ן ט
100-41-4	Ethylbenzen	е		5	ט
179601-23-1	m+p-Xylene		1	5	ן ט
95-47-6	o-Xylene		1	5	ט
100-42-5	Styrene		İ	5	ט
75-25-2	Bromoform		ĺ	5	์ บ
98-82-8	Isopropylbe	nzene	ĺ	5	ָ ט
	1,1,2,2-Tet:		е	5	ָוֹ ד
108-86-1	Bromobenzen	e	İ	5	์ บ
96-18-4	1,2,3-Trich	loropropane	j	5	์ บ
103-65-1	n-Propylben	zene	j	5	ี บ
95-49-8	2-Chlorotol	uene	İ	5	ט
108-67-8	1,3,5-Trime	thylbenzene	İ	5	jυ
	4-Chlorotol	=	j	5	U
98-06-6	tert-Butylbo	enzene	i	5	Ū
	1,2,4-Trime		i	5	ע
	sec-Butylber	-	i	5	U
	p-Isopropyl		i	5	ע
	1,3-Dichlore		i	5	ָ ע
	1,4-Dichlore		i	5	U
	n-Butylbenze		i	5	Ü
	1,2-Dichlore		i	5	υ
	1,2-Dibromo		ane	5	ָ U
	1,2,4-Trich			5	ָ ט
	,,1 111011		!	_	! -

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769186

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s35.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO.	COMPOUND	(ug/L or u	g/Kg) ug/L		Q		
87-68-3	Hexachlorob	utadiene		5	U		
91-20-3	91-20-3Naphthalene						
87-61-6	1,2,3-Trich	lorobenzene		5	U		
ĺ							

PAT-4 Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769186

Data file: /chem/HP07159.i/12sep05b.b/ns05s35.d Injection date and time: 05-SEP-2012 14:58
Data file Sample Info. Line: PAT-4;6769186;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.257 (-0.020)	439	65	330143 (-13)	250.00	
70) Fluorobenzene	7.719(-0.008)	1008	96	1435372 (-5)	50, 00	
98) Chlorobenzene-d5	11.180(-0.014)	1577	117	1039166 (-2)	50.00	
130) 1,4-Dichlorobenzene-d4	13.060(-0.032)	1886	152	583185 (-7)	50.00	

Surrogate Star	ndards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51) Dibromofluc	romethane	(1)	6.79	4(0.000)	113	331235	51.625	103%		80 - 116
62) 1,2-Dichlor	oethane-d4	(1)	7.25	6(0.000)	102	87219	50.824	102%		77 - 113
86) Toluene-d8		(2)	9.73	2(0.000)	98	1377202	47.369	95%		80 - 113
114) 4-Bromofluc	robenzene	(2)	12.18	4 (-0.001)	95	508776	48.132	96%		78 ~ 113

		I.S.					Conc.	Conc.	Blank		Reporti Limit	-
Tar	get Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Oual.		ample)
=====	=======================================				=====			-		_	======	======
1)	Dichlorodifluoromethane	(1)				Not Detected					1	5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
19)	Acetone	(1)	3.716	(~0.012)	58	11680	9.696	9.70		J	6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)	6.332	(-0.023)	43	42755MA	7.521	7.52		J	3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	l, l, l-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

Lancaster Laboratories Analysis Summary for GC/MS Volatiles PAT-46769186

Injection date and time: 05-SEP-2012 14:58
Instrument ID: HP07159.i Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732
Calibration date and time (Last Method Edit): 05-SEP-2012 13:23
Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

93) Tetrachloroethene (2) Not Detected 1, 1, 3-Dichloropropane (2) Not Detected 1 94) 1, 3-Dichloropropane (2) Not Detected 1 95) Dibromochloromethane (2) Not Detected 1 97) 1, 2-Dibromoethane (2) Not Detected 1 100 Chlorobenzene (2) Not Detected 1 101, 1, 1, 2-Tetrachloroethane (2) Not Detected 1 102) Ethylbenzene (2) Not Detected 1 103 mtp-Xylene (2) Not Detected 0,8 106) o-Xylene (2) Not Detected 0,8 107) Styrene (2) Not Detected 0,8 108) Styrene (2) Not Detected 1 109) Styrene (2) Not Detected 1 101) Bromoform (2) Not Detected 1 110 I sopropylbenzene (2) Not Detected 1 111 I sopropylbenzene (3) Not Detected 1 116) 1, 1, 2, 2-Tetrachloroethane (3) Not Detected 1 117) Bromobenzene (3) Not Detected 1 119) 1, 2, 3-Trichloropropane (3) Not Detected 1 120) n-Propylbenzene (3) Not Detected 1 121) 2-Chlorotoluene (3) Not Detected 1 122) 1, 3, 5-Trimethylbenzene (3) Not Detected 1 122) 1, 3, 5-Trimethylbenzene (3) Not Detected 1 123) 4-Chlorotoluene (3) Not Detected 1 124) tetr-Butylbenzene (3) Not Detected 1 125) 1, 2-Tetrachloroethane (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1, 3-Dichlorobenzene (3) Not Detected 1 121) 1, 2-Dichlorobenzene (3) Not Detected 1 121) 1, 2-Dichlorobenzene (3) Not Detected 1 121) 1, 2-Dichlorobenzene (3) Not Detected 1 121) 1, 2-Dichlorobenzene (3) Not Detected 1 121) 1, 2-Dichlorobenzene (3) Not Detected 1 123) 1, 2-Dichlorobenzene (3) Not Detected 1 124) 1, 2-Dichlorobenzene (3) Not Detected 1 125) 1, 2-Dichlorobenzene (3) Not Detected 1 127) 1, 2-Dichlorobenzene (3) Not Detected 1 128) 1-12-Dichlorobenzene (3) Not Detected 1 129) 1, 2-Dichlorobenzene (3) Not Detected 1 130) 1, 2-Dichlorobenzene (3) Not Detected 1 131) 1, 2-Dichlorobenzene (3) Not Detected 1 131) 1, 2-Dichlorobenzene (3) Not Detected 1 131) 1, 2-Dichlorobenzene (3) Not Detected 1 131) 1, 2-Dichlorobenzene (3) Not Detected 1 131) 1, 2-Dichlorobenzene (3) Not Detected 1 131) 1, 2-Dichlorobenzene (3) Not Detected 1 131) 1, 2-Dichlorobenzene (3) Not Detect	_	et Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ
96) Dibromochloromethane (2) Not Detected 1 97) 1,2-Dibromocthane (2) Not Detected 1 100 Chlorobenzene (2) Not Detected 0,8 101) 1,1,1,2-Tetrachloroethane (2) Not Detected 0,8 101) 1,1,1,2-Tetrachloroethane (2) Not Detected 0,8 103) mby-Xylene (2) Not Detected 0,8 106) o-Xylene (2) Not Detected 0,8 107) Styrene (2) Not Detected 0,8 108) Styrene (2) Not Detected 1 109) Styrene (2) Not Detected 1 110 Isopropylbenzene (2) Not Detected 1 111 Isopropylbenzene (2) Not Detected 1 112 1,1,2-Tetrachloroethane (3) Not Detected 1 113 Isopropylbenzene (3) Not Detected 1 114 In Jacoba	93)	Tetrachloroethene					Not Detecte						5
97) 1,2-Dibromoethane (2) Not Detected 0.8 1000 Chlorobenzene (2) Not Detected 0.8 10101 1,1,1,2-Tetrachloroethane (2) Not Detected 1.1 1021 Ethylbenzene (2) Not Detected 0.8 1031 mtp-Xylane (2) Not Detected 0.8 1030 mtp-Xylane (2) Not Detected 0.8 1090 Styrene (2) Not Detected 0.8 1091 Styrene (2) Not Detected 0.8 1092 Styrene (2) Not Detected 1.1 1101 Bromoform (2) Not Detected 1.1 111 Isopropylbenzene (2) Not Detected 1.1 111 Isopropylbenzene (2) Not Detected 1.1 112 1,2,2-Tetrachloroethane (3) Not Detected 1.1 113 1,2,2-Tetrachloroethane (3) Not Detected 1.1 114 1,1,2,2-Tetrachloroethane (3) Not Detected 1.1 115 1,1,2,3-Trichloropropane (3) Not Detected 1.1 116 1,1,2,3-Trichloropropane (3) Not Detected 1.1 1201 n-Propylbenzene (3) Not Detected 1.1 1210 2-Chlorotoluene (3) Not Detected 1.1 1221 2-Chlorotoluene (3) Not Detected 1.1 123 4-Chlorotoluene (3) Not Detected 1.1 124) tetr-Butylbenzene (3) Not Detected 1.1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1.1 127) sec-Butylbenzene (3) Not Detected 1.1 128) p-Isopropyltoluene (3) Not Detected 1.1 129) 1,3-Dichlorobenzene (3) Not Detected 1.1 129) 1,3-Dichlorobenzene (3) Not Detected 1.1 1210 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dichlorobenzene (3) Not Detected 1.1 1211 1,4-Dic	(4)	1,3-Dichloropropane	(2)				Not Detecte	d				· 1	5
100 Chlorobenzene (2)	6)	Dibromochloromethane	(2)				Not Detecte	d				1	5
101	7)	1,2-Dibromoethane	(2)				Not Detecte	d				1	5
102 Ethylbenzene (2)	0) (Chlorobenzene	(2)				Not Detecte	d				0.8	5
103 m+p-Xylene (2)	1)	1,1,1,2-Tetrachloroethane	(2)				Not Detecte	d				1	5
106) o-Xylene (2) Not Detected 0.8 109) Styrene (2) Not Detected 1 110) Bromoform (2) Not Detected 1 1110 Isopropylbenzene (2) Not Detected 1 116	2) 1	Ethylbenzene	(2)				Not Detecte	d				0.8	5
109 Styrene (2)	13) 1	m+p-Xylene	(2)				Not Detecte	d				0.8	5
110 Bromoform (2)	16) (o-Xylene	(2)				Not Detecte	d				0.8	5
111 Isopropylbenzene (2)	9) :	Styrene	(2)				Not Detecte	d				1	5
116	.0) 1	Bromoform	(2)				Not Detecte	d				1	5
1171 Bromobenzene (3)	1)	Isopropylbenzene	(2)				Not Detecte	d				1	5
119 1,2,3-Trichloropropane (3)	6)	1,1,2,2-Tetrachloroethane	(3)				Not Detecte	d				1	5
120 n-Propylbenzene (3)	7) 1	Bromobenzene	(3)				Not Detecte	d				1	5
121 2-Chlorotoluene (3)	9)	1,2,3-Trichloropropane	(3)				Not Detecte	đ				1	5
122) 1,3,5-Trimethylbenzene (3) Not Detected 1 123) 4-Chlorotoluene (3) Not Detected 1 124) tert-Butylbenzene (3) Not Detected 1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1	(0)	n-Propylbenzene	(3)				Not Detecte	d				1	5
123) 4-Chlorotoluene (3) Not Detected 1 124) tert-Butylbenzene (3) Not Detected 1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isoptopyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1	1) 2	2-Chlorotoluene	(3)				Not Detecte	d				1	5
124 tert-Butylbenzene (3)	2)	1,3,5-Trimethylbenzene	(3)				Not Detecte	d				1	5
126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1	3) 4	4-Chlorotoluene	(3)				Not Detecte	d				1	5
127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1	(4)	tert-Butylbenzene	(3)				Not Detecte	d				1	5
128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1	6)	1,2,4-Trimethylbenzene	(3)				Not Detecte	d				1	5
129) 1,3-Dichlorobenzene	7) :	sec-Butylbenzene	(3)				Not Detecte	d				1	5
131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1	8) p	p-Isopropyltoluene	(3)				Not Detecte	đ				1	5
136) n Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1	9) 1	1,3-Dichlorobenzene	(3)				Not Detecte	d				1	5
137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1	1) 1	l,4-Dichlorobenzene	(3)				Not Detecte	d				1	5
139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1	6) r	n Butylbenzene	(3)				Not Detecte	d				1	5
140) 1,2,4-Trichlorobenzene (3) Not Detected 1	7)]	1,2-Dichlorobenzene	(3)				Not Detecte	d				1	5
	9) 1	1,2-Dibromo-3-Chloropropane	(3)				Not Detecte	d				2	5
141) Hexachlorobutadiene (3) Not Detected 2	0) 1	1,2,4-Trichlorobenzene	(3)				Not Detecte	d				1	5
inc becoded	1) ł	Hexachlorobutadiene	(3)				Not Detecte	d				2	5
142) Naphthalene (3) Not Detected 1	2) 1	Naphthalene	(3)				Not Detecte	d				1	5
144) 1,2,3-Trichlorobenzene (3) Not Detected	4)]	1,2,3-Trichlorobenzene	(3)				Not Detecte	d				1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s35.d Injection date and time: 05-SEP-2012 14:58

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT-4 Lab Sample ID: 6769186

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29.

Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s35.d Injection date and time: 05-SEP-2012 14:58

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Lab Sample ID: 6769186 Sample Name: PAT-4

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29. Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s35.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 14:58 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT-4 Lab Sample ID: 6769186

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
19) Acetone	(1)	3.716	58	11680	9.696
26) *t-Butyl Alcohol-d10	(4)	4.257	65	330143	250.000
42) 2-Butanone	(1)	6.332	43	42755MA	7.521
51) \$Dibromofluoromethane	(1)	6.794	113	331235	51.625
62) \$1,2-Dichloroethane-d4	(1)	7.256	102	87219	50.824
70)*Fluorobenzene	(1)	7.719	96	1435372	50.000
86)\$Toluene-d8	(2)	9.732	98	1377202	47.369
98) *Chlorobenzene-d5	(2)	11.180	117	1039166	50.000
114)\$4-Bromofluorobenzene	(2)	12.184	95	508776	48.132
130) *1,4-Dichlorobenzene-d4	(3)	13.060	152	583185	50.000

M = Compound was manually integrated.

A = User selected an alternate hit.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29.
Target 3.5 esignature user ID: sag03174

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s35.d Injection date and time: 05-SEP-2012 14:58

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT-4 Lab Sample ID: 6769186

Compound Number : 19
Compound Name : Acetone
Scan Number : 350
Retention Time (minutes): 3.716
Relative Retention Time :-0.01235
Quant Ion : 58.00
Area (flag) : 11680
On-Column Amount (ng) : 9.6964

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s35.d Injection date and time: 05-SEP-2012 14:58

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT-4 Lab Sample ID: 6769186

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.332
Relative Retention Time :-0.02384
Quant Ion : 43.00
Area (flag) : 42755AM
On-Column Amount (ng) : 7.5212

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29. Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s35.d Injection date and time: 05-SEP-2012 14:58

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Subli

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:28 sag03174

Sample Name: PAT-4 Lab Sample ID: 6769186

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.332
Quant Ion : 43.00
Area (flag) : 42755AM
On-Column Amount (ng) : 7.5212

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:29.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s35.d Injection date and time: 05-SEP-2012 14:58

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 15:19 Automation

Sample Name: PAT-4 Lab Sample ID: 6769186

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.332
Quant Ion : 43.00
Area : 64793
On-column Amount (ng) : 11.3980

Integration start scan : 766 Integration stop scan: 826 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29. Target 3.5 esignature user ID: sag03174

EPA SAMPLE NO.

•				PAT-9
Lab N	ame: Lancaster	Laboratories	Contract:	

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769187

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s36.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec: ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	ug/L		Q
75-71-8	Dichlorodifluo	romethane	<u> </u>		5	U
74-87-3	Chloromethane				. 5	ן ט
75-01-4	Vinyl Chloride				5	ן ע
74-83-9	Bromomethane				5	ן ע
75-00-3	Chloroethane				5	ן ש
75-69-4	Trichlorofluor	omethane			5	ן ט
75-35-4	1,1-Dichloroet	hene			1	J
67-64-1	Acetone		1		20	ן ע
75-09-2	Methylene Chlo	ride			5	ן ט
156-60-5	trans-1,2-Dich	loroether	ne		5	ן ט
1634-04-4	Methyl Tertiar	y Butyl E	Ether		5	ן ט
75-34-3	1,1-Dichloroet	hane			5	ן ט
156-59-2	cis-1,2-Dichlo	roethene			5	ן ט
78-93-3	2-Butanone				10	U
594-20-7	2,2-Dichloropro	opane			5	ן ט
74-97-5	Bromochloromet	hane	1		5	ן טן
67-66-3	Chloroform		1		5	ן ט
71-55-6	1,1,1-Trichlore	oethane	ĺ		5	ן ט
563-58-6	1,1-Dichloropro	opene	ĺ		5	ן ט
56-23-5	Carbon Tetrach	loride	ĺ		5	ן ט
71-43-2	Benzene		ĺ		5	ן ע
107-06-2	1,2-Dichloroet	hane	ĺ		5	ן ט
79-01-6	Trichloroethen	е	ĺ		5	ן ש
78-87-5	1,2-Dichloropro	opane	ĺ		5	ן ט
74-95-3	Dibromomethane		ĺ		5	ן ע
75-27-4,	Bromodichlorom	ethane	Ì		5	ן ט
10061-01-5	cis-1,3-Dichlo	ropropene	•		5	ן ט
108-10-1	4-Methyl-2-Pen	tanone	ĺ		10	ן ט ן
108-88-3			ĺ		5	ן ט ן
10061-02-6	trans-1,3-Dich	loroprope	ene		5	ן ט
						

EPA SAMPLE NO

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769187

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s36.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg			Q .
79-00-5	1,1,2-Trichlor	oethane	5	;	υ
127-18-4	Tetrachloroeth	ene	9	5	ן ע
142-28-9	1,3-Dichloropr	opane	9	5	ן ע
124-48-1	Dibromochlorom	ethane	9	5	ן ש ן
106-93-4	1,2-Dibromoeth	ane	5	5	ן שן
108-90-7	Chlorobenzene]	9	5	ן ע
630-20-6	1,1,1,2-Tetrac	hloroethane	5	;	ן ע
100-41-4	Ethylbenzene		5	5	ן ט
179601-23-1	m+p-Xylene	ļ	5	5	ן ט ן
95-47-6	o-Xylene		5	5	ן ש
100-42-5	Styrene		5	,	ן ט
75-25-2	Bromoform	ļ	9	5	ן ש
98-82-8	Isopropylbenze	ne	5	5	ן ש ן
79-34-5	1,1,2,2-Tetrac	hloroethane	. 5	;	ן ט
108-86-1	Bromobenzene	ļ	5	;	ע
96-18-4	1,2,3-Trichlor	opropane	5	5	ן ט ן
103-65-1	n-Propylbenzen	e	5	5	ע
95-49-8	2-Chlorotoluen	e	5	5	ן ט ן
108-67-8	1,3,5-Trimethy	lbenzene	9	;	ָ ע
106-43-4	4-Chlorotoluen	e	9	5	ן ט ן
98-06-6	tert-Butylbenz	ene	5	,	ֹ ע
95-63-6	1,2,4-Trimethy	lbenzene	5	;	ן ט ן
135-98-8	sec-Butylbenze	ne	9	;	υ
99-87-6	p-Isopropyltol	uene	5	5	ָּן ע
!	1,3-Dichlorobe		9	5	ָּוֹ ע
106-46-7	1,4-Dichlorobe	nzene	5	;	υ
•	n-Butylbenzene		5	;	ָ ע וֹ
!	1,2-Dichlorobe		5	;	ָ ט
Į.	1,2-Dibromo-3-		5	;	ָ ט
,	1,2,4-Trichlor	:	9	;	υ
					İİ

EPA SAMPLE NO.

PAT-9

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER

Lab Sample ID: 6769187

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s36.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 87-68-3-----Hexachlorobutadiene 5 | U 91-20-3-----Naphthalene 5 | U 87-61-6-----1,2,3-Trichlorobenzene 5 | U

PAT-9 Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769187

Data file: /chem/HP07159.i/12sep05b.b/ns05s36.d Injection date and time: 05-SEP-2012 15:21
Data file Sample Info. Line: PAT-9;6769187;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 05-Sep-2012 17:10 ers02237

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Lo

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.259(-0.022)	439	65	336169 (-11)	250.00	
70) Fluorobenzene	7.715(-0.004)	1007	96	1421023 (-6)	50.00	
98) Chlorobenzene-d5	11.182(-0.016)	1577	117	1028312 (-3)	50.00	
130) 1,4-Dichlorobenzene-d	4 13.062(-0.034)	1886	152	574669 (-9)	50.00	

	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area ========	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.79	6(-0.001)	113	325036	51.170	102%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.25	2(0.000)	102	85997	50.618	101%		77 - 113
86)	Toluene-d8	(2)	9.73	34 (0.000)	98	1353838	47.057	94%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.18	86(-0.001)	95	496760	47.491	95%		78 - 113

		I.S.						Conc.	Conc.	Blank		Reportin Limit	-
	get Compounds	Ref.	RT	(+/-RRT)	QIon	i	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	mple)
		=====							E222111111111111				
	Dichlorodifluoromethane	(1)					Detected					1	.5
-,	Chloromethane	(1)					Detected					1	5
	Vinyl Chloride	(1)				Not	Detected					1	5
	Bromomethane	(1)				Not	Detected					1	5
	Chloroethane	(1)				Not	Detected					1	5
8)	Trichlorofluoromethane	(1)				Not	Detected					1	5
16)	1,1-Dichloroethene	(1)	3.578	3(~0.000)	96		7555	1.307	1.31		J	0.8	5
19)	Acetone	(1)				Not	Detected					6	20
25)	Methylene Chloride	(1)				Not	Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not	Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not	Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not	Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not	Detected					0.8	5
42)	2-Butanone	(1)				Not	Detected					3	10
44)	2,2-Dichloropropane	(1)				Not	Detected					1	5
48)	Bromochloromethane	(1)				Not	Detected					1	5
50)	Chloroform	(1)				Not	Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not	Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not	Detected					1	5
59)	Carbon Tetrachloride	(1)				Not	Detected					1	5
65)	Benzene	(1)				Not	Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not	Detected					1	5
74)	Trichloroethene	(1)				Not	Detected					1	5
76)	1,2-Dichloropropane	(1)				Not	Detected					1	5
78)	Dibromomethane	(1)				Not	Detected					1	5
81)	Bromodichloromethane	(1)				Not	Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not	Detected					1	5
	4-Methyl-2-Pentanone	(1)				Not	Detected					3	10
	Toluene	(2)				Not	Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not	Detected					1	5
	1,1,2-Trichloroethane	(2)				Not	Detected					0.8	5
·		•											

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769187 PAT-9

Data file: /chem/HP07159.i/12sep05b.b/ns05s36.d Injo
Data file Sample Info. Line: PAT-9;6769187;1;0;;PTL09;PLM;;ns05b05; Inst
Date, time and analyst ID of latest file update: 05-Sep-2012 17:10 ers02237 Injection date and time: 05-SEP-2012 15:21
Instrument ID: HP07159.i Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23
Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

	I.S.					Conc.	Conc.	Blank		Reportin Limit	roQ LOQ
Target Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	mple)
**=====================================			=======								======
93) Tetrachloroethene	(2)				Not Detected					0.8	5
94) 1,3-Dichloropropane	(2)				Not Detected					1	5
96) Dibromochloromethane	(2)				Not Detected					1	5
97) 1,2-Dibromoethane	(2)				Not Detected					1	5
100) Chlorobenzene	(2)				Not Detected					0.8	5
101) 1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
102) Ethylbenzene	(2)				Not Detected					0.8	5
103) m+p-Xylene	(2)				Not Detected					0.8	5
106) o-Xylene	(2)				Not Detected					0.8	5
109) Styrene	(2)				Not Detected					1	5
110) Bromoform	(2)				Not Detected					1	5
111) Isopropylbenzene	(2)				Not Detected					1	5
116) 1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
117) Bromobenzene	(3)				Not Detected					1	5
119) 1,2,3-Trichloropropane	(3)				Not Detected					1	5
120) n-Propylbenzene	(3)				Not Detected					1	5
121) 2-Chlorotoluene	(3)				Not Detected					1	5
122) 1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
123) 4-Chlorotoluene	(3)				Not Detected					1	5
124) tert-Butylbenzene	(3)				Not Detected					1	5
126) 1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
127) sec-Butylbenzene	(3)				Not Detected					1	5
128) p-Isopropyltoluene	(3)				Not Detected					1	5
129) 1,3-Dichlorobenzene	(3)				Not Detected					1	5
131) 1,4-Dichlorobenzene	(3)				Not Detected					1	5
136) n-Butylbenzene	(3)				Not Detected					1	5
137) 1,2-Dichlorobenzene	(3)				Not Detected					1	5
139) 1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
140) 1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
141) Hexachlorobutadiene	(3)				Not Detected					2	5
142) Naphthalene	(3)				Not Detected					1	5
144) 1,2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 63

Digitally signed by Emily R. Styer on 09/05/2012 at 17:16. Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s36.d Injection date and time: 05-SEP-2012 15:21

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 05-Sep-2012 17:10 ers02237

Sample Name: PAT-9 Lab Sample ID: 6769187

Digitally signed by Emily R. Styer on 09/05/2012 at 17:16. Target 3.5 esignature user ID: ers02237

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s36.d Injection date and time: 05-SEP-2012 15:21

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:10 ers02237

Lab Sample ID: 6769187 Sample Name: PAT-9

Digitally signed by Emily R. Styer on 09/05/2012 at 17:16. Target 3.5 esignature user ID: ers02237

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s36.d Injection date and time: 05-SEP-2012 15:21

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 05-Sep-2012 17:10 ers02237

Sample Name: PAT-9

Lab Sample ID: 6769187

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.578	96	7555	1.307
26) *t-Butyl Alcohol-d10	(4)	4.259	65	336169	250.000
51) \$Dibromofluoromethane	(1)	6.796	113	325036	51.170
62)\$1,2-Dichloroethane-d4	(1)	7.252	102	85997	50.618
70)*Fluorobenzene	(1)	7.715	96	1421023	50.000
86)\$Toluene-d8	(2)	9.734	98	1353838	47.057
98)*Chlorobenzene-d5	(2)	11.182	117	1028312	50.000
114) \$4-Bromofluorobenzene	(2)	12.186	95	496760	47.491
130) *1,4-Dichlorobenzene-d4	(3)	13.062	152	574669	50.000

^{* =} Compound is an internal standard.

page 1 of 1

^{\$} = Compound is a surrogate standard.

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s36.d Injection date and time: 05-SEP-2012 15:21

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:10 ers02237

Sample Name: PAT-9 Lab Sample ID: 6769187

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 327
Retention Time (minutes): 3.578
Relative Retention Time :-0.00026
Quant Ion : 96.00
Area (flag) : 7555
On-Column Amount (ng) : 1.3069

EPA SAMPLE NO.

PAT10

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6769188

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s37.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) ug/L	Q
---------	----------	----------------------	---

	(45, 1 01 45, 15	g, 4g,2	*
75-71-8Di	chlorodifluoromethane	5	U
74-87-3Ch	loromethane	5	U
75-01-4Vi	nyl Chloride	5	U
74-83-9Br	omomethane	5	U
75-00-3Ch	loroethane	5	U
75-69-4Tr	ichlorofluoromethane	5	U
75-35-41,	1-Dichloroethene	120	
67-64-1Ac	etone	10	J
75-09-2Me	thylene Chloride	5	U
156-60-5tr	ans-1,2-Dichloroethene	5	U
1634-04-4Me	thyl Tertiary Butyl Ether	5	U
75-34-31,	1-Dichloroethane	5	J
156-59-2ci	s-1,2-Dichloroethene	5	U U
78-93-32-	Butanone	8	J
594-20-72,	2-Dichloropropane	5	U
74-97-5Br	omochloromethane	5	U
67-66-3Ch	loroform	5	U
71-55-61,	1,1-Trichloroethane	5	U
563-58-61,	1-Dichloropropene	5	ן ט
56-23-5Ca	rbon Tetrachloride	5	ן ט
71-43-2Be	nzene	5	ן ש
107-06-21,	2-Dichloroethane	5	ט
79-01-6Tr	ichloroethene	5	ן ט
78-87-51,	2-Dichloropropane	5	ן ט
74-95-3Di	bromomethane	5	U
75-27-4Br	omodichloromethane	5	U
10061-01-5ci	s-1,3-Dichloropropene	5	ט
108-10-14-	Methyl-2-Pentanone	10	ן ט
108-88-3To	luene	5	U
10061-02-6tr	ans-1,3-Dichloropropene	5	ט
			l

EPA	SAMPLE	NO.
-----	--------	-----

PAT10

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769188

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s37.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.	COMPOUND (ug/L or ug/Kg)	ug/L	Q
79-00-5	1,1,2-Trichloroe	thane	5	U
127-18-4	Tetrachloroethen	e i	5	บ
142-28-9	1,3-Dichloroprop	ane	5	U
124-48-1	Dibromochloromet	hane	5	U
106-93-4	1,2-Dibromoethan	e	5	U
108-90-7	Chlorobenzene	İ	5	U
630-20-6	1,1,1,2 - Tetrachl	oroethane	5	U
,	Ethylbenzene	İ	5	U
:	m+p-Xylene	j	5	υ
	o-Xylene	j	5	ָ ט
!	Styrene	j	5	ט
75-25-2	Bromoform	j	5	U
98-82-8	Isopropylbenzene		5	U
	1,1,2,2-Tetrachl	•	5	U
	Bromobenzene	İ	5	υ
96-18-4	1,2,3-Trichlorop	ropane	5	U
	n-Propylbenzene	i	5	i u
	2-Chlorotoluene	j	5	U
108-67-8	1,3,5-Trimethylb	enzene	5	Ū
	4-Chlorotoluene		5	i u
	tert-Butylbenzen	.e	5	Ū
	1,2,4-Trimethylb	· ·	5	י די
	sec-Butylbenzene		5	י
	p-Isopropyltolue	•	5	י
	1,3-Dichlorobenz		5	ับ
, and the second	1,4-Dichlorobenz	•	5	ע
	n-Butylbenzene		5	ע
	1,2-Dichlorobenz	ene	5	ט
,	1,2-Dibromo-3-Ch	·	5	ָ ט
	1,2,4-Trichlorob		5	ָ עו
	2,2,1 1110110102		J	-

EPA SAMPLE NO.

PAT10

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769188

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s37.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 87-68-3-----Hexachlorobutadiene 5 | U 5 91-20-3-----Naphthalene ן ע 87-61-6-----1,2,3-Trichlorobenzene 5 | U

PAT10 Analysis

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769188

Data file: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45
Data file Sample Info. Line: PAT10;6769188;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER

Matrix: WATER Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.256(-0.019)	438	65	322974 (-15)	250.00	
70) Fluorobenzene	7.718(-0.007)	1007	96	1416412 (-6)	50.00	
98) Chlorobenzene-d5	11.179(-0.013)	1576	117	1022092 (-4)	50.00	
130) 1,4-Dichlorobenzene-d4	13.059(-0.031)	1885	152	576032 (-9)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	QC %Rec. flags	QC Limits
51) Dibromofluoromethane62) 1,2-Dichloroethane-d4	(1)	6.799(-0.001)	113	330253	52.161	104%	80 - 116
	(1)	7.255(0.000)	102	86364	50.999	102%	77 - 113
86) Toluene-d8	(2)	9.731 (0.000)	98	1356259	47.428	95%	80 - 113
114) 4-Bromofluorobenzene	(2)	12.183 (-0.001)	95	492320	47.353	95%	78 - 113

Tar	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sa	LOQ ample)
1)	Dichlorodifluoromethane	(1)				Not Detected					1	5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)	3.57	5(0.000)	96	672059	116.638	116.64			0.8	5
19)	Acetone	(1)	3.70	3(-0.011)	58	11822	9.946	9.95		J	6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)	5.27	3 (-0.002)	63	58786	4.642	4.64		J	1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)	6.32	1(-0.023)	43	44262MA	7.891	7.89		J	3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769188 PAT10

Injection date and time: 05-SEP-2012 15:45
Instrument ID: HP07159.i Batch: N122492AA Data file: /chem/HP07159.i/12sep05b.b/ns05s37.d Data file Sample Info. Line: PAT10;6769188;1;0;;PTL09;PLM;;ns05b05; Ins. Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time (Last Method Edit): 05-SEP-2012 13:23 Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Matrix: WATER Level: Low Bottle Code: 038A

In Sample Concentration units: ug/L On-Column Amount units: ng

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sa	LOQ mple)
93) Tetrachloroethene	(2)				Not Detected					0.8	5
94) 1,3-Dichloropropane	(2)				Not Detected	I				1	5
96) Dibromochloromethane	(2)				Not Detected					1	5
97) 1,2-Dibromoethane	(2)				Not Detected					1	5
100) Chlorobenzene	(2)				Not Detected					0.8	5
101) 1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
102) Ethylbenzene	(2)				Not Detected	l				0.8	5
103) m+p-Xylene	(2)				Not Detected					0.8	5
106) o-Xylene	(2)				Not Detected					0.8	5
109) Styrene	(2)				Not Detected	l				1	5
110) Bromoform	(2)				Not Detected	I				1	5
111) Isopropylbenzene	(2)				Not Detected					1	5
116) 1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
117) Bromobenzene	(3)				Not Detected					1	5
119) 1,2,3-Trichloropropane	(3)				Not Detected					1	5
120) n-Propylbenzene	(3)				Not Detected					1	5
121) 2-Chlorotoluene	(3)				Not Detected					1	5
122) 1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
123) 4-Chlorotoluene	(3)				Not Detected					1	5
124) tert-Butylbenzene	(3)				Not Detected					1	5
126) 1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
127) sec-Butylbenzene	(3)				Not Detected					1	5
128) p-Isopropyltoluene	(3)				Not Detected					1	5
129) 1,3-Dichlorobenzene	(3)				Not Detected					1	5
131) 1,4-Dichlorobenzene	(3)				Not Detected					1	5
136) n-Butylbenzene	(3) .				Not Detected					1	5
137) 1,2-Dichlorobenzene	(3)				Not Detected					1	5
139) 1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
140) 1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
141) Hexachlorobutadiene	(3)				Not Detected					2	5
142) Naphthalene	(3)				Not Detected	l				1	5
144) 1,2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT10 Lab Sample ID: 6769188

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29.

Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT10 Lab Sample ID: 6769188

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:29.
Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45

Instrument ID: HP07159.i
Analyst ID: ERS02237

injection date and time. 05 5Hr 2012 15.45

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT10 Lab Sample ID: 6769188

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.575	96	672059	116.638
<pre>19) Acetone 26)*t-Butyl Alcohol-d10</pre>	(1) (4)	3.709 4.256	58 65	11822 322974	9.946 250.000
36) 1,1-Dichloroethane	(1)	5.278	63	58786	4.642
42) 2-Butanone	(1)	6.324	43	44262MA	7.891
51) \$Dibromofluoromethane	(1)	6.799	113	330253	52.161
62)\$1,2-Dichloroethane-d4	(1)	7.255	102	86364	50.999
70)*Fluorobenzene	(1)	7.718	96	1416412	50.000
86)\$Toluene-d8	(2)	9.731	98	1356259	47.428
98)*Chlorobenzene-d5	(2)	11.179	117	1022092	50.000
114)\$4-Bromofluorobenzene	(2)	12.183	95	492320	47.353
130) *1,4-Dichlorobenzene-d4	(3)	13.059	152	576032	50.000

M = Compound was manually integrated.

A = User selected an alternate hit.

* = Compound is an internal standard.

\$ = Compound is a surrogate standard.

page 1 of 1

Data File: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT10 Lab Sample ID: 6769188

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 326
Retention Time (minutes): 3.575
Relative Retention Time : 0.00034
Quant Ion : 96.00
Area (flag) : 672059
On-Column Amount (ng) : 116.6385

Data File: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT10 Lab Sample ID: 6769188

Compound Number : 19
Compound Name : Acetone
Scan Number : 348
Retention Time (minutes): 3.709
Relative Retention Time :-0.01149
Quant Ion : 58.00
Area (flag) : 11822
On-Column Amount (ng) : 9.9457

Reference Standard Spectrum for 1,1-Dichloroethane

Data File: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT10 Lab Sample ID: 6769188

Compound Number : 36

Compound Name : 1,1-Dichloroethane

Scan Number : 606
Retention Time (minutes): 5.278
Relative Retention Time :-0.00263
Quant Ion : 63.00
Area (flag) : 58786
On-Column Amount (ng) : 4.6423

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT10 Lab Sample ID: 6769188

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 778
Retention Time (minutes): 6.324
Relative Retention Time :-0.02303
Quant Ion : 43.00
Area (flag) : 44262AM
On-Column Amount (ng) : 7.8907

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Su

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT10 Lab Sample ID: 6769188

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 778
Retention Time (minutes): 6.324
Quant Ion : 43.00
Area (flag) : 44262AM
On-Column Amount (ng) : 7.8907

Integration start scan : 765 Integration stop scan: 799 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:29.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s37.d Injection date and time: 05-SEP-2012 15:45

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 16:05 Automation

Lab Sample ID: 6769188 Sample Name: PAT10

Compound Number 42

Compound Name 2-Butanone

Scan Number 778 Retention Time (minutes): 6.324 Quant Ion 43.00 72065 Area

12.8469 On-column Amount (ng) 765 Integration stop scan: Integration start scan 0 Y at integration start Y at integration end:

EPA SAMPLE NO.

PAT-8

Lab Name: Lancaster Laboratories Contract:

SDG No.:

Q

5 | U

ן ע

lυ

ן ט

lυ

5

10

5

5

Lab Code: LANCAS

Case No.:_____ SAS No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769189

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP07159.i/12sep05b.b/ns05s38.d

Level: (low/med) LOW

CAS NO.

Date Received: 08/28/12

Moisture: not dec. _____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

COMPOUND

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

75-71-8-----Dichlorodifluoromethane 5 IJ | 74-87-3-----Chloromethane 5 U 75-01-4-----Vinyl Chloride 5 | U 74-83-9-----Bromomethane 5 U U | 75-00-3-----Chloroethane 5 75-69-4-----Trichlorofluoromethane 5 | U 75-35-4----1,1-Dichloroethene 170 U 67-64-1-----Acetone 20 5 | U 75-09-2-----Methylene Chloride 156-60-5----trans-1,2-Dichloroethene 5 | U | 1634-04-4-----Methyl Tertiary Butyl Ether | 5 | U 75-34-3-----1,1-Dichloroethane 11 | 156-59-2-----cis-1,2-Dichloroethene 5 | U | 78-93-3-----2-Butanone 10 | U 5 | U 594-20-7----2,2-Dichloropropane 74-97-5-----Bromochloromethane 5 Ι·υ 67-66-3------Chloroform 5 | U 71-55-6-----1,1,1-Trichloroethane 52 5 | U 563-58-6-----1,1-Dichloropropene 56-23-5-----Carbon Tetrachloride 5 ΙU 71-43-2----Benzene 5 | U 107-06-2----1, 2-Dichloroethane 5 | U 79-01-6-----Trichloroethene 5 | U 5 78-87-5-----1,2-Dichloropropane 1 11 5 | U | 74-95-3------Dibromomethane

75-27-4-----Bromodichloromethane

108-10-1----4-Methyl-2-Pentanone

108-88-3-----Toluene

10061-01-5----cis-1,3-Dichloropropene

10061-02-6----trans-1,3-Dichloropropene

EPA	SAMPLE	NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769189

 $Sample \ \text{wt/vol:} \ 5.00 \ (\text{g/mL}) \ \text{mL} \qquad \qquad Lab \ \text{File ID:} \ \text{HP07159.i/12sep05b.b/ns05s38.d}$

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (u	g/L or ug/Kg)	ug/L	Q
79-00-5	1,1,2-Trichloroet	hane	5	U
127-18-4	Tetrachloroethene	j	5	ָן ט
142-28-9	1,3-Dichloropropa	ne	5	וֹ ט וֹ
124-48-1	Dibromochlorometh	ane	5	ָוֹ דַ וֹ
106-93-4	1,2-Dibromoethane	ĺ	5	ן ט
108-90-7	Chlorobenzene	j	5	ן ט ן
630-20-6	1,1,1,2-Tetrachlo	roethane	5	ן ט
100-41-4	Ethylbenzene	ĺ	5	ן ט ן
179601-23-1-	m+p-Xylene	j	5	ט ו
95-47-6	O-Xylene	İ	5	ו ט ו
100-42-5	Styrene	j	5	ן ט ן
75-25-2	Bromoform	j	5	ן ט
98-82-8	Isopropylbenzene	j	5	ן ט ן
	1,1,2,2-Tetrachlo	roethane	5	ן ט
108-86-1	Bromobenzene	ĺ	5	ן ט
96-18-4	1,2,3-Trichloropro	opane	5	ן ט ן
103-65-1	n-Propylbenzene	į	5	ן ט ן
95-49-8	2-Chlorotoluene	Ì	5	ן ט ן
108-67-8	1,3,5-Trimethylben	nzene	5	ו ט ו
106-43-4	4-Chlorotoluene	j	5	j v j
98-06-6	tert-Butylbenzene	İ	5	ן ט ן
95-63-6	1,2,4-Trimethylber	nzene	5	וֹ טוֹ
135-98-8	sec-Butylbenzene	j	5	ן ט ן
99-87-6	p-Isopropyltoluene	∍	5	ן ט ן
541 - 73-1	1,3-Dichlorobenzer	ne	5	ט
106-46-7	1,4-Dichlorobenzer	ne	5	ן ט ן
104-51-8	n-Butylbenzene	į	5	ן ט ן
95-50-1	1,2-Dichlorobenzer	ne	5	U
96-12-8	1,2-Dibromo-3-Chlo	propropane	5	ן ט
120-82-1	1,2,4-Trichlorober	nzene	5	ן ט ן
				_

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769189

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s38.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/LQ 87-68-3-----Hexachlorobutadiene 5 | U 5 U 91-20-3-----Naphthalene 5 | U 87-61-6----1,2,3-Trichlorobenzene

PAT-8 Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769189

Data file: /chem/HP07159.i/12sep05b.b/ns05s38.d Injection date and time: 05-SEP-2012 16:08
Data file Sample Info. Line: PAT-8;6769189;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 05-Sep-2012 17:13 ers02237

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

On-Column Amount units: ng

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.254 (-0.016)	438	65	322075 (-15)	250.00	
70) Fluorobenzene	7.715(-0.004)	1007	96	1408724 (-7)	50.00	
98) Chlorobenzene-d5	11.177 (~0.010)	1576	117	1010000 (-5)	50.00	
130) 1,4-Dichlorobenzene-d4	13.063(-0.035)	1886	152	572869 (-9)	50.00	

Surrogate Standards	I.S. Ref. =====	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags ======	QC Limits
51) Dibromofluoromethane	(1)	6.797 (-0.001)	113	326446	51.841	104%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	7.259(-0.001)	102	85272	50.629	101%		77 - 113
86) Toluene-d8	(2)	9.735(0.000)	98	1339631	47.407	95%		80 - 113
114) 4-Bromofluorobenzene	(2)	12.187 (-0.002)	95	492657	47.953	96%		78 - 113

Tar	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ mple)
11	Dichlorodifluoromethane	(1)				Not Detected					}	5
-,	Chloromethane	(1)				Not Detected					î	5
	Vinyl Chloride	(1)				Not Detected					1	5
	Bromomethane	(1)				Not Detected					î	5
	Chloroethane	(1)				Not Detected					1	5
•	Trichlorofluoromethane	(1)				Not Detected					ī	5
	1,1-Dichloroethene	(1)	3 572	2(0.000)	96	958329	167.229	167.23			0.8	5
	Acetone	(1)	3.372	. (0.000)	,,	Not Detected					6	20
	Methylene Chloride	(1)				Not Detected					2	5
	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
	1,1-Dichloroethane	(1)	5.276	(-0.002)	63	132653	10.533	10.53			1	5
	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)				Not Detected					3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)	6.827	7(-0.000)	97	505700	51.741	51.74			0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

Lancaster Laboratories Analysis Summary for GC/MS Volatiles PAT-8 6769189

Injection date and time: 05-SEP-2012 16:08
Instrument ID: HP07159.i Batch: N122492AA Data file: /chem/HP07159.i/12sep05b.b/ns05s38.d Inje
Data file Sample Info. Line: PAT-8;6769189;1;0;;PTL09;PLM;;ns05b05; Inst
Date, time and analyst ID of latest file update: 05-Sep-2012 17:13 ers02237

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732
Calibration date and time (Last Method Edit): 05-SEP-2012 13:23
Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in same	LOQ mple)
93)	Tetrachloroethene	(2)				Not Detected					0.8	5
94)	1,3-Dichloropropane	(2)				Not Detected					1	5
96)	Dibromochloromethane	(2)				Not Detected					1	5
97)	1,2-Dibromoethane	(2)				Not Detected					1	5
100)	Chlorobenzene	(2)				Not Detected					0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
102)	Ethylbenzene	(2)				Not Detected					0.8	5
103)	m+p-Xylene	(2)				Not Detected					0.8	5
106)	o-Xylene	(2)				Not Detected					0.8	5
109)	Styrene	(2)				Not Detected					1	5
110)	Bromoform	(2)				Not Detected					1	5
111)	Isopropylbenzene	(2)				Not Detected					1	5
116)	1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
117)	Bromobenzene	(3)				Not Detected					1	5
119)	1,2,3-Trichloropropane	(3)				Not Detected					1	5
120)	n-Propylbenzene	(3)				Not Detected					1	5
121)	2-Chlorotoluene	(3)				Not Detected					1	5
122)	1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
123)	4-Chlorotoluene	(3)				Not Detected					1	5
124)	tert-Butylbenzene	(3)				Not Detected					1	5
126)	1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
127)	sec-Butylbenzene	(3)				Not Detected					1	5
128)	p-Isopropyltoluene	(3)				Not Detected					1	5
129)	1,3-Dichlorobenzene	(3)				Not Detected					1	5
131)	1,4-Dichlorobenzene	(3)				Not Detected					1	5
136)	n-Butylbenzene	(3)				Not Detected					1	5
137)	1,2-Dichlorobenzene	(3)				Not Detected					1	5
139)	1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
140)	1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
141)	Hexachlorobutadiene	(3)				Not Detected					2	5
142)	Naphthalene	(3)				Not Detected					1	5
144)	1,2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 63

Digitally signed by Emily R. Styer on 09/05/2012 at 17:16. Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s38.d Injection date and time: 05-SEP-2012 16:08

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:13 ers02237

Sample Name: PAT-8 Lab Sample ID: 6769189

Digitally signed by Emily R. Styer on 09/05/2012 at 17:16.
Target 3.5 esignature user ID: ers02237

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s38.d Injection date and time: 05-SEP-2012 16:08 A

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:13 ers02237

Sample Name: PAT-8 Lab Sample ID: 6769189

Digitally signed by Emily R. Styer on 09/05/2012 at 17:16.
Target 3.5 esignature user ID: ers02237

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s38.d Injection date and time: 05-SEP-2012 16:08

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 05-Sep-2012 17:13 ers02237

Sample Name: PAT-8 Lab Sample ID: 6769189

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.572	96	958329	167.229
26) *t-Butyl Alcohol-d10	(4)	4.254	65	322075	250.000
36) 1,1-Dichloroethane	(1)	5.276	63	132653	10.533
51) \$Dibromofluoromethane	(1)	6.797	113	326446	51.841
53) 1,1,1-Trichloroethane	(1)	6.827	97	505700	51.741
62) \$1,2-Dichloroethane-d4	(1)	7.259	102	85272	50.629
70) *Fluorobenzene	(1)	7.715	96	1408724	50.000
86) \$Toluene-d8	(2)	9.735	98	1339631	47.407
98)*Chlorobenzene-d5	(2)	11.177	117	1010000	50.000
114) \$4-Bromofluorobenzene	(2)	12.187	95	492657	47.953
130) *1,4-Dichlorobenzene-d4	(3)	13.063	152	572869	50.000

^{* =} Compound is an internal standard.

page 1 of 1

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s38.d Injection date and time: 05-SEP-2012 16:08

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:13 ers02237

Sample Name: PAT-8 Lab Sample ID: 6769189

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 326
Retention Time (minutes): 3.572
Relative Retention Time : 0.00050
Quant Ion : 96.00
Area (flag) : 958329
On-Column Amount (ng) : 167.2294

Data File: /chem/HP07159.i/12sep05b.b/ns05s38.d Injection date and time: 05-SEP-2012 16:08

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:13 ers02237

Sample Name: PAT-8 Lab Sample ID: 6769189

Compound Number : 36

Compound Name : 1,1-Dichloroethane

Scan Number : 606
Retention Time (minutes): 5.276
Relative Retention Time :-0.00254
Quant Ion : 63.00
Area (flag) : 132653
On-Column Amount (ng) : 10.5327

Data File: /chem/HP07159.i/12sep05b.b/ns05s38.d Injection date and time: 05-SEP-2012 16:08

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:13 ers02237

Sample Name: PAT-8 Lab Sample ID: 6769189

Compound Number : 53

Compound Name : 1,1,1-Trichloroethane

Scan Number : 861
Retention Time (minutes): 6.827
Relative Retention Time :-0.00006
Quant Ion : 97.00
Area (flag) : 505700
On-Column Amount (ng) : 51.7412

EPA SAMPLE NO.

PAT15	

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769190

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s39.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

CAS NO. COMPOUND

Dilution Factor: 1.0

(ug/L or ug/Kg) ug/L

CONCENTRATION UNITS:

(43, 2 01 43, 10	5/ 4 5/-	-
75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	ָ ד <u>ַ</u>
75-01-4Vinyl Chloride	5	U
74-83-9Bromomethane	5	U
75-00-3Chloroethane	5	์ บ
75-69-4Trichlorofluoromethane	5	์ บ
75-35-41,1-Dichloroethene	59	
67-64-1Acetone	12	J
75-09-2Methylene Chloride	5	U
156-60-5trans-1,2-Dichloroethene	5	U
1634-04-4Methyl Tertiary Butyl Ether	5	U
75-34-31,1-Dichloroethane	2	J
156-59-2cis-1,2-Dichloroethene	5	U
78-93-32-Butanone	7	J
594-20-72,2-Dichloropropane	5	U
74-97-5Bromochloromethane	5	U
67-66-3Chloroform	5	Ū.
71-55-61,1,1-Trichloroethane	5	Ū
563-58-61,1-Dichloropropene	5	Ū
56-23-5Carbon Tetrachloride	5	U
71-43-2Benzene	5	Ū
107-06-21,2-Dichloroethane	5	Ū
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	U
74-95-3Dibromomethane	5	Ū
75-27-4Bromodichloromethane	5	U
10061-01-5cis-1,3-Dichloropropene	5	U
108-10-14-Methyl-2-Pentanone	j 10	U
108-88-3Toluene	5	U
10061-02-6trans-1,3-Dichloropropene	5	U

EPA	SAMPLE	MO.	
i			

		PAT15
Lab Name: Lancaster Laboratories	Contract:	1

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769190

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s39.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/I	Kg) ug/L	Q
79-00-5	1,1,2-Trichloroethane	5	ן ט
127-18-4	Tetrachloroethene	5	Ū
142-28-9	1,3-Dichloropropane	5	U
124-48-1	Dibromochloromethane	5	ן ט
106-93-4	1,2-Dibromoethane	5	U
108-90-7	Chlorobenzene	5	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5	U
100-41-4	Ethylbenzene	5	ט
179601-23-	1m+p-Xylene	5	U
95-47-6	o-Xylene	5	์ บ
100-42-5	Styrene	j . 5	์ บ
75-25-2	Bromoform	5	์ บ
98-82-8	Isopropylbenzene	5	์ ซ
	1,1,2,2-Tetrachloroethane	5	U
108-86-1	Bromobenzene	5	์ บ
96-18-4	1,2,3-Trichloropropane	5	์ บ
	n-Propylbenzene	5	U
95-49-8	2-Chlorotoluene	5	ט
108-67-8	1,3,5-Trimethylbenzene	5	์ บ
106-43-4	4-Chlorotoluene	5	์ บ
98-06-6	tert-Butylbenzene	5	์ บ
	1,2,4-Trimethylbenzene	5	์ บ
135-98-8	sec-Butylbenzene	5	์ บ
99-87-6	p-Isopropyltoluene	5	υ
541-73-1	1,3-Dichlorobenzene	5	j υ
106-46-7	1,4-Dichlorobenzene	5	j ט
	Butylbenzene	5	υ
	1,2-Dichlorobenzene	5	j υ
96-12-8	1,2-Dibromo-3-Chloropropane	5	ָ ט
	1,2,4-Trichlorobenzene	5	บ
			_

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PAT1	5

Lab Name: Lancaster Laboratories Contract:___

Lab Code: LANCAS

Case No.:_____ SAS No.:_____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769190

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s39.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec.

Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L 87-68-3-----Hexachlorobutadiene 5 | U 91-20-3-----Naphthalene 5 ΙU

87-61-6----1,2,3-Trichlorobenzene

PAT15

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769190

Data file: /chem/HP07159.i/12sep05b.b/ns05s39.d Inje
Data file Sample Info. Line: PAT15;6769190;1;0;;PTL09;PLM;;ns05b05; Inst
Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174 Injection date and time: 05-SEP-2012 16:32
Instrument ID: HP07159.i Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23
Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/~ %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.255(-0.018)	438	65	319483 (-16)	250.00	
70) Fluorobenzene	7.717(-0.006)	1007	96	1406331 (-7)	50.00	
98) Chlorobenzene-d5	11.178(-0.012)	1576	117	1017100 (-4)	50.00	
130) 1,4-Dichlorobenzene-d4	13.064 (-0.036)	1886	152	566604 (-10)	50.00	

	rrogate Standards	I.S. Ref. =====	RT (+/-R	RT) QIO	n Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.792(0.0	00) 11	318880	50.726	101%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.254 (0.0	00) 10:	85002	50.555	101%		77 - 113
86)	Toluene-d8	(2)	9.736(0.0	00) 9:	3 1341243	47.133	94%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.188 (-0.0	02) 9	483032	46.688	93%		78 - 113

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	roð
1)	Dichlorodifluoromethane	(1)				Not Detected					1	5
3)	Chloromethane	(1)				Not Detected					i	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					ı	5
16)	1,1-Dichloroethene	(1)	3.57	4 (0.000)	96	337157	58.934	58.93			0.8	5
19)	Acetone	(1)	3.689	9 (-0.009)	58	13618	11.539	11.54		J	6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)	5.29	6 (-0.004)	63	23330	1.856	1.86		J	1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)	6.33	6(-0.024)	43	40965A	7.355	7.36		J	3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

A = User selected an alternate peak.

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769190 PAT15

Injection date and time: 05-SEP-2012 16:32 Instrument ID: HP07159.i Batch: N122492AA Data file: /chem/HP07159.i/12sep05b.b/ns05s39.d Inje
Data file Sample Info. Line: PAT15;6769190;1;0;;PTL09;PLM;;ns05b05; Inst
Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

		I.S.					Conc.	Conc.	Blank		Reporting Limit	100
Т	get Compounds	Ref.	RT	(+/-RRT)	Olon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sam	
	get Compounds	Rei.		(+/-KKI)	_		(OII-COTUMII)	(11) Sample)		-		
	Tetrachloroethene	(2)				Not Detected	 }				0.8	5
,	1,3-Dichloropropane	(2)				Not Detected					1	5
	Dibromochloromethane	(2)				Not Detected					1	5
	1.2-Dibromoethane	(2)				Not Detected					1	5
	Chlorobenzene	(2)				Not Detected					0.8	5
	1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
	Ethylbenzene	(2)				Not Detected	1				0.8	5
	m+p-Xylene	(2)				Not Detected					0.8	5
	o-Xylene	(2)				Not Detected	ì				0.8	5
	Styrene	(2)				Not Detected	i				1	5
	Bromoform	(2)				Not Detected	i				1	5
111)	Isopropylbenzene	(2)				Not Detected	ì				1	5
	1,1,2,2-Tetrachloroethane	(3)				Not Detected	ì				1	5
117)	Bromobenzene	(3)				Not Detected	1				1	5
119)	1,2,3-Trichloropropane	(3)				Not Detected	ì				1	5
120)	n-Propylbenzene	(3)				Not Detected	ì				1	5
121)	2-Chlorotoluene	(3)				Not Detected	i				1	5
122)	1,3,5-Trimethylbenzene	(3)				Not Detected	i				1	5
123)	4-Chlorotoluene	(3)				Not Detected	ì				1	5
124)	tert-Butylbenzene	(3)				Not Detected	i				1	5
126)	1,2,4-Trimethylbenzene	(3)				Not Detected	l				1	5
127)	sec-Butylbenzene	(3)				Not Detected	Ī				1	5
128)	p-Isopropyltoluene	(3)				Not Detected	ì				1	5
129)	1,3-Dichlorobenzene	(٤)				Not Detected	ì				1	5
131)	1,4-Dichlorobenzene	(3)				Not Detected	ì				1	5
136)	n-Butylbenzene	(3)				Not Detected	l				1	5
137)	1,2-Dichlorobenzene	(3)				Not Detected	l				1	5
139)	1,2-Dibromo-3-Chloropropane	(3)				Not Detected	l				2	5
140}	1,2,4-Trichlorobenzene	(3)				Not Detected	1				1	5
141)	Hexachlorobutadiene	(3)				Not Detected	l				2	5
	Naphthalene	(3)				Not Detected	l				1	5
144)	1,2,3-Trichlorobenzene	(3)				Not Detected	l				1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:30. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s39.d Injection date and time: 05-SEP-2012 16:32

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Lab Sample ID: 6769190 Sample Name: PAT15

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:30. Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s39.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 16:32 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT15 Lab Sample ID: 6769190

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:30.

Target 3.5 esignature user ID: sag03174

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s39.d Injection date and time: 05-SEP-2012 16:32

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT15 Lab Sample ID: 6769190

> On-Column I.S. Amount RT QIon Area Ref. (ng) -----

· · · - · · · · · · ·					
16) 1,1-Dichloroethene	(1)	3.574	96	337157	58.934
19) Acetone	(1)	3.689	58	13618	11.539
26)*t-Butyl Alcohol-d10	(4)	4.255	65	319483	250.000
36) 1,1-Dichloroethane	(1)	5.296	63	23330	1.856
42) 2-Butanone	(1)	6.336	43	40965A	7.355
51) \$Dibromofluoromethane	(1)	6.792	113	318880	50.726
62)\$1,2-Dichloroethane-d4	(1)	7.254	102	85002	50.555
70)*Fluorobenzene	(1)	7.717	96	1406331	50.000
86)\$Toluene-d8	(2)	9.736	98	1341243	47.133
98)*Chlorobenzene-d5	(2)	11.178	117	1017100	50.000
114)\$4-Bromofluorobenzene	(2)	12.188	95	483032	46.688
130) *1,4-Dichlorobenzene-d4	(3)	13.064	152	566604	50.000

A = User selected an alternate hit.

Compounds

page 1 of 1

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s39.d Injection date and time: 05-SEP-2012 16:32

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT15 Lab Sample ID: 6769190

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 326
Retention Time (minutes): 3.574
Relative Retention Time : 0.00039
Quant Ion : 96.00
Area (flag) : 337157
On-Column Amount (ng) : 58.9344

Data File: /chem/HP07159.i/12sep05b.b/ns05s39.d Injection date and time: 05-SEP-2012 16:32

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT15 Lab Sample ID: 6769190

Compound Number : 19
Compound Name : Acetone
Scan Number : 345
Retention Time (minutes): 3.689
Relative Retention Time :-0.00906
Quant Ion : 58.00
Area (flag) : 13618
On-Column Amount (ng) : 11.5387

Reference Standard Spectrum for 1,1-Dichloroethane

Data File: /chem/HP07159.i/12sep05b.b/ns05s39.d Injection date and time: 05-SEP-2012 16:32

Instrument ID: HP07159.i
Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT15 Lab Sample ID: 6769190

Compound Number : 36

Compound Name : 1,1-Dichloroethane

Scan Number : 609
Retention Time (minutes): 5.296
Relative Retention Time :-0.00497
Quant Ion : 63.00
Area (flag) : 23330
On-Column Amount (ng) : 1.8556

Data File: /chem/HP07159.i/12sep05b.b/ns05s39.d Injection date and time: 05-SEP-2012 16:32

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Name: PAT15 Lab Sample ID: 6769190

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.336
Relative Retention Time :-0.02459
Quant Ion : 43.00
Area (flag) : 40965A
On-Column Amount (ng) : 7.3551

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s39.d Injection date and time: 05-SEP-2012 16:32

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:29 sag03174

Sample Namo: PAT15 Lab Sample ID: 6769190

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.336
Quant Ion : 43.00
Area (flag) : 40965A
On-Column Amount (ng) : 7.3551

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:30.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s39.d Injection date and time: 05-SEP-2012 16:32

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 16:52 Automation

Sample Name: PAT15 Lab Sample ID: 6769190

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.336
Quant Ion : 43.00
Area : 40965

On-column Amount (ng) : 7.3551Integration start scan : 765 Integration stop scan: 7

Y at integration start scan : 765 Integration stop scan: 797
Y at integration start : 0 Y at integration end: 0

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PAT-7
1

Lab Name: Lancaster Laboratories Contract:____ |

Matrix: (soil/water) WATER Lab Sample ID: 6769191

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s40.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

(g, =	J. J.	_
75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	ָ ט
75-01-4Vinyl Chloride	5	U
74-83-9Bromomethane	5	U
75-00-3Chloroethane	5	U
75-69-4Trichlorofluoromethane	5	U
75-35-41,1-Dichloroethene	5	U
67-64-1Acetone	11	J
75-09-2Methylene Chloride	5	U
156-60-5trans-1,2-Dichloroethene	5	U
1634-04-4Methyl Tertiary Butyl Ether	5	U
75-34-31,1-Dichloroethane	5	U
156-59-2cis-1,2-Dichloroethene	5	U
78-93-32-Butanone	6	J
594-20-72,2-Dichloropropane	5	U
74-97-5Bromochloromethane	5	U
67-66-3Chloroform	5	ט
71-55-61,1,1-Trichloroethane	5	U
563-58-61,1-Dichloropropene	5	U
56-23-5Carbon Tetrachloride	5	U
71-43-2Benzene	5	U
107-06-21,2-Dichloroethane	5	U
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	U
74-95-3Dibromomethane	5	ן ט
75-27-4Bromodichloromethane	5	U
10061-01-5cis-1,3-Dichloropropene	5	U
108-10-14-Methyl-2-Pentanone	10	U
108-88-3Toluene	5	U
10061-02-6trans-1,3-Dichloropropene	5	ט
	.	.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SPA	SAMPLE	NO.	

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER

Lab Sample ID: 6769191

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s40.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/K			Q
0.10			-3, -3, -		
79-00-5	1,1,2-Trichl	oroethane	1	5	ן ט
127-18-4	Tetrachloroe	thene		5	ן ט
142-28-9	1,3-Dichloro	propane		5	ן ט
124-48-1	Dibromochlor	omethane		5	ן ט
106-93-4	1,2-Dibromoe	thane		5	ן ע
108-90-7	Chlorobenzen	е		5	ן ט
630-20-6	1,1,1,2-Tetr	achloroethane		5	ן ט
100-41-4	Ethylbenzene			5	ן ט
179601-23-1	m+p-Xylene			5	ן ט
95-47-6	o-Xylene		Ì	5	ן ט
100-42-5	Styrene		Ì	5	ן ט
75-25-2	Bromoform		Ì	5	ט
98-82-8	Isopropylben	zene	İ	5	ן ט
79-34-5	1,1,2,2-Tetr	achloroethane	ĺ	5	ן ט
108-86-1	Bromobenzene		İ	5	ן ט
96-18-4	1,2,3-Trichl	oropropane	İ	5	ן ט
103-65-1	n-Propylbenz	ene	İ	5	U
95-49-8	2-Chlorotolu	ene	İ	5	ן ט
108-67-8	1,3,5-Trimet	hylbenzene	İ	5	ָן ט
106-43-4	4-Chlorotolu	ene	İ	5	ָן ע
98-06-6	tert-Butylbe	nzene	İ	5	ן ט
95-63 - 6	1,2,4-Trimet	hylbenzene	İ	5	ט
135-98-8	sec-Butylben	zene	İ	5	U
	p-Isopropylt		İ	5	ט
	1,3-Dichloro		İ	5	ָוֹ עוֹ
106-46-7	1,4-Dichloro	benzene	İ	5	ט [
	n-Butylbenze		İ	5	ט
	1,2-Dichloro		İ	5	ן טן
!	1,2-Dibromo-		i	5	ָ <u>י</u>
	1,2,4-Trichl		İ	5	ן ט ן
			. İ		lİ

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PAT-7

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS

Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769191

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s40.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 87-68-3------Hexachlorobutadiene 5 | U 5 ΙU 91-20-3-----Naphthalene 87-61-6-----1,2,3-Trichlorobenzene 5 | U

Lancaster Laboratories Analysis Summary for GC/MS Volatiles PAT-7

6769191

Injection date and time: 05-SEP-2012 16:55
Instrument ID: HP07159.i Batch: N122492AA Data file: /chem/HP07159.i/12sep05b.b/ns05s40.d Inje
Data file Sample Info. Line: PAT-7;6769191;1;0;;PTL09;PLM;;ns05b05; Inst
Date, time and analyst ID of latest file update: 06-Sep-2012 16:30 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist valibration date and time (Last Method Edit): 05-SEP-2012 13:23 Sublist used: 8732

Mid Level Daily Calibration Standard Reference: /chem/HF07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.265 (-0.027)	440	65	308424 (-19)	250.00	
70) Fluorobenzene	7.714(-0.003)	1007	96	1348910 (-11)	50.00	
98) Chlorobenzene-d5	11.176(-0.009)	1576	117	959829 (-10)	50.00	
130) 1,4-Dichlorobenzene-d4	13.062(-0.034)	1886	152	553149 (-12)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	QC %Rec. flag	S QC Limits
51) Dibromofluoromethane 62) 1,2-Dichloroethane-d4	(1)	6.796(-0.001)	113	317283	52.620	105%	80 - 116
	(1)	7.252(0.000)	102	83144	51.555	103%	77 - 113
86) Toluene-d8	(2)	9.734 (0.000)	98	1294561	48.207	96%	80 - 113
114) 4-Bromofluorobenzene	(2)	12.185 (-0.002)	95	474185	48.567	97%	78 - 113

Tar	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sa	LOQ
					=====							
1)	Dichlorodifluoromethane	(1)				Not Detected					1	5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
19)	Acetone	(1)	3.69	9(-0.010)	58	12031	10.628	10.63		J	6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)	6.34	5(-0.026)	43	31485MA	5.894	5.89		J	3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PAT-7 Lancaster Laboratories 6769191

Data file: /chem/HP07159.i/12sep05b.b/ns05s40.d Injection date and time: 05-SEP-2012 16:55
Data file Sample Info. Line: PAT-7;6769191;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:30 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

										Reporting	-
		I.S.				Conc.	Conc.	Blank		Limit	rog
	get Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sar	mple)
				=====	======================================		=======================================		*****		
	Tetrachloroethene	(2)			Not Detected					0.8	5
	1,3-Dichloropropane	(2)			Not Detected					1	5
	Dibromochloromethane	(2)			Not Detected					1	5
97)	1,2-Dibromoethane	(2)			Not Detected					1	5
100)	Chlorobenzene	(2)			Not Detected					0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)			Not Detected					1	5
102)	Ethylbenzene	(2)			Not Detected					0.8	5
103)	m+p-Xylene	(2)			Not Detected					0.8	5
106)	o-Xylene	(2)			Not Detected					0.8	5
109)	Styrene	(2)			Not Detected					1	5
110)	Bromoform	(2)			Not Detected					1	5
111)	Isopropylbenzene	(2)			Not Detected					1	5
116)	1,1,2,2-Tetrachloroethane	(3)			Not Detected					1	5
117)	Bromobenzene	(3)			Not Detected					1	5
119)	1,2,3-Trichloropropane	(3)			Not Detected					1	5
120)	n-Propylbenzene	(3)			Not Detected					1	5
121)	2-Chlorotoluene	(3)			Not Detected					1	5
122)	1,3,5-Trimethylbenzene	(3)			Not Detected					1	5
123)	4-Chlorotoluene	(3)			Not Detected					1	5
124)	tert-Butylbenzene	(3)			Not Detected					1	5
126)	1,2,4-Trimethylbenzene	(3)			Not Detected					1	5
	sec-Butylbenzene	(3)			Not Detected					1	5
128)	p-Isopropyltoluene	(3)			Not Detected					1	5
129)	1,3-Dichlorobenzene	(3)			Not Detected					1	5
	1,4-Dichlorobenzene	(3)			Not Detected					1.	5
	n-Butylbenzene	(3)			Not Detected					1	5
	1,2-Dichlorobenzene	(3)			Not Detected					1	5
	1,2-Dibromo-3-Chloropropane	(3)			Not Detected					2	5
	1,2,4-Trichlorobenzene	(3)			Not Detected					1	5
	Hexachlorobutadiene	(3)			Not Detected					2	5
	Naphthalene	(3)			Not Detected					1	5
	1,2,3-Trichlorobenzene	(3)			Not Detected					1	5
,		• •									

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:30. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s40.d Injection date and time: 05-SEP-2012 16:55

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:30 sag03174

Sample Name: PAT-7 Lab Sample ID: 6769191

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:30.
Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s40.d Injection date and time: 05-SEP-2012 16:55

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:30 sag03174

Lab Sample ID: 6769191 Sample Name: PAT-7

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:30. Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s40.d

Instrument ID: HP07159.i Analyst ID: ERS02237

Injection date and time: 05-SEP-2012 16:55

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:30 sag03174

Lab Sample ID: 6769191 Sample Name: PAT-7

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
19) Acetone	(1)	3.699	58	12031	10.628
26) *t-Butyl Alcohol-d10	(4)	4.265	65	308424	250.000
42) 2-Butanone	(1)	6.345	43	31485MA	5.894
51) \$Dibromofluoromethane	(1)	6.796	113	317283	52.620
62) \$1,2-Dichloroethane-d4	(1)	7.252	102	83144	51.555
70) *Fluorobenzene	(1)	7.714	96	1348910	50.000
86) \$Toluene-d8	(2)	9.734	98	1294561	48.207
98) *Chlorobenzene-d5	(2)	11.176	117	959829	50.000
114)\$4-Bromofluorobenzene	(2)	12.185	95	474185	48.567
130) *1,4-Dichlorobenzene-d4	(3)	13.062	152	553149	50.000

M = Compound was manually integrated.

A = User selected an alternate hit.

* = Compound is an internal standard.

\$ = Compound is a surrogate standard.

page 1 of 1

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s40.d Injection date and time: 05-SEP-2012 16:55

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:30 sag03174

Sample Name: PAT-7 Lab Sample ID: 6769191

Compound Number : 19
Compound Name : Acetone
Scan Number : 347
Retention Time (minutes): 3.699
Relative Retention Time :-0.01047
Quant Ion : 58.00
Area (flag) : 12031
On-Column Amount (ng) : 10.6280

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s40.d Injection date and time: 05-SEP-2012 16:55

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:30 sag03174

Sample Name: PAT-7 Lab Sample ID: 6769191

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 782
Retention Time (minutes): 6.345
Relative Retention Time :-0.02611
Quant Ion : 43.00
Area (flag) : 31485AM
On-Column Amount (ng) : 5.8938

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s40.d Injection date and time: 05-SEP-2012 16:55

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:30 sag03174

Sample Name: PAT-7 Lab Sample ID: 6769191

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 782
Retention Time (minutes): 6.345
Quant Ion : 43.00
Area (flag) : 31485AM
On-Column Amount (ng) : 5.8938

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:30.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s40.d Injection date and time: 05-SEP-2012 16:55

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:15 Automation

Sample Name: PAT-7 Lab Sample ID: 6769191

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 782
Retention Time (minutes): 6.345
Quant Ion : 43.00
Area : 51906

On-column Amount (ng) : 9.7162Integration start scan : 769 Integration stop scan: 82

Y at integration start : 0 Y at integration end:

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:30.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PAT7A

Lab Name: Lancaster Laboratories Contract:

Matrix: (soil/water) WATER Lab Sample ID: 6769192

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s41.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	U
75-01-4Vinyl Chloride	5	ט
74-83-9Bromomethane	5	U
75-00-3Chloroethane	5	ן ט
75-69-4Trichlorofluoromethane	5	ט
75-35-41,1-Dichloroethene	2	J
67-64-1Acetone	j 7	J
75-09-2Methylene Chloride	5	υ
156-60-5trans-1,2-Dichloroethene	5	U
1634-04-4Methyl Tertiary Butyl Ether	5	U
75-34-31,1-Dichloroethane	5	ับ
156-59-2cis-1,2-Dichloroethene	5	U
78-93-32-Butanone	7	J
594-20-72,2-Dichloropropane	5	U
74-97-5Bromochloromethane	5	Ū
67-66-3Chloroform	5	Ū
71-55-61,1,1-Trichloroethane	5	υ
563-58-61,1-Dichloropropene	5	Ū
56-23-5Carbon Tetrachloride	5	Ū
71-43-2Benzene	5	U
107-06-21,2-Dichloroethane	5	U
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	U
74-95-3Dibromomethane	5	บ
75-27-4Bromodichloromethane	5	ט
10061-01-5cis-1,3-Dichloropropene	5	ן ט
108-10-14-Methyl-2-Pentanone	10	U
108-88-3Toluene	5	Ū
10061-02-6trans-1,3-Dichloropropene	5	ับ

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PAT7A

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769192

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s41.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/ ${ t L}$ or ug/ ${ t Kg}$) ug/ ${ t L}$	

. 3, 3,	J. J.	-
79-00-51,1,2-Trichloroethane	5	ט
127-18-4Tetrachloroethene	5	ט
142-28-91,3-Dichloropropane	5	U
124-48-1Dibromochloromethane	5	ָוֹ ע
106-93-41,2-Dibromoethane	5	ָוֹ <u>ע</u>
108-90-7Chlorobenzene	5	U
630-20-61,1,1,2-Tetrachloroethane	5	U
100-41-4Ethylbenzene	5	์ บ
179601-23-1m+p-Xylene	5	U
95-47-6o-Xylene	5	U
100-42-5Styrene	5	U
75-25-2Bromoform	5	U
98-82-8Isopropylbenzene	5	U
79-34-51,1,2,2-Tetrachloroethane	5	U
108-86-1Bromobenzene	5	U
96-18-41,2,3-Trichloropropane	5	U
103-65-1n-Propylbenzene	5	U
95-49-82-Chlorotoluene	5	U
108-67-81,3,5-Trimethylbenzene	5	U
106-43-44-Chlorotoluene	5	U
98-06-6tert-Butylbenzene	5	ן ד
95-63-61,2,4-Trimethylbenzene	5	U
135-98-8sec-Butylbenzene	5	U
99-87-6p-Isopropyltoluene	5	U
541-73-11,3-Dichlorobenzene	5	ט
106-46-71,4-Dichlorobenzene	5	U
104-51-8n-Butylbenzene	5	ט
95-50-11,2-Dichlorobenzene	5	U
96-12-81,2-Dibromo-3-Chloropropane	5	ט
120-82-11,2,4-Trichlorobenzene	5	ן ט
		l

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PAT7A

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: 6769192

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s41.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

87-68-3Hexachlorobutadiene	5	U
91-20-3Naphthalene	5	ע
87-61-61,2,3-Trichlorobenzene	5	ט

PAT7A

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769192

Data file: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19
Data file Sample Info. Line: PAT7A;6769192;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.258 (-0.021)	439	65	301894 (-20)	250.00	
70) Fluorobenzene	7.713(-0.002)	1007	96	1362114 (-10)	50.00	
98) Chlorobenzene-d5	11.181(-0.015)	1577	117	979637 (-8)	50.00	
130) 1,4-Dichlorobenzene-d4	13.061 (-0.033)	1886	152	555730 (-12)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51) Dibromofluoromethane	(1)	6.795 (-0.001)	113	314108	51.589	103%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	7.257(-0.001)	102	82123	50.428	101%		77 - 113
86) Toluene-d8	(2)	9.733(0.000)	98	1298948	47.392	95%		80 - 113
114) 4-Bromofluorobenzene	(2)	12.185 (-0.001)	95	476437	47.811	96%		78 - 113

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	•	LOQ ample)
1)	Dichlorodifluoromethane	(1)				Not Detected					1	5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)	3.57	7 (-0.000)	96	8786	1.586	1.59		J	0.8	5
19)	Acetone	(1)	3.710	0(-0.011)	58	8057M	7.048	7.05		J	6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)	6.332	2(-0.024)	43	36105MA	6.693	6.69		J	3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PAT7A

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769192

Data file: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19 Data file Sample Info. Line: PATTA;6769192;1;0;;PTL09;PLM;;ns05b05; Inst Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174 Instrument ID: HP07159.i Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

 ${\tt Method\ used:\ /chem/HP07159.i/12sep05b.b/N826W.m}$ Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23
Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ imple)
	Tetrachloroethene	(2)				Not Detected					0.8	5
94)	1,3-Dichloropropane	(2)			•	Not Detected	Ė				1	5
96)	Dibromochloromethane	(2)				Not Detected	Ė				1	5
97)	1,2-Dibromoethane	(2)				Not Detected	i				1	5
100)	Chlorobenzene	(2)				Not Detected	i				0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)				Not Detected	Ė				1	5
102)	Ethylbenzene	(2)				Not Detected	1				0.8	5
103)	m+p-Xylene	(2)				Not Detected	i i				0.8	5
106)	o-Xylene	(2)				Not Detected	i				0.8	5
109)	Styrene	(2)				Not Detected	i				1	5
110)	Bromoform	(2)				Not Detected	i				1	5
111)	Isopropylbenzene	(2)				Not Detected	i				1	5
116)	1,1,2,2-Tetrachloroethane	(3)				Not Detected	i				1	5
117)	Bromobenzene	(3)				Not Detected	Ė				1	5
119)	1,2,3-Trichloropropane	(3)				Not Detected	i				1	5
120)	n-Propylbenzene	(3)				Not Detected	i				1	5
121)	2-Chlorotoluene	(3)				Not Detected	i				1	5
122)	1,3,5-Trimethylbenzene	(3)				Not Detected	i				1	5
123)	4-Chlorotoluene	(3)				Not Detected	i				1	5
124)	tert-Butylbenzene	(3)				Not Detected	i				1	5
126)	1,2,4-Trimethylbenzene	(3)				Not Detected	ł				1	5
127)	sec-Butylbenzene	(3)				Not Detected	i				1	5
128)	p-Isopropyltoluene	(3)				Not Detected	i				1	5
129)	1,3-Dichlorobenzene	(3)				Not Detected	i				1	5
131)	1,4-Dichlorobenzene	(3)				Not Detected	i				1	5
136)	n-Butylbenzene	(3)				Not Detected	i				1	5
137)	1,2-Dichlorobenzene	(3)				Not Detected	i				1	5
139)	1,2-Dibromo-3-Chloropropane	(3)				Not Detected	i				2	5
140)	1,2,4-Trichlorobenzene	(3)				Not Detected	i				1	5
141)	Hexachlorobutadiene	(3)				Not Detected	i				2	5
142)	Naphthalene	(3)				Not Detected	3				1	5
144)	1,2,3-Trichlorobenzene	(3)				Not Detected	i				1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:31. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174

Sample Name: PAT7A Lab Sample ID: 6769192

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:31.
Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d

Instrument ID: HP07159.i Analyst ID: ERS02237

Injection date and time: 05-SEP-2012 17:19

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174

Lab Sample ID: 6769192 Sample Name: PAT7A

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:31. Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174

Sample Name: PAT7A Lab Sample ID: 6769192

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.577	96	8786	1.586
19) Acetone	(1)	3.710	58	8057M	7.048
26) *t-Butyl Alcohol-d10	(4)	4.258	65	301894	250.000
42) 2-Butanone	(1)	6.332	43	36105MA	6.693
51) \$Dibromofluoromethane	(1)	6.795	113	314108	51.589
62) \$1,2-Dichloroethane-d4	(1)	7.257	102	82123	50.428
70) *Fluorobenzene	(1)	7.713	96	1362114	50.000
86) \$Toluene-d8	(2)	9.733	98	1298948	47.392
98)*Chlorobenzene-d5	(2)	11.181	117	979637	50.000
114)\$4-Bromofluorobenzene	(2)	12.185	95	476437	47.811
130) *1,4-Dichlorobenzene-d4	(3)	13.061	152	555730	50.000

M = Compound was manually integrated.

page 1 of 1

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174

Sample Name: PAT7A Lab Sample ID: 6769192

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 327
Retention Time (minutes): 3.577
Relative Retention Time :-0.00016
Quant Ion : 96.00
Area (flag) : 8786
On-Column Amount (ng) : 1.5856

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174

Sample Name: PAT7A Lab Sample ID: 6769192

Compound Number : 19
Compound Name : Acetone
Scan Number : 349
Retention Time (minutes): 3.710
Relative Retention Time :-0.01199
Quant Ion : 58.00
Area (flag) : 8057M
On-Column Amount (ng) : 7.0484

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174

Sample Name: PAT7A Lab Sample ID: 6769192

Compound Number : 19
Compound Name : Acetone
Scan Number : 349
Retention Time (minutes): 3.710
Quant Ion : 58.00
Area (flag) : 8057M
On-Column Amount (ng) : 7.0484

On-Column Amount (ng) : 7.0484
Integration start scan : 339 Integration stop scan: 379
Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:31.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:39 Automation

Lab Sample ID: 6769192 Sample Name: PAT7A

Compound Number : 19 Compound Name Acetone 349 Scan Number Retention Time (minutes): 3.710 58.00 Quant Ion 8399 Area

7.3478 On-column Amount (ng) 339 Integration stop scan: Integration start scan 0 Y at integration end: Y at integration start

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174

Sample Name: PAT7A Lab Sample ID: 6769192

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.332
Relative Retention Time :-0.02451
Quant Ion : 43.00
Area (flag) : 36105AM
On-Column Amount (ng) : 6.6930

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:31 sag03174

Sample Name: PAT7A Lab Sample ID: 6769192

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 780
Retention Time (minutes): 6.332
Quant Ion : 43.00
Area (flag) : 36105AM
On-Column Amount (ng) : 6.6930

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:31.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s41.d Injection date and time: 05-SEP-2012 17:19

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 17:39 Automation

Lab Sample ID: 6769192 Sample Name: PAT7A

42 Compound Number

2-Butanone Compound Name

780 Scan Number Retention Time (minutes): 6.332 Quant Ion 43.00 Area 29720 5.5094

On-column Amount (ng) Integration start scan 769 Integration stop scan: 0 Y at integration end: Y at integration start

EPA SAMPLE NO.

D 3 (III / 3	!
PATVA	

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769193

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s42.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

CAS NO. COMPOUND (ug/L or ug/kg	g) ug/L		Q
75-71-8Dichlorodifluoromethane		5	U
74-87-3Chloromethane		5	Ŭ
75-01-4Vinyl Chloride		2	J
74-83-9Bromomethane		5	U
75-00-3Chloroethane		5	U
75-69-4Trichlorofluoromethane		5	U
75-35-41,1-Dichloroethene		9	
67-64-1Acetone		14	J
75-09-2Methylene Chloride		3	J
156-60-5trans-1,2-Dichloroethene		5	U
1634-04-4Methyl Tertiary Butyl Ether		5	U
75-34-31,1-Dichloroethane	4	17	
156-59-2cis-1,2-Dichloroethene]	26	
78-93-32-Butanone	į :	10	Ū
594-20-72,2-Dichloropropane		5	Ū
74-97-5Bromochloromethane		5	Ū
67-66-3Chloroform	ĺ	5	U
71-55-61,1,1-Trichloroethane		95	
563-58-61,1-Dichloropropene		5	U
56-23-5Carbon Tetrachloride		5	U
71-43-2Benzene		3	J
107-06-21,2-Dichloroethane		5	U
79-01-6Trichloroethene	j 4	11	
78-87-51,2-Dichloropropane		5	บ
74-95-3Dibromomethane	ĺ	5	Ū
75-27-4Bromodichloromethane	ĺ	5	U
10061-01-5cis-1,3-Dichloropropene	ĺ	5	U
108-10-14-Methyl-2-Pentanone] :	10	U
108-88-3Toluene	ĺ	1	J
10061-02-6trans-1,3-Dichloropropene	ĺ	5	υ
·	İ		

	EPA	SAMPLE	NO.
١			

		PATVA
Lab Name: Lancaster Laboratories	Contract:	

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769193

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s42.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg			Q
1 70 00 5	1 1 0 Muichland			· ī	
•	1,1,2-Trichloro		5		ן ט
•	Tetrachloroethe		5		- !
•	1,3-Dichloropro		5	!	ן ט
•	Dibromochlorome	:	5		ן ט
•	1,2-Dibromoetha	ne	5		ן ט
	Chlorobenzene	_	5	. !	ן ט
!	1,1,1,2-Tetrach	loroethane	5	!	ָן ט
100-41-4	Ethylbenzene		5		ָ ט
179601-23-3	Lm+p-Xylene	ļ	5	5	ן ט
95-47-6	o-Xylene		5	;	U
100-42-5	Styrene		5	;	υ
75-25-2	Bromoform		5	;	ט
98-82-8	Isopropylbenzen	e	5	;	ן ט
79-34-5	1,1,2,2-Tetrach	loroethane	5	;	U
108-86-1	Bromobenzene		5	5	υ
96-18-4	1,2,3-Trichloro	propane	5	5	U
103-65-1	n-Propylbenzene		5	5	υ
95-49-8	2-Chlorotoluene	İ	5	5	υ
108 - 67-8	1,3,5-Trimethyl	penzene	5	5	ָּן ע
•	4-Chlorotoluene	İ	5	; į	ָן ע
•	tert-Butylbenze	ne İ	5	; į	ָן ט
•	1,2,4-Trimethyl		9	; į	י ד
!	sec-Butylbenzen		5	; j	י ד
•	p-Isopropyltolu		9	; į	υj
	1,3-Dichloroben		5	i i	י ד
	1,4-Dichloroben		5	; i	ט
•	n-Butylbenzene		5	; i	י נ
	1,2-Dichloroben	zene	5	i i	υj
	1,2-Dibromo-3-C		5	; i	ט ו
•	1,2,4-Trichloro	:	5	!	י ו '
1	1,2,1 1110111010		_	i	- i
				'	

EPA	SAMPLE	NO.

PATVA

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769193

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s42.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

87-68-3Hexachlorobutadiene		5	U
91-20-3Naphthalene	Ì	5	ן ט
87-61-61,2,3-Trichlorobenzene	İ	5	ן ט

PATVA

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769193

Injection date and time: 05-SEP-2012 17:42 Instrument ID: HP07159.i Batch: N122492AA Data file: /chem/HP07159.i/12sep05b.b/ns05s42.d Inje
Data file Sample Info. Line: PATVA;6769193;1;0;;PTL09;PLM;;ns05b05; Inst
Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist to Calibration date and time (Last Method Edit): 05-SEP-2012 13:23 Sublist used: 8732

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

	ternal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26)	t-Butyl Alcohol-d10	4.246 (-0.009)	437	65	318279 (~16)	250.00	
70)	Fluorobenzene	7.714 (-0.003)	1007	96	1343036 (-11)	50.00	
98)	Chlorobenzene-d5	11.181 (-0.015)	1577	117	980562 (-8)	50.00	
130)	1,4-Dichlorobenzene-d4	13.061 (-0.033)	1886	152	549973 (-13)	50.00	

Su	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.79	5(-0.001)	113	320333	53.358	107%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.25	7 (-0.001)	102	82989	51.684	103%		77 - 113
86)	Toluene-d8	(2)	9.73	3(0.000)	98	1296773	47.268	95%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.18	5(-0.001)	95	472304	47.352	95%		78 - 113

•	t Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporti Limit (in s	LOQ ample)
	ichlorodifluoromethane	(1)			Not Detected		=======================================			1	5
3) CF	loromethane	(1)			Not Detected					1	5
	inyl Chloride	(1)	2.214(0.002)	62	19177	2.409	2.41		J	1	5
-	romomethane	(1)			Not Detected					1	5
7) Ct	nloroethane	(1)			Not Detected					1	5
8) Tr	richlorofluoromethane	(1)			Not Detected					1	5
16) 1,	1-Dichloroethene	(1)	3.571 (0.000)	96	48288	8.838	8.84			0.8	5
19) Ac	cetone	(1)	3.686(-0.008)	58	15516M	13.767	13.77		J	6	20
25) Me	ethylene Chloride	(1)	4.222 (-0.000)	84	22679M	3.260	3.26		J	2	5
	rans-1,2-Dichloroethene	(1)			Not Detected					0.8	5
	ethyl Tertiary Butyl Ether	(1)			Not Detected					0.5	5
36) 1,	,l-Dichloroethane	(1)	5.262 (-0.000)	63	566274	47.161	47.16			1	5
40) ci	is-1,2-Dichloroethene	(1)	6.132(-0.001)	96	190684	26.495	26.50			0.8	5
42) 2-	-Butanone	(1)			Not Detected					3	10
44) 2,	,2-Dichloropropane	(1)			Not Detected					1	5
48) Br	romochloromethane	(1)			Not Detected					1	5
50) Ch	nloroform	(1)			Not Detected					0.8	5
53) 1,	,1,1-Trichloroethane	(1)	6.826(-0.000)	97	885876	95.072	95.07			0.8	5
58) 1,	,1-Dichloropropene	(1)			Not Detected					1	5
59) Ca	arbon Tetrachloride	(1)			Not Detected					ì	5
65) Be	enzene	(1)	7.361(-0.003)	78	79887	2.896	2.90		J	0.5	5
66) 1,	,2-Dichloroethane	(1)			Not Detected					1	5
74) Tr	richloroethene	(1)	8.206(-0.000)	95	280299	41.072	41.07			1	5
76) 1,	,2-Dichloropropane	(1)			Not Detected					1	5
78) Di	ibromomethane	(1)			Not Detected					1	5
81) Br	romodichloromethane	(1)			Not Detected					1	5
84) ci	is-1,3-Dichloropropene	(1)			Not Detected					1	5
85) 4-	-Methyl-2-Pentanone	(1)			Not Detected					3	10
88) To	oluene	(2)	9.831(-0.001)	92	23826	1.282	1.28		J	0.7	5
89) tr	rans-1,3-Dichloropropene	(2)			Not Detected					1	5
91) 1,	,1,2-Trichloroethane	(2)			Not Detected					0.8	5

M = Compound was manually integrated.

PATVA

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769193

Data file: /chem/HP07159.i/12sep05b.b/ns05s42.d Inje
Data file Sample Info. Line: PATVA;6769193;1;0;;PTL09;PLM;;ns05b05; Inst
Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174 Injection date and time: 05-SEP-2012 17:42 Instrument ID: HP07159.i Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732
Calibration date and time (Last Method Edit): 05-SEP-2012 13:23
Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT (+/~RRT) QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportir Limit (in sa	roo
93) Tetrachloroethene	(2)		Not Detected	l				0.8	5
94) 1,3-Dichloropropane	(2)		Not Detected	l				1	5
96) Dibromochloromethane	(2)		Not Detected	l				1	5
97) 1,2-Dibromoethane	(2)		Not Detected	l				1	5
100) Chlorobenzene	(2)		Not Detected	l				0.8	5
101) 1,1,1,2-Tetrachloroethane	(2)		Not Detected	1				1	5
102) Ethylbenzene	(2)		Not Detected	I				0.8	5
103) m+p-Xylene	(2)		Not Detected	l				0.8	5
106) o-Xylene	(2)		Not Detected	ı				0.8	5
109) Styrene	(2)		Not Detected	ı				1	5
110) Bromoform	(2)		Not Detected	l				1	5
111) Isopropylbenzene	(2)		Not Detected	l				1	5
116) 1,1,2,2-Tetrachloroethane	(3)		Not Detected	l				1	5
117) Bromobenzene	(3)	•	Not Detected	l				1	5
119) 1,2,3-Trichloropropane	(3)		Not Detected	!				1	5
120) n-Propylbenzene	(3)		Not Detected	l				1	5
121) 2-Chlorotoluene	(3)		Not Detected	1				1	5
122) 1,3,5-Trimethylbenzene	(3)		Not Detected	l				1	5
123) 4-Chiorotoluene	(3)		Not Detected	1				1	5
124) tert-Butylbenzene	(3)		Not Detected	1				1	5
126) 1,2,4-Trimethylbenzene	(3)		Not Detected	1				1	5
127) sec-Butylbenzene	(3)		Not Detected	l				1	5
128) p-Isopropyltoluene	(3)		Not Detected					1	5
129) 1,3-Dichlorobenzene	(3)		Not Detected					1	5
131) 1,4-Dichlorobenzene	(3)		Not Detected					1	5
136) n-Butylbenzene	(3)		Not Detected					1	5
137) 1,2-Dichlorobenzene	(3)		Not Detected					1	5
139) 1,2-Dibromo-3-Chloropropane	(3)		Not Detected					2	5
140) 1,2,4-Trichlorobenzene	(3)		Not Detected					1	5
141) Hexachlorobutadiene	(3)		Not Detected					2	5
142) Naphthalene	(3)		Not Detected					1	5
144) 1,2,3-Trichlorobenzene	(3)		Not Detected					1	5
									-

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:42. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:42.
Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d

Instrument ID: HP07159.i Analyst ID: ERS02237

Injection date and time: 05-SEP-2012 17:42

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Lab Sample ID: 6769193 Sample Name: PATVA

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
=======================================	=====	=====	=====		=========
4) Vinyl Chloride	(1)	2.214	62	19177	2.409
16) 1,1-Dichloroethene	(1)	3.571	96	48288	8.838
19) Acetone	(1)	3.686	58	15516M	13.767
25) Methylene Chloride	(1)	4.222	84	22679M	3.260
26) *t-Butyl Alcohol-d10	(4)	4.246	65	318279	250.000
36) 1,1-Dichloroethane	(1)	5.262	63	566274	47.161
40) cis-1,2-Dichloroethene	(1)	6.132	96	190684	26.495
51) \$Dibromofluoromethane	(1)	6.795	113	320333	53.358
53) 1,1,1-Trichloroethane	(1)	6.826	97	885876	95.072
62) \$1,2-Dichloroethane-d4	(1)	7.257	102	82989	51.684
65) Benzene	(1)	7.361	78	79887	2.896
70) *Fluorobenzene	(1)	7.714	96	1343036	50.000
74) Trichloroethene	(1)	8.206	95	280299	41.072
86) \$Toluene-d8	(2)	9.733	98	1296773	47.268
88) Toluene	(2)	9.831	92	23826	1.282
98) *Chlorobenzene-d5	(2)	11.181	117	980562	50.000
114) \$4-Bromofluorobenzene	(2)	12.185	95	472304	47.352
130) *1,4-Dichlorobenzene-d4	(3)	13.061	152	549973	50.000

M = Compound was manually integrated.

page 1 of 1

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 4

Compound Name : Vinyl Chloride

Scan Number : 103
Retention Time (minutes): 2.214
Relative Retention Time : 0.00212
Quant Ion : 62.00
Area (flag) : 19177
On-Column Amount (ng) : 2.4093

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 326
Retention Time (minutes): 3.571
Relative Retention Time : 0.00060
Quant Ion : 96.00
Area (flag) : 48288
On-Column Amount (ng) : 8.8384

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 19

Compound Name : Acetone Scan Number : 345
Retention Time (minutes): 3.686
Relative Retention Time :-0.00886
Quant Ion : 58.00
Area (flag) : 15516M
On-Column Amount (ng) : 13.7672

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 19
Compound Name : Acetone
Scan Number : 345
Retention Time (minutes): 3.686
Quant Ion : 58.00
Area (flag) : 15516M
On-Column Amount (ng) : 13.7672

On-Column Amount (ng) : 13.7672Integration start scan : 335 Integration stop scan: 385Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/05/2012 at 20:42.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 18:03 Automation

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 19
Compound Name : Acetone
Scan Number : 345
Retention Time (minutes): 3.686
Quant Ion : 58.00
Area : 15968

On-column Amount (ng) : 14.1676 Integration start scan : 335 Integration stop scan: 427 Y at integration start : 0 Y at integration end: 0

Reference Standard Spectrum for Methylene Chloride

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 25

Compound Name : Methylene Chloride

Scan Number : 433
Retention Time (minutes): 4.222
Relative Retention Time :-0.00095
Quant Ion : 84.00
Area (flag) : 22679M
On-Column Amount (ng) : 3.2599

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 25

Compound Name : Methylene Chloride

Scan Number : 433
Retention Time (minutes): 4.222
Quant Ion : 84.00
Area (flag) : 22679M
On-Column Amount (ng) : 3.2599

Integration start scan : 424 Integration stop scan: 452 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/05/2012 at 20:42.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Integration of Quant Ion Original

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 18:03 Automation

Lab Sample ID: 6769193 Sample Name: PATVA

Compound Number 25

: Methylene Chloride Compound Name

Scan Number 433 Retention Time (minutes): Quant Ion 84.00 22866 Area

3.2867 On-column Amount (ng) 496 424 Integration stop scan: Integration start scan Y at integration end: Y at integration start

Reference Standard Spectrum for 1,1-Dichloroethane

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 36

Compound Name : 1,1-Dichloroethane

Scan Number : 604
Retention Time (minutes): 5.262
Relative Retention Time :-0.00090
Quant Ion : 63.00
Area (flag) : 566274
On-Column Amount (ng) : 47.1614

Reference Standard Spectrum for cis-1,2-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 40

Compound Name : cis-1,2-Dichloroethene

Scan Number : 747
Retention Time (minutes): 6.132
Relative Retention Time :-0.00165
Quant Ion : 96.00
Area (flag) : 190684
On-Column Amount (ng) : 26.4952

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 53

Compound Name : 1,1,1-Trichloroethane

Scan Number : 861
Retention Time (minutes): 6.826
Relative Retention Time :-0.00004
Quant Ion : 97.00
Area (flag) : 885876
On-Column Amount (ng) : 95.0724

Reference Standard Spectrum for Benzene

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 65
Compound Name : Benzene
Scan Number : 949
Retention Time (minutes): 7.361
Relative Retention Time :-0.00396
Quant Ion : 78.00
Area (flag) : 79887
On-Column Amount (ng) : 2.8958

Reference Standard Spectrum for Trichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 74

Compound Name : Trichloroethene

Scan Number : 1088
Retention Time (minutes): 8.206
Relative Retention Time :-0.00076
Quant Ion : 95.00
Area (flag) : 280299
On-Column Amount (ng) : 41.0721

Data File: /chem/HP07159.i/12sep05b.b/ns05s42.d Injection date and time: 05-SEP-2012 17:42

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:09 sag03174

Sample Name: PATVA Lab Sample ID: 6769193

Compound Number : 88
Compound Name : Toluene
Scan Number : 1355
Retention Time (minutes): 9.831
Relative Retention Time :-0.00180
Quant Ion : 92.00
Area (flag) : 23826
On-Column Amount (ng) : 1.2823

EPA SAMPLE NO.

PAT-D

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6769194

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s43.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

75-71-8Dichlorodifluoromethane 5 U 74-87-3Chloromethane 5 U 75-01-4Vinyl Chloride 5 U 74-83-9Bromomethane 5 U 75-00-3Chloroethane 5 U 75-09-4Trichlorofluoromethane 5 U 75-35-41,1-Dichloroethene 120 67-64-1Acetone 10 J 75-09-2	CAD NO. CONTOOND (ug/L) Of ug/N	g/ w g/ <i>2</i>	×
75-01-4	75-71-8Dichlorodifluoromethane	5	U
74-83-9	74-87-3Chloromethane	5	ן ט
75-00-3	75-01-4Vinyl Chloride	5	ן ט
75-69-4Trichlorofluoromethane 5 U 75-35-41,1-Dichloroethene 120 67-64-1Acetone 10 J 75-09-2Methylene Chloride 5 U 156-60-5	74-83-9Bromomethane	5	ן ט
75-35-4	75-00-3Chloroethane	5	ן ט
67-64-1	75-69-4Trichlorofluoromethane	5	ן ט
75-09-2Methylene Chloride 5 U 156-60-5trans-1,2-Dichloroethene 5 U 1634-04-4Methyl Tertiary Butyl Ether 5 U 75-34-31,1-Dichloroethane 5 J 156-59-2cis-1,2-Dichloroethene 5 U 78-93-32-Butanone 8 J 594-20-72,2-Dichloropropane 5 U 74-97-5Bromochloromethane 5 U 67-66-3Chloroform 5 U 71-55-61,1,1-Trichloroethane 5 U 563-58-6	75-35-41,1-Dichloroethene	120	
156-60-5trans-1,2-Dichloroethene 5 U 1634-04-4Methyl Tertiary Butyl Ether 5 U 75-34-31,1-Dichloroethane 5 J 156-59-2cis-1,2-Dichloroethene 5 U 78-93-32-Butanone 8 J 594-20-72,2-Dichloropropane 5 U 74-97-5Bromochloromethane 5 U 67-66-3Chloroform 5 U 71-55-6Chloroform 5 U 71-55-6	67-64-1Acetone	10	J
1634-04-4Methyl Tertiary Butyl Ether 5 U 75-34-31,1-Dichloroethane 5 J 156-59-2cis-1,2-Dichloroethene 5 U 78-93-32,Butanone 8 J 594-20-72,2-Dichloropropane 5 U 74-97-5Bromochloromethane 5 U 67-66-3Chloroform 5 U 71-55-6	75-09-2Methylene Chloride	5	U
75-34-31,1-Dichloroethane 5 J 156-59-2cis-1,2-Dichloroethene 5 U 78-93-32-Butanone 8 J 594-20-72,2-Dichloropropane 5 U 74-97-5Bromochloromethane 5 U 67-66-3Chloroform 5 U 71-55-6	156-60-5trans-1,2-Dichloroethene	5	U
156-59-2cis-1,2-Dichloroethene 5 U 78-93-32-Butanone 8 J 594-20-72,2-Dichloropropane 5 U 74-97-5Bromochloromethane 5 U 67-66-3Chloroform 5 U 71-55-61,1,1-Trichloroethane 5 U 563-58-61,1-Dichloropropene 5 U 56-23-5Carbon Tetrachloride 5 U 71-43-2Benzene 5 U 107-06-21,2-Dichloroethane 5 U 79-01-6Trichloroethene 5 U 78-87-5Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 1061-01-5	1634-04-4Methyl Tertiary Butyl Ether	5	ן ט
78-93-32-Butanone 8 J 594-20-72, 2-Dichloropropane 5 U 74-97-5Bromochloromethane 5 U 67-66-3Chloroform 5 U 71-55-61, 1, 1-Trichloroethane 5 U 563-58-61, 1-Dichloropropene 5 U 56-23-5Carbon Tetrachloride 5 U 71-43-2Benzene 5 U 107-06-21, 2-Dichloroethane 5 U 79-01-6Trichloroethene 5 U 78-87-51, 2-Dichloropropane 5 U 74-95-3Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 1061-01-5cis-1, 3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	75-34-31,1-Dichloroethane	5	J
594-20-72,2-Dichloropropane 5 U 74-97-5Bromochloromethane 5 U 67-66-3Chloroform 5 U 71-55-61,1,1-Trichloroethane 5 U 563-58-61,1-Dichloropropene 5 U 56-23-5Carbon Tetrachloride 5 U 71-43-2Benzene 5 U 107-06-21,2-Dichloroethane 5 U 79-01-6Trichloroethane 5 U 78-87-51,2-Dichloropropane 5 U 74-95-3Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 10061-01-5cis-1,3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	156-59-2cis-1,2-Dichloroethene	5	ן ט
74-97-5	78-93-32-Butanone	8	J
67-66-3	594-20-72,2-Dichloropropane	5	ן ט
71-55-61,1,1-Trichloroethane 5 U 563-58-61,1-Dichloropropene 5 U 56-23-5Carbon Tetrachloride 5 U 71-43-2Benzene 5 U 107-06-21,2-Dichloroethane 5 U 79-01-6Trichloroethane 5 U 78-87-51,2-Dichloropropane 5 U 74-95-3Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 10061-01-5cis-1,3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	74-97-5Bromochloromethane	5	ן ט
563-58-61,1-Dichloropropene 5 U 56-23-5Carbon Tetrachloride 5 U 71-43-2Benzene 5 U 107-06-21,2-Dichloroethane 5 U 79-01-6Trichloroethene 5 U 78-87-51,2-Dichloropropane 5 U 74-95-3Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 10061-01-5cis-1,3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	67-66-3Chloroform	5	ן ט
56-23-5Carbon Tetrachloride 5 U 71-43-2Benzene 5 U 107-06-21,2-Dichloroethane 5 U 79-01-6Trichloroethene 5 U 78-87-51,2-Dichloropropane 5 U 74-95-3Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 10061-01-5cis-1,3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	71-55-61,1,1-Trichloroethane	5	U
71-43-2	563-58-61,1-Dichloropropene	5	ן ט
107-06-21,2-Dichloroethane 5 U 79-01-6Trichloroethene 5 U 78-87-51,2-Dichloropropane 5 U 74-95-3Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 10061-01-5cis-1,3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	56-23-5Carbon Tetrachloride	5	U
79-01-6Trichloroethene 5 U 78-87-51, 2-Dichloropropane 5 U 74-95-3Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 10061-01-5cis-1, 3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	71-43-2Benzene	5	ן ט
78-87-51, 2-Dichloropropane 5 U 74-95-3Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 10061-01-5cis-1, 3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	107-06-21,2-Dichloroethane	5	U
74-95-3Dibromomethane 5 U 75-27-4Bromodichloromethane 5 U 10061-01-5cis-1,3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	79-01-6Trichloroethene	5	ן ט
75-27-4Bromodichloromethane 5 U 10061-01-5cis-1,3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	78-87-51,2-Dichloropropane	5	ן ט
10061-01-5cis-1,3-Dichloropropene 5 U 108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	74-95-3Dibromomethane	5	ן ט
108-10-14-Methyl-2-Pentanone 10 U 108-88-3Toluene 5 U	75-27-4Bromodichloromethane	5	ן ט
108-88-3Toluene 5 U	10061-01-5cis-1,3-Dichloropropene	5	ן ט
	108-10-14-Methyl-2-Pentanone	10	ן ט
10061-02-6trans-1,3-Dichloropropene	108-88-3Toluene	5	ן ט
	10061-02-6trans-1,3-Dichloropropene	5	ן ט

page 1 of 3

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER

Lab Sample ID: 6769194

 $Sample \ \ wt/vol: \ 5.00 \ \ (g/mL) \ \ mL \\ Lab \ \ File \ ID: \ \ HP07159.i/12sep05b.b/ns05s43.d$

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

		CONCENTRATIO	N UNIIS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg	g) ug/L	Q
	1,1,2-Trichloro		5	U
127-18-4	Tetrachloroethe	ne	5	ן ט
142-28-9	1,3-Dichloropro	pane	5	U
124-48-1	Dibromochlorome	thane	5	U
106-93-4	1,2-Dibromoetha	ne	5	U
108-90-7	Chlorobenzene		5	U
630-20-6	1,1,1,2-Tetrach	loroethane	5	U
100-41-4	Ethylbenzene	ĺ	5	์ บ
179601-23-1-	m+p-Xylene	ĺ	5	Ū
95-47-6	Xylene	ĺ	5	jυ
100-42-5	Styrene	İ	5	įυ
75-25-2	Bromoform	İ	5	υ
98-82-8	Isopropylbenzen	e İ	5	jυ
	1,1,2,2-Tetrach		5	iυ
	Bromobenzene	j	5	Üυ
96-18-4	1,2,3-Trichloro	propane	5	iυ
	n-Propylbenzene	i	5	ט
	2-Chlorotoluene		5	iυ
	1,3,5-Trimethyl	benzene	5	י ט
	4-Chlorotoluene	İ	5	iυ
98-06-6	tert-Butylbenze	ne İ	5	iυ
	1,2,4-Trimethyl		5	jυ
	sec-Butylbenzen		5	iυ
	p-Isopropyltolu	•	5	υ
	1,3-Dichloroben		5	י
	1,4-Dichloroben		5	ט
	n-Butylbenzene	·	5	ט
	1,2-Dichloroben	zene	5	ו ט
	1,2-Dibromo-3-C		5	ט ו
	1,2,4-Trichloro			! -
120-82-1	1, Z, 4-ITICHIOTO	benzene i	5	ľŪ

EPA SAMPLE	NO.
------------	-----

PA'	Γ-	D

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS

Case No.:____ SAS No.:___ SDG No.:___

Matrix: (soil/water) WATER

Lab Sample ID: 6769194

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s43.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. _____

Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L 87-68-3-----Hexachlorobutadiene U 91-20-3-----Naphthalene 5 ΙU 87-61-6----1,2,3-Trichlorobenzene 5 U

PAT-D Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769194

Data file: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06
Data file Sample Info. Line: PAT-D;6769194;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

Analysis Comments:

	ternal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26)	t-Butyl Alcohol-d10	4.259(-0.021)	439	65	306792 (-19)	250.00	
70)	Fluorobenzene	7.720(-0.009)	1008	96	1357166 (-10)	50.00	
98)	Chlorobenzene-d5	11.176(-0.009)	1576	117	975949 (-8)	50.00	
130)	1,4-Dichlorobenzene-d4	13.062(-0.034)	1886	152	551586 (-12)	50.00	

	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.79	96(0.000)	113	321174	52.941	106%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.25	8 (0.000)	102	84155	51.864	104%		77 - 113
86)	Toluene-d8	(2)	9.73	34 (0.000)	98	1292196	47.324	95%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.18	36 (-0.002)	95	473309	47.677	95%		78 - 113

Target Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ ample)
1) Dichlorodifluoromethane	(1)			=====	Not Detected					1	=====: 5
3) Chloromethane	(1)				Not Detected					1	5
4) Vinyl Chloride	(1)				Not Detected					1	5
Bromomethane	(1)				Not Detected					1	5
7) Chloroethane	(1)				Not Detected					1	5
Trichlorofluoromethane	(1)				Not Detected					1	5
16) 1,1-Dichloroethene	(1)	3.57	1 (0.000)	96	660683	119.670	119.67			0.8	5
19) Acetone	(1)	3.69	9(-0.010)	58	10871M	9.545	9.54		J	6	20
25) Methylene Chloride	(1)				Not Detected					2	5
29) trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30) Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36) 1,1-Dichloroethane	(1)	5.28	1(-0.002)	63	57657	4.752	4.75		J	1	5
40) cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42) 2-Butanone	(1)	6.31	5(-0.021)	43	41990A	7.812	7.81		J	3	10
44) 2,2-Dichloropropane	(1)				Not Detected					1	5
48) Bromochloromethane	(1)				Not Detected					1	5
50) Chloroform	(1)				Not Detected					0.8	5
53) 1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58) 1,1-Dichloropropene	(1)				Not Detected					1	5
59) Carbon Tetrachloride	(1)				Not Detected					1	5
65) Benzene	(1)				Not Detected					0.5	5
66) 1,2-Dichloroethane	(1)				Not Detected					1	5
74) Trichloroethene	(1)				Not Detected					1	5
76) 1,2-Dichloropropane	(1)				Not Detected					1	5
78) Dibromomethane	(1)				Not Detected					1	5
81) Bromodichloromethane	(1)				Not Detected					1	5
84) cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85) 4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88) Toluene	(2)				Not Detected					0.7	5
89) trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91) 1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PAT-D Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769194

Data file: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06
Data file Sample Info. Line: PAT-D;6769194;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

93) Tetrachloroethene (2) 94) 1,3-Dichloropropane (2) 96) Dibromochloromethane (2) 97) 1,2-Dibromoethane (2) 100) Chlorobenzene (2) 101) 1,1,2-Tetrachloroethane (2) 102) Ethylbenzene (2)	Not Not Not Not Not Not Not	Detected Detected Detected Detected Detected Detected Detected Detected Detected		0.8 1 1 1 0.8	5 5 5 5
94) 1,3-Dichloropropane (2) 96) Dibromochloromethane (2) 97) 1,2-Dibromoethane (2) 100) Chlorobenzene (2) 101) 1,1,1,2-Tetrachloroethane (2)	Not Not Not Not Not Not Not	Detected Detected Detected Detected Detected Detected Detected		1 1 1 0.8	5 5 5 5
96) Dibromochloromethane (2) 97) 1,2-Dibromoethane (2) 100) Chlorobenzene (2) 101) 1,1,1,2-Tetrachloroethane (2)	Not Not Not Not Not Not	Detected Detected Detected Detected Detected Detected		1	5
97) 1,2-Dibromoethane (2) 100) Chlorobenzene (2) 101) 1,1,1,2-Tetrachloroethane (2)	Not Not Not Not Not	Detected Detected Detected Detected		0.8	5
100) Chlorobenzene (2) 101) 1,1,1,2-Tetrachloroethane (2)	Not Not Not Not	Detected Detected Detected			•
101) 1,1,1,2-Tetrachloroethane (2)	Not Not Not	Detected Detected		1	-
	Not Not	Detected			5
102/ ECHVIDEHZEHE (2)	Not			0.8	5
103) m+p-Xylene (2)				0.8	5
106) o-Xylene (2)	Not	Detected		0.8	5
109) Styrene (2)		Detected		1	5
110) Bromoform (2)	Not	Detected		1	5
111) Isopropylbenzene (2)	Not	Detected		1	5
116) 1,1,2,2-Tetrachloroethane (3)	Not	Detected '		1	5
117) Bromobenzene (3)	Not	Detected		1	5
119) 1,2,3~Trichloropropane (3)	Not	Detected		1	5
120) n-Propylbenzene (3)	Not	Detected		1	5
121) 2-Chlorotoluene (3)	Not	Detected		1	5
122) 1,3,5-Trimethylbenzene (3)	Not	Detected		1	5
123) 4-Chlorotoluene (3)	Not	Detected		1	5
124) tert-Butylbenzene (3)	Not	Detected		1	5
126) 1,2,4-Trimethylbenzene (3)	Not	Detected		1	5
127) sec-Butylbenzene (3)	Not	Detected		1	5
128) p-Isopropyltoluene (3)	Not	Detected		1	5
129) 1,3-Dichlorobenzene (3)	Not	Detected		1	5
131) 1,4-Dichlorobenzene (3)	Not	Detected		1	5
136) n-Butylbenzene (3)	Not	Detected		1	5
137) 1,2-Dichlorobenzene (3)	Not	Detected		1	5
139) 1,2-Dibromo-3-Chloropropane (3)	Not	Detected		2	5
140) 1,2,4-Trichlorobenzene (3)	Not	Detected		· 1	5
141) Hexachlorobutadiene (3)	Not	Detected		2	5
142) Naphthalene (3)	Not	Detected		1	5
144) 1,2,3-Trichlorobenzene (3)	Not	Detected		1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Instrument ID: HP07159.i Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Lab Sample ID: 6769194 Sample Name: PAT-D

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT-D Lab Sample ID: 6769194

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32.

Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Lab Sample ID: 6769194 Sample Name: PAT-D

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.571	96	660683	119.670
19) Acetone	(1)	3.699	58	10871M	9.545
26) *t-Butyl Alcohol-d10	(4)	4.259	65	306792	250.000
36) 1,1-Dichloroethane	(1)	5.281	63	57657	4.752
42) 2-Butanone	. (1)	6.315	43	41990A	7.812
51) \$Dibromofluoromethane	(1)	6.796	113	321174	52.941
62)\$1,2-Dichloroethane-d4	(1)	7.258	102	84155	51.864
70)*Fluorobenzene	(1)	7.720	96	1357166	50.000
86)\$Toluene-d8	(2)	9.734	98	1292196	47.324
98) *Chlorobenzene-d5	(2)	11.176	117	975949	50.000
114)\$4-Bromofluorobenzene	(2)	12.186	95	473309	47.677
130) *1,4-Dichlorobenzene-d4	(3)	13.062	152	551586	50.000

M = Compound was manually integrated.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32.

Target 3.5 esignature user ID: sag03174

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT-D Lab Sample ID: 6769194

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 326
Retention Time (minutes): 3.571
Relative Retention Time : 0.00093
Quant Ion : 96.00
Area (flag) : 660683
On-Column Amount (ng) : 119.6697

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT-D Lab Sample ID: 6769194

Compound Number : 19
Compound Name : Acetone
Scan Number : 347
Retention Time (minutes): 3.699
Relative Retention Time :-0.01010
Quant Ion : 58.00
Area (flag) : 10871M
On-Column Amount (ng) : 9.5449

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT-D Lab Sample ID: 6769194

Compound Number : 19
Compound Name : Acetone
Scan Number : 347
Retention Time (minutes): 3.699
Quant Ion : 58.00
Area (flag) : 10871M
On-Column Amount (ng) : 9.5449

On-Column Amount (ng) : 9.5449Integration start scan : 336 Integration stop scan: 381Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:32.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i Analyst ID: ERS02237

Sublist used: 8732 Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 18:26 Automation

Lab Sample ID: 6769194 Sample Name: PAT-D

Compound Number 19 Compound Name Acetone Scan Number Retention Time (minutes): 3.699 58.00 Quant Ion Area 11364 : 9.9778 On-column Amount (ng)

336 : Integration stop scan: Integration start scan 0 Y at integration end: Y at integration start

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for 1,1-Dichloroethane

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT-D Lab Sample ID: 6769194

Compound Number : 36

Compound Name : 1,1-Dichloroethane

Scan Number : 607
Retention Time (minutes): 5.281
Relative Retention Time :-0.00275
Quant Ion : 63.00
Area (flag) : 57657
On-Column Amount (ng) : 4.7519

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT-D Lab Sample ID: 6769194

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 777
Retention Time (minutes): 6.315
Relative Retention Time :-0.02152
Quant Ion : 43.00
Area (flag) : 41990A
On-Column Amount (ng) : 7.8122

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT-D Lab Sample ID: 6769194

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 777
Retention Time (minutes): 6.315
Quant Ion : 43.00
Area (flag) : 41990A
On-Column Amount (ng) : 7.8122

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:32.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s43.d Injection date and time: 05-SEP-2012 18:06

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 18:26 Automation

Sample Name: PAT-D Lab Sample ID: 6769194

Compound Number : 42

Area

Compound Name : 2-Butanone

Scan Number : 777
Retention Time (minutes): 6.315
Quant Ion : 43.00

On-column Amount (ng) : 7.8124

Integration start scan : 765 Integration stop scan: 802 Y at integration start : 0 Y at integration end: 0

41990

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	PAT16
ract:	

Lab Name: Lancaster Laboratories Contract:____ |_

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6769195

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP07159.i/12sep05b.b/ns05s44.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/K	g) ug/L		Q
75-71-8	Dichlorodifluoromethane		5	U
74-87-3	Chloromethane		5	ן ט
75-01-4 	Vinyl Chloride		5	U
74-83-9	Bromomethane		5	ן ט
75-00-3	Chloroethane		5	U
75-69-4	Trichlorofluoromethane	Ì	5	U
75-35-4	1,1-Dichloroethene		5	U
67-64-1	Acetone	İ	9	J
75-09-2	Methylene Chloride	Ì	5	U
156-60-5	trans-1,2-Dichloroethene	İ	5	Ū
1634-04-4-	Methyl Tertiary Butyl Ether	Ì	5	U
75-34-3	1,1-Dichloroethane	İ	5	U
156-59-2	cis-1,2-Dichloroethene	İ	5	U
78-93-3	2-Butanone	İ	7	j
594-20-7	2,2-Dichloropropane	İ	5	์ บ
74-97-5	Bromochloromethane	İ	5	์ บ
67-66-3	Chloroform	ĺ	5	์ บ
71-55-6	1,1,1-Trichloroethane	İ	5	Üυ
563-58-6	1,1-Dichloropropene	İ	5	U
	Carbon Tetrachloride	ĺ	5	Üυ
71-43-2	Benzene	i	5	υ
107-06-2	1,2-Dichloroethane	j .	5	ָ טו
	Trichloroethene	i	5	์ บ
78-87-5	1,2-Dichloropropane	i	5	Üυ
	Dibromomethane	i	5	Üυ
75-27-4	Bromodichloromethane	i	5	Üυ
10061-01-5	cis-1,3-Dichloropropene	i	5	ט
	4-Methyl-2-Pentanone	i	10	ับ
	Toluene	i	5	ΰ
	trans-1,3-Dichloropropene	i	5	ΰ
		i		İ
		· — — — — — — — — — — — — — — — — — — —		

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.
		_!

r ah	Mama	Tangagter	Laboratories
∟ab	Name:	Lancaster	Laboratories

oratories Contract:____

PAT16

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769195

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s44.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION	UNITS:
---------------	--------

CAS NO.	COMPOUND (u	g/L or ug/Kg	g) ug/L		Q
79-00-5	1,1,2-Trichloroet	nane	5		U
127-18-4	Tetrachloroethene		5		ן ט
142-28-9	1,3-Dichloropropa	ne	5		U
124-48-1	Dibromochlorometh	ane	5		U
106-93-4	1,2-Dibromoethane	1	5		ן ט
108-90-7	Chlorobenzene		5		ן ש
630-20-6	1,1,1,2-Tetrachlo	roethane	5		ן ש
100-41-4	Ethylbenzene		5	- 1	ן ש
179601-23-1-	m+p-Xylene		5		ן ט
95-47-6	o-Xylene		5		ט
100-42-5	Styrene		5		ט
75-25-2	Bromoform		5		ט
98-82-8	Isopropylbenzene		5		ט
79-34-5	1,1,2,2-Tetrachlor	coethane	5	j	ט
108-86-1	Bromobenzene		5		U
96-18-4	1,2,3-Trichloropro	pane	5	Ì	ָ ע
	n-Propylbenzene	_	5	Ì	U
95-49-8	2-Chlorotoluene		5	Ì	ָ ע
108-67-8	1,3,5-Trimethylbe	nzene	5		י ד
106-43-4	4-Chlorotoluene		5	ĺ	υj
98-06-6	tert-Butylbenzene		5		υj
95-63-6	1,2,4-Trimethylbe	nzene	5		υj
135-98-8	sec-Butylbenzene		5	Ì	י ד
•	p-Isopropyltoluene	<u> </u>	5		υį
•	1,3-Dichlorobenzer		5		υį
106-46-7	1,4-Dichlorobenzer	ne İ	5		ָט ו
104-51-8	n-Butylbenzene	į	5		υj
•	1,2-Dichlorobenzer	ne i	5	Ì	ָ ט
1	1,2-Dibromo-3-Chlo		5	j	บ
•	1,2,4-Trichlorober		5	j	ָן ט
		i		i	i

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769195

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s44.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 5 | U 87-68-3------Hexachlorobutadiene 91-20-3-----Naphthalene 5 Įυ 87-61-6-----1,2,3-Trichlorobenzene 5 | U

PAT16

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769195

Data file: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29
Data file Sample Info. Line: PAT16;6769195;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 873

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/~RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.259(-0.021)	439	65	313460 (-17)	250.00	
70) Fluorobenzene	7.720(-0.009)	1008	96	1343678 (-11)	50.00	
98) Chlorobenzene-d5	11.181 (-0.015)	1577	117	970756 (-9)	50.00	
130) 1,4-Dichlorobenzene-d4	13.061 (-0.033)	1886	152	547559 (-13)	50.00	

Su:	rrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags ======	QC Limits
51)	Dibromofluoromethane	(1)	6.795 (0.000)	113	317395	52.844	106%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.258 (0.000)	102	81772	50.901	102%		77 - 113
86)	Toluene-d8	(2)	9.734 (0.000)	98	1278708	47.080	94%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.185 (-0.001)	95	459875	46.571	93%		78 - 113

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sa	LOQ ample)
	Dichlorodifluoromethane	(1)	=====		=====	Not Detected				======	1	5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
19)	Acetone	(1)	3.69	9(-0.010)	58	9966M	8.838	8.84		J	6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)	6.33	9(-0.024)	43	35269A	6.628	6.63		J	3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

 ${\tt M} = {\tt Compound}$ was manually integrated. A = User selected an alternate peak.

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

PAT16 Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769195

Data file: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29
Data file Sample Info. Line: PAT16;6769195;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT	(+/-RRT			:ea	Conc. (on-column)	(in	onc. sample)	Blank Conc.	Qual.	Reporti Limit (in sa	LOQ
	Tetrachloroethene	(2)		*	== ====		etected		=====				0.8	5
	1,3-Dichloropropane	(2)					etected						1	5
	Dibromochloromethane	(2)					etected						î	5
	1,2-Dibromoethane	(2)					etected						1	5
	Chlorobenzene	(2)					etected						0.8	5
	1,1,1,2-Tetrachloroethane	(2)					etected						1	5
	Ethylbenzene	(2)					etected						0.8	5
	m+p-Xylene	(2)					etected						0.8	5
	o-Xylene	(2)					etected						0.8	5
	Styrene	(2)					etected						1	5
110)	Bromoform	(2)					etected						î	5
,	Isopropylbenzene	(2)					etected						1	5
	1,1,2,2-Tetrachloroethane	(3)					etected						î	5
	Bromobenzene	(3)					etected						1	5
	1,2,3-Trichloropropane	(3)					etected						1	5
	n-Propylbenzene	(3)					etected						1	5
	2-Chlorotoluene	(3)					etected						î	5
	1,3,5-Trimethylbenzene	(3)					etected						1	5
	4-Chlorotoluene	(3)					etected						1	5
	tert-Butylbenzene	(3)					etected						1	5
	1,2,4-Trimethylbenzene	(3)					etected						1	5
	sec-Butylbenzene	(3)					etected						1	5
	p-Isopropyltoluene	(3)					etected						1	5
	1,3-Dichlorobenzene	(3)					etected						1	5
	1,4-Dichlorobenzene	(3)					etected						1	5
	n Dutylbenzene	(3)				Not D	etected						1	5
	1,2-Dichlorobenzene	(3)					etected						1	5
	1,2-Dibromo-3-Chloropropane	(3)				Not D	etected						2	5
	1,2,4-Trichlorobenzene	(3)					etected						1	5
	Hexachlorobutadiene	(3)					etected						2	5
-	Naphthalene	(3)					etected						1	5
	1,2,3-Trichlorobenzene	(3)					etected						1	5
	-,-,-	/				•								

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT16 Lab Sample ID: 6769195

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32.
Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29

Instrument ID: HP07159.i
Analyst ID: ERS02237

.

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT16 Lab Sample ID: 6769195

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32.
Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Lab Sample ID: 6769195 Sample Name: PAT16

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
19) Acetone	(1)	3.699	58	9966M	8.838
26) *t-Butyl Alcohol-d10	(4)	4.259	65	313460	250.000
42) 2-Butanone	(1)	6.339	43	35269A	6.628
51) \$Dibromofluoromethane	(1)	6.795	113	317395	52.844
62) \$1,2-Dichloroethane-d4	(1)	7.258	102 .	81772	50.901
70) *Fluorobenzene	(1)	7.720	96	1343678	50.000
86) \$Toluene-d8	(2)	9.734	98	1278708	47.080
98)*Chlorobenzene-d5	(2)	11.181	117	970756	50.000
114)\$4-Bromofluorobenzene	(2)	12.185	95	459875	46.571
130) *1,4-Dichlorobenzene-d4	(3)	13.061	152	547559	50.000

M = Compound was manually integrated.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32.

Target 3.5 esignature user ID: sag03174

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT16 Lab Sample ID: 6769195

Compound Number : 19
Compound Name : Acetone
Scan Number : 347
Retention Time (minutes): 3.699
Relative Retention Time :-0.01007
Quant Ion : 58.00
Area (flag) : 9966M
On-Column Amount (ng) : 8.8381

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT16 Lab Sample ID: 6769195

Compound Number : 19
Compound Name : Acetone
Scan Number : 347
Retention Time (minutes): 3.699
Quant Ion : 58.00
Area (flag) : 9966M
On-Column Amount (ng) : 8.8381

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:32.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Data File: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 18:49 Automation

Lab Sample ID: 6769195 Sample Name: PAT16

Compound Number : 19 Compound Name Acetone Scan Number Retention Time (minutes): 3.699 Quant Ion 58.00 : 10064 Area : 8.9257

On-column Amount (ng) 340 Integration stop scan: Integration start scan : Y at integration end: Y at integration start

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT16 Lab Sample ID: 6769195

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 781
Retention Time (minutes): 6.339
Relative Retention Time :-0.02466
Quant Ion : 43.00
Area (flag) : 35269A
On-Column Amount (ng) : 6.6277

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s44.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 18:29 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PAT16 Lab Sample ID: 6769195

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 781
Retention Time (minutes): 6.339
Quant Ion : 43.00
Area (flag) : 35269A
On-Column Amount (ng) : 6.6277

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:32.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s44.d Injection date and time: 05-SEP-2012 18:29

Instrument ID: HP07159.i
Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 18:49 Automation

Sample Name: PAT16 Lab Sample ID: 6769195

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 781
Retention Time (minutes): 6.339
Quant Ion : 43.00
Area : 35269

On-column Amount (ng) : 6.6278

Integration start scan : 766 Integration stop scan: 802 Y at integration start : 0 Y at integration end:

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:32. Target 3.5 esignature user ID: sag03174

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769198

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s47.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec.

Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/K	g) ug/L	Q
75-71-8	Dichlorodifluoromethane	5	U
74-87-3	Chloromethane	5	U
75-01-4	Vinyl Chloride	5	U
74-83-9	Bromomethane	5	ן ט
75-00-3	Chloroethane	j 5	U
75-69-4	Trichlorofluoromethane	5	U
75-35-4	1,1-Dichloroethene	2	J
67-64-1	Acetone	12	J
75-09-2	Methylene Chloride	5	Ŭ
	trans-1,2-Dichloroethene	5	ָ U
1634-04-4-	Methyl Tertiary Butyl Ether	5	ן ט
	1,1-Dichloroethane	j 5	ן ט
	cis-1,2-Dichloroethene	5	ן ע
	2-Butanone	9	j J
594-20-7	2,2-Dichloropropane	5	บ
	Bromochloromethane	5	į υ
67-66-3 -	Chloroform	3	j J
71-55-6	1,1,1-Trichloroethane	5	į υ
	1,1-Dichloropropene	5	j u
	Carbon Tetrachloride	5	ד
	Benzene	5	ו ט
107-06-2	1,2-Dichloroethane	5	İυ
	Trichloroethene	5	បែ
78-87-5	1,2-Dichloropropane	5	ָוֹ ט
	Dibromomethane	5	ָ ט
	Bromodichloromethane	5	י
· -	cis-1,3-Dichloropropene	5	Ü
	4-Methyl-2-Pentanone	10	υ
	Toluene	5	U
	trans-1,3-Dichloropropene	5	ט
		j	İ

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab	Name:	Lancaster	Laboratories	Contract:

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769198

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s47.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/K	g) ug/L		Q
79-00-5	1,1,2-Trichloroe	thane		5	Ŭ
,	Tetrachloroethen			5	ן ט
142-28-9	1,3-Dichloroprop	ane		5	ן ט
124-48-1	Dibromochloromet	hane		5	ן ט
106-93-4	1,2-Dibromoethan	e		5	ן ט
108-90-7	Chlorobenzene			5	ן ט
630-20-6	1,1,1,2-Tetrachl	oroethane		5	ן די
100-41-4	Ethylbenzene			5	ן די
179601-23-1-	m+p-Xylene		•	5	ן ט ן
95-47-6	O-Xylene			5	ן ט ן
100-42-5	Styrene			5	ן ט
75-25-2	Bromoform			5	ן ט
98-82-8	Isopropylbenzene			5	ן ע
79-34-5	1,1,2,2 - Tetrachl	oroethane		5	ן ט
108-86-1	Bromobenzene	j		5	ן ט
96-18-4	1,2,3-Trichlorop	ropane		5	ט
103-65-1	n-Propylbenzene			5	ט
95-49-8	2-Chlorotoluene			5	ן ט
108-67-8	1,3,5-Trimethylb	enzene		5	ט [
106-43-4	4-Chlorotoluene			5	ט
98-06-6	tert-Butylbenzen	e		5	ט
95-63-6	1,2,4-Trimethylb	enzene		5	ן ש
135-98-8	sec-Butylbenzene			5	ן ט
99-87-6	p-Isopropyltolue	ne		5	Ū
541-73-1	1,3-Dichlorobenz	ene		5	ן ט
106-46-7	1,4-Dichlorobenz	ene	•	5	ן די
104-51-8	n-Butylbenzene			5	ָ ע
95-50-1	1,2-Dichlorobenz	ene		5	ט
96-12-8	1,2-Dibromo-3-Ch	loropropane		5	י ט
120-82-1	1,2,4-Trichlorob	enzene		5	υ

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769198

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s47.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____

Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) ug/L

87-68-3Hexachlorobutadiene	5	Ū
91-20-3Naphthalene	5	υ
87-61-61,2,3-Trichlorobenzene	5	Ū

PA19D

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769198

Data file: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39
Data file Sample Info. Line: PA19D;6769198;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

	ternal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26)	t-Butyl Alcohol-d10	4.259(-0.021)	439	65	331249 (-13)	250.00	
70)	Fluorobenzene	7.714(-0.003)	1007	96	1392400 (-8)	50.00	
98)	Chlorobenzene-d5	11.176(-0.009)	1576	117	978369 (-8)	50.00	
130)	1,4-Dichlorobenzene-d4	13.061(-0.033)	1886	152	560783 (-11)	50.00	

Su ====	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.79	5 (-0.001)	113	319404	51.317	103%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.25	8 (-0.001)	102	84386	50.690	101%		77 - 113
86)	Toluene-d8	(2)	9.73	34 (0.000)	98	1319603	48.208	96%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.18	35 (~0.002)	95	481732	48.405	97%		78 - 113

	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	-	LOQ ample)
1)	Dichlorodifluoromethane	(1)			Not Detected					1	5
3)	Chloromethane	(1)			Not Detected					1	5
4)	Vinyl Chloride	(1)			Not Detected					1	5
5)	Bromomethane	(1)			Not Detected					1	5
	Chloroethane	(1)			Not Detected					1	5
8)	Trichlorofluoromethane	(1)			Not Detected					1	5
16)	1,1-Dichloroethene	(1)	3.577(-0.000)	96	11731	2.071	2.07		J	0.8	5
19)	Acetone	(1)	3.687(-0.008)	58	14095M	12.062	12.06		J	6	20
25)	Methylene Chloride	(1)			Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)			Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)			Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)			Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)			Not Detected					0.8	5
42)	2-Butanone	(1)	6.339(-0.025)	43	51094MA	9.265	9.27		J	3	10
44)	2,2-Dichloropropane	(1)			Not Detected					1	5
48)	Bromochloromethane	(1)			Not Detected					1	5
50)	Chloroform	(1)	6.582 (-0.002)	83	37421	3.187	3.19		J	0.8	5
53)	1,1,1-Trichloroethane	(1)			Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)			Not Detected					1	5
59)	Carbon Tetrachloride	(1)			Not Detected					1	5
65)	Benzene	(1)			Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)			Not Detected					1	5
74)	Trichloroethene	(1)			Not Detected					1	5
76)	1,2-Dichloropropane	(1)			Not Detected					1	5
78)	Dibromomethane	(1)			Not Detected					1	5
81)	Bromodichloromethane	(1)			Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)			Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)			Not Detected					3	10
88)	Toluene	(2)			Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)			Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)			Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PA19D Lancaster Analysis Summary

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769198

Data file: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39
Data file Sample Info. Line: PA19D;6769198;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

On-Column Amount units: ng

Sample Volume (Vo): 5 ml

Target Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ
93) Tetrachloroethene	(2)			Not Detected					0.8	5
94) 1,3-Dichloropropane	(2)			Not Detected					1	5
96) Dibromochloromethane	(2)			Not Detected					1	5
97) 1,2-Dibromoethane	(2)			Not Detected					1	5
100) Chlorobenzene	(2)			Not Detected					0.8	5
101) 1,1,1,2-Tetrachloroethane	(2)			Not Detected					1	5
102) Ethylbenzene	(2)			Not Detected					0.8	5
103) m+p-Xylene	(2)			Not Detected					0.8	5
106) o-Xylene	(2)			Not Detected					0.8	5
109) Styrene	(2)			Not Detected					1	5
110) Bromoform	(2)			Not Detected					1	5
111) Isopropylbenzene	(2)			Not Detected					1	5
116) 1,1,2,2-Tetrachloroethane	(3)			Not Detected					1	5
117) Bromobenzene	(3)			Not Detected					1	5
119) 1,2,3-Trichloropropane	(3)			Not Detected					1	5
120) n-Propylbenzene	(3)			Not Detected					1	5
121) 2-Chlorotoluene	(3)			Not Detected					1	5
122) 1,3,5-Trimethylbenzene	(3)			Not Detected					1	5
123) 4-Chlorotoluene	(3)			Not Detected					1	5
124) tert-Butylbenzene	(3)			Not Detected					1	5
126) 1,2,4-Trimethylbenzene	(3)			Not Detected					1	5
127) sec-Butylbenzene	(3)			Not Detected					1	5
128) p-Isopropyltoluene	(3)			Not Detected					1	5
129) 1,3-Dichlorobenzene	(3)			Not Detected					1	5
131) 1,4-Dichlorobenzene	(3)			Not Detected					1	5
136) n-Butylbenzene	(3)			Not Detected					1	5
137) 1,2-Dichlorobenzene	(3)			Not Detected					1	5
139) 1,2-Dibromo-3-Chloropropa	ne (3)			Not Detected					2	5
140) 1,2,4-Trichlorobenzene	(3)			Not Detected					1	5
141) Hexachlorobutadiene	(3)			Not Detected					2	5
142) Naphthalene	(3)			Not Detected					1	5
144) 1,2,3-Trichlorobenzene	(3)			Not Detected					1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d

Injection date and time: 05-SEP-2012 19:39

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PA19D Lab Sample ID: 6769198

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33. Target 3.5 esignature user ID: sag03174

page 1 of 2

Instrument ID: HP07159.i

Analyst ID: ERS02237

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PA19D Lab Sample ID: 6769198

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33.

Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PA19D Lab Sample ID: 6769198

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.577	96	11731	2.071
19) Acetone	(1)	3.687	58	14095M	12.062
26) *t-Butyl Alcohol-d10	(4)	4.259	65	331249	250.000
42) 2-Butanone	(1)	6.339	43	51094MA	9.265
50) Chloroform	(1)	6.582	. 83	37421	3.187
51) \$Dibromofluoromethane	(1)	6.795	113	319404	51.317
62)\$1,2-Dichloroethane-d4	(1)	7.258	102	84386	50.690
70) *Fluorobenzene	(1)	7.714	96	1392400	50.000
86) \$Toluene-d8	(2)	9.734	98	1319603	48.208
98) *Chlorobenzene-d5	(2)	11.176	117	978369	50.000
114)\$4-Bromofluorobenzene	(2)	12.185	95	481732	48.405
130) *1,4-Dichlorobenzene-d4	(3)	13.061	152	560783	50.000

M = Compound was manually integrated.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33.

Target 3.5 esignature user ID: sag03174

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PA19D Lab Sample ID: 6769198

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 327
Retention Time (minutes): 3.577
Relative Retention Time :-0.00021
Quant Ion : 96.00
Area (flag) : 11731
On-Column Amount (ng) : 2.0711

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PA19D Lab Sample ID: 6769198

Compound Number : 19
Compound Name : Acetone
Scan Number : 345
Retention Time (minutes): 3.687
Relative Retention Time :-0.00888
Quant Ion : 58.00
Area (flag) : 14095M
On-Column Amount (ng) : 12.0624

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33. Target 3.5 esignature user ID: sag03174

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PA19D Lab Sample ID: 6/69198

Compound Number : 19
Compound Name : Acetone
Scan Number : 345
Retention Time (minutes): 3.687
Quant Ion : 58.00
Area (flag) : 14095M
On-Column Amount (ng) : 12.0624

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:33.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:59 Automation

Sample Name: PA19D Lab Sample ID: 6769198

Compound Number : 19
Compound Name : Acetone
Scan Number : 345
Retention Time (minutes): 3.687
Quant Ion : 58.00
Area : 14686
On-column Amount (ng) : 12.5688

Integration start scan : 339 Integration stop scan: 432 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PA19D Lab Sample ID: 6769198

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 781
Retention Time (minutes): 6.339
Relative Retention Time :-0.02531
Quant Ion : 43.00
Area (flag) : 51094AM
On-Column Amount (ng) : 9.2655

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33. Target 3.5 esignature user ID: sag03174

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Lab Sample ID: 6769198 Sample Name: PA19D

: 42 Compound Number

: 2-Butanone Compound Name

: 781 Scan Number Retention Time (minutes): 6.339 : 43.00 Quant Ion : 51094AM Area (flag)

: 9.2655 On-Column Amount (ng)

803 Integration stop scan: : 765 Integration start scan Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:33.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:59 Automation

Sample Name: PA19D Lab Sample ID: 6769198

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 781
Retention Time (minutes): 6.339
Quant Ion : 43.00
Area : 73827
On-column Amount (ng) : 13.3879

Integration start scan : 765 Integration stop scan: 823 Y at integration start : 0 Y at integration end:

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for Chloroform

Data File: /chem/HP07159.i/12sep05b.b/ns05s47.d Injection date and time: 05-SEP-2012 19:39

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:32 sag03174

Sample Name: PA19D Lab Sample ID: 6769198

Compound Number : 50

Compound Name : Chloroform

Scan Number : 821
Retention Time (minutes): 6.582
Relative Retention Time :-0.00242
Quant Ion : 83.00
Area (flag) : 37421
On-Column Amount (ng) : 3.1868

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:33. Target 3.5 esignature user ID: sag03174

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1	PA19S	
	PALSS	

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769199

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s48.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. _____

Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND	(ug/L or	ug/Kg) ug/L	ı	Q
75-71-8Dichlo	rodifluoromethane		5	U
74-87-3Chloro	methane	İ	5	ן ט
75-01-4Vinyl	Chloride		5	บ
74-83-9Bromom	ethane		5	U
75-00-3Chloro	ethane		5	U
75-69-4Trichl	orofluoromethane		5	U
75-35-41,1-Di	chloroethene	·	5	U
67-64-1Aceton	е	ĺ	14	J
75-09-2Methyl	ene Chloride		5	U
156-60-5trans-	1,2-Dichloroethene		5	ד
1634-04-4Methyl	Tertiary Butyl Et	her	5	U
75-34-31,1-Di	chloroethane	.	5	U
156-59-2cis-1,	2-Dichloroethene	j	5	ប
78-93-32-Buta	none	İ	9	J
594-20-72,2-Di	chloropropane	ĺ	5	U
74-97-5Bromoc	hloromethane	İ	5	υ
67-66-3Chloro	form	j	2	J
71-55-61,1,1-	Trichloroethane	j	5	υ
563-58-61,1-Di	chloropropene	İ	5	U
56-23-5Carbon	Tetrachloride	ĺ	5	υ
71-43-2Benzen	e	j	5	υ
107-06-21,2-Di	chloroethane	į	5	U
79-01-6Trichl	oroethene	į	5	U
78-87-51,2-Di	chloropropane	j	5	U
74-95-3Dibrom	omethane	i	5	U
75-27-4Bromod	ichloromethane	i	5	U
10061-01-5cis-1,		į	5	U
108-10-14-Meth		j	10	U
108-88-3Toluen	-	i	5	U
10061-02-6trans-	1,3-Dichloroproper	le	5	υ
		i		

EPA	SAMPLE	NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6769199

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s48.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec.

Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg	g) ug/L		Q
79-00-5	1,1,2-Trichloro	ethane	5	5	ן ע
127-18-4	Tetrachloroethe	ne	9	5	ט
142-28-9	1,3-Dichloropro	pane	9	5	υ
124-48-1	Dibromochlorome	thane	5	5	บ
106-93-4	1,2-Dibromoetha	ne	5	5	ט
108-90-7	Chlorobenzene	İ	5	5	ן ע
630-20-6	1,1,1,2-Tetrach	loroethane	5	5 j	υ
100-41-4	Ethylbenzene	İ	5	5	υ
	m+p-Xylene	İ	9	5 j	υj
95-47-6	o-Xylene	İ	9	s į	υj
100-42-5	Styrene	į	5	5 İ	υj
	Bromoform	j	9	s İ	υj
98-82-8	Isopropylbenzen	e İ	5	s į	υj
79-34-5	1,1,2,2-Tetrach	loroethane	5	s į	υj
108-86-1	Bromobenzene	İ	5	5 j	υj
96-18-4	1,2,3-Trichloro	propane	5	s į	υj
	n-Propylbenzene	1	5	s į	υ ϳ
95-49-8	2-Chlorotoluene	į	5	s i	υj
108-67-8	1,3,5-Trimethyl	benzene	5	; į	υj
•	4-Chlorotoluene		5	; į	υj
98-06-6	tert-Butylbenze	ne	5	i i	υί
:	1,2,4-Trimethyl	:	9	s i	υj
135-98-8	sec-Butylbenzen	e i	5	; į	י ו
99-87-6	p-Isopropyltolu	ene	5	s i	υj
•	1,3-Dichloroben		5	; į	υi
•	1,4-Dichloroben	•	5	i i	υİ
:	n-Butylbenzene	i	5	i	υj
!	1,2-Dichloroben	zene	5	i i	บ
•	1,2-Dibromo-3-C	•	5	i i	ט ו
	1,2,4-Trichloro		5	i	υ
		i		i	

EPA SAMPLE NO.

PA19S

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769199

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s48.d

Level: (low/med) LOW . Date Received: 08/28/12

Moisture: not dec. ____

Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L 87-68-3-----Hexachlorobutadiene 91-20-3-----Naphthalene 5 | U 87-61-6-----1,2,3-Trichlorobenzene 5 U

PA19S

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769199

Data file: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02
Data file Sample Info. Line: PA19S;6769199;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Mat

Matrix: WATER Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.258(-0.021)	439	65	308232 (-19)	250.00	
70) Fluorobenzene	7.714(-0.003)	1007	96	1358923 (-10)	50.00	
98) Chlorobenzene-d5	11.181(-0.015)	1577	117	988347 (-7)	50.00	
130) 1,4-Dichlorobenzene-d4	13.061(-0.033)	1886	152	553141 (-12)	50.00	

	rrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.795 (-0.001)	113	317999	52.350	105%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.252(0.000)	102	84652	52.103	104%		77 - 113
86)	Toluene-d8	(2)	9.734 (0.000)	98	1294777	46.824	94%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.185 (-0.001)	95	471070	46.856	94%		78 - 113

	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.		-
1)	Dichlorodifluoromethane	(1)			Not Detected					1	5
3)	Chloromethane	(1)			Not Detected					1	5
4)	Vinyl Chloride	(1)			Not Detected					1	5
5)	Bromomethane	(1)			Not Detected					1	5
7)	Chloroethane	(1)			Not Detected					1	5
8)	Trichlorofluoromethane	(1)			Not Detected					1	5
16)	1,1-Dichloroethene	(1)			Not Detected					0.8	5
19)	Acetone	(1),	3.687(-0.008)	58	16468M	14.440	14.44		J	6	20
25)	Methylene Chloride	(1)			Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)			Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)			Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)			Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)			Not Detected					0.8	5
42)	2-Butanone	(1)	6.345(-0.026)	43	47741A	8.871	8.87		J	3	10
44)	2,2-Dichloropropane	(1)			Not Detected					1	5
48)	Bromochloromethane	(1)			Not Detected					1	5
50)	Chloroform	(1)	6.582 (-0.002)	83	17929M	1.564	1.56		J	0.8	5
53)	1,1,1-Trichloroethane	(1)			Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)			Not Detected					1	5
59)	Carbon Tetrachloride	(1)			Not Detected					1	5
65)	Benzene	(1)			Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)			Not Detected					1	5
74)	Trichloroethene	(1)			Not Detected					1	5
76)	1,2-Dichloropropane	(1)			Not Detected					1	5
78)	Dibromomethane	(1)			Not Detected					1	5
81)	Bromodichloromethane	(1)			Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)			Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)			Not Detected					3	10
	Toluene	(2)			Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)			Not Detected					1	5
	1,1,2-Trichloroethane	(2)			Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

Lancaster Laboratories Analysis Summary for GC/MS Volatiles PA19S 6769199

Data file: /chem/HP07159.i/12sep05b.b/ns05s48.d Inje
Data file Sample Info. Line: PA19S;6769199;1;0;;PTL09;PLM;;ns05b05; Inst
Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174 Injection date and time: 05-SEP-2012 20:02 Instrument ID: HP07159.i Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

		I.S.					Conc.	Conc.	Blank		Reporting Limit	g LOQ
Tare	get Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	mple)
=====							=========	=============			=======	=====
93)	Tetrachloroethene	(2)				Not Detected	Ė				0.8	5
94)	1,3-Dichloropropane	(2)		•		Not Detected	i				1	5
96)	Dibromochloromethane	(2)				Not Detected	j				1	5
97)	1,2-Dibromoethane	(2)				Not Detected	đ				1	5
100)	Chlorobenzene	(2)				Not Detected	Ė				0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)				Not Detected	d t				1	5
102)	Ethylbenzene	(2)				Not Detected	Ė				0.8	5
103)	m+p-Xylene	(2)				Not Detected	d				0.8	5
106)	o-Xylene	(2)				Not Detected	Ė				0.8	5
109)	Styrene	(2)				Not Detected	d t				1	5
110)	Bromoform	(2)				Not Detected	Ė				1	5
111)	Isopropylbenzene	(2)				Not Detected	d .				1	5
116)	1,1,2,2-Tetrachloroethane	(3)				Not Detected	Ė				1	5
117)	Bromobenzene	(3)				Not Detected	d				1	5
119)	1,2,3-Trichloropropane	(3)				Not Detected	Ė				1	5
120)	n-Propylbenzene	(3)				Not Detected	d d				1	5
121)	2-Chlorotoluene	(3)				Not Detected	đ				1	5
122)	1,3,5-Trimethylbenzene	(3)				Not Detected	i				1	5
123)	4-Chlorotoluene	(3)				Not Detected	i t				1	5
124)	tert-Butylbenzene	(3)				Not Detected	i				1	5
126)	1,2,4-Trimethylbenzene	(3)				Not Detected	d .				1	5
127)	sec-Butylbenzene	(3)				Not Detected	d.				1	5
128)	p-Isopropyltoluene	(3)				Not Detected	i				1	5
129)	1,3-Dichlorobenzene	(3)				Not Detected	d				1	5
131)	1,4-Dichlorobenzene	(3)				Not Detected	i t				1	5
136)	n-Butylbenzene	(3)				Not Detected	d .				1	5
137)	1,2-Dichlorobenzene	(3)				Not Detected	i				1	5
139)	1,2-Dibromo-3-Chloropropane	(3)				Not Detected	i				2	5
140)	1,2,4-Trichlorobenzene	(3)				Not Detected	d t				1	5
141)	Hexachlorobutadiene	(3)				Not Detected	đ				2	5
142)	Naphthalene	(3)				Not Detected	i				1	5
144)	1,2,3-Trichlorobenzene	(3)				Not Detected	d				1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d

Injection date and time: 05-SEP-2012 20:02

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Lab Sample ID: 6769199 Sample Name: PA19S

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

page 1 of 2

Instrument ID: HP07159.i

Analyst ID: ERS02237

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Lab Sample ID: 6769199 Sample Name: PA19S

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d

Instrument ID: HP07159.i

Injection date and time: 05-SEP-2012 20:02

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Sample Name: PA19S

Lab Sample ID: 6769199

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
19) Acetone	(1)	3.687	58	16468M	14.440
26) *t-Butyl Alcohol-d10	(4)	4.258	65	308232	250.000
42) 2-Butanone	(1)	6.345	43	47741A	8.871
50) Chloroform	(1)	6.582	83	17929M	1.564
51) \$Dibromofluoromethane	(1)	6.795	113	317999	. 52.350
62) \$1,2-Dichloroethane-d4	(1)	7.252	102	84652	52.103
70) *Fluorobenzene	(1)	7.714	96	1358923	50.000
86)\$Toluene-d8	(2)	9.734	98	1294777	46.824
98) *Chlorobenzene-d5	(2)	11.181	117	988347	50.000
114)\$4-Bromofluorobenzene	(2)	12.185	95	471070	46.856
130) *1,4-Dichlorobenzene-d4	(3)	13.061	152	553141	50.000

M = Compound was manually integrated.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Sample Name: PA19S Lab Sample ID: 6769199

Compound Number : 19
Compound Name : Acetone
Scan Number : 345
Retention Time (minutes): 3.687
Relative Retention Time :-0.00887
Quant Ion : 58.00
Area (flag) : 16468M
On-Column Amount (ng) : 14.4404

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Sample Name: PA19S Lab Sample ID: 6769199

Compound Number : 19
Compound Name : Acetone
Scan Number : 345
Retention Time (minutes): 3.687
Quant Ion : 58.00
Area (flag) : 16468M
On-Column Amount (ng) : 14.4404

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i
Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 20:23 Automation

Sample Name: PA19S Lab Sample ID: 6769199

Compound Number : 19
Compound Name : Acetone
Scan Number : 345
Retention Time (minutes): 3.687
Quant Ion : 58.00
Area : 17210
On-column Amount (ng) : 15.0914

Integration start scan : 335 Integration stop scan: 415 Y at integration start : 0 Y at integration end: 0

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Sample Name: PA19S Lab Sample ID: 6769199

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 782
Retention Time (minutes): 6.345
Relative Retention Time :-0.02610
Quant Ion : 43.00
Area (flag) : 47741A
On-Column Amount (ng) : 8.8707

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Sample Name: PA19S Lab Sample ID: 6769199

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 782
Retention Time (minutes): 6.345
Quant Ion : 43.00
Area (flag) : 47741A
On-Column Amount (ng) : 8.8707

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 20:23 Automation

Sample Name: PA19S Lab Sample ID: 6769199

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 782
Retention Time (minutes): 6.345
Quant Ion : 43.00
Area : 47741
On-column Amount (ng) : 8.8709

On-column Amount (ng) : 8.8709Integration start scan : 765 Integration stop scan: 800Y at integration start : 0 Y at integration end:

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Sample Name: PA19S Lab Sample ID: 6769199

Compound Number : 50

Compound Name : Chloroform

Scan Number : 821
Retention Time (minutes): 6.582
Relative Retention Time :-0.00242
Quant Ion : 83.00
Area (flag) : 17929M
On-Column Amount (ng) : 1.5645

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:33 sag03174

Sample Name: PA19S Lab Sample ID: 6769199

Compound Number : 50

Compound Name : Chloroform

Scan Number : 821
Retention Time (minutes): 6.582
Quant Ion : 83.00
Area (flag) : 17929M
On-Column Amount (ng) : 1.5645

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s48.d Injection date and time: 05-SEP-2012 20:02

Instrument ID: HP07159.i Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 20:23 Automation

Sample Name: PA19S Lab Sample ID: 6769199

Compound Number : 50

Compound Name : Chloroform

Scan Number : 821
Retention Time (minutes): 6.582
Quant Ion : 83.00
Area : 18049

On-column Amount (ng) : 1.5750

Integration start scan : 812 Integration stop scan: 839 Y at integration start : 0 Y at integration end: 0

EPA SAMPLE NO.

PAT17
1

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6769200

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s49.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

		CONCENTION	OIVIIO.	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	ug/L	Q

CAS NO. COMPOUND (ag/ II of ag/ N	g, ug, 1	¥
75-71-8Dichlorodifluoromethane	5	ט
74-87-3Chloromethane	5	ט
75-01-4Vinyl Chloride	5	U
74-83-9Bromomethane	5	U
75-00-3Chloroethane	5	U
75-69-4Trichlorofluoromethane	5	U
75-35-41,1-Dichloroethene	1	J
67-64-1Acetone	6	J
75-09-2Methylene Chloride	5	U
156-60-5trans-1,2-Dichloroethene	5	ט
1634-04-4Methyl Tertiary Butyl Ether	5	U
75-34-31,1-Dichloroethane	5	ן ע
156-59-2cis-1,2-Dichloroethene	5	U
78-93-32-Butanone	6	J
594-20-72,2-Dichloropropane	5	U
74-97-5Bromochloromethane	5	U
67-66-3Chloroform	5	U
71-55-61,1,1-Trichloroethane	5	U
563-58-61,1-Dichloropropene	5	U
56-23-5Carbon Tetrachloride	5	U
71-43-2Benzene	5	U
107-06-21,2-Dichloroethane	5	ט
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	U
74-95-3Dibromomethane	5	U
75-27-4Bromodichloromethane	5	U
10061-01-5cis-1,3-Dichloropropene	5	U
108-10-14-Methyl-2-Pentanone	10	U
108-88-3Toluene	5	U
10061-02-6trans-1,3-Dichloropropene	5	U
		l

page 1 of 3

EPA SAMPLE NO.

PAT17

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER

Lab Sample ID: 6769200

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s49.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION	UNITS:

		CONCENTRAL			_
CAS NO.	COMPOUND	(ug/L or ug/I	(g) ug/L		Q
79-00-5	1,1,2-Trichl	oroethane	<u> </u>	5	U
127-18-4	Tetrachloroe	thene		5	ן ט
142-28-9	1,3-Dichloro	propane		5	ן ט
124-48-1	Dibromochlor	omethane	1	5	ן ט
106-93-4	1,2-Dibromoe	thane	İ	5	υ
108-90-7	Chlorobenzen	e	İ	5	U
630-20-6	1,1,1,2-Tetr	achloroethane	1	5	ן ט
100-41-4	Ethylbenzene			5	ן ט
179601-23-1	m+p-Xylene			5	ן ט
95-47-6	o-Xylene			5	ן ש
100-42-5	Styrene			5	ן ט
75-25-2	Bromoform		ĺ	5	U
98-82-8	Isopropylben	zene	ĺ	5	Ū
	1,1,2,2-Tetr		j	5	U
108-86-1	Bromobenzene		ĺ	5	υ
96-18-4	1,2,3-Trichl	oropropane	Í	5	U
	n-Propylbenz		Í	5	ับ
95-49-8	2-Chlorotolu	ene		5	U
108-67-8	1,3,5-Trimet	hylbenzene	i	5	υ
	4-Chlorotolu	=	İ	5	υ
98-06-6	tert-Butylbe	nzene	İ	5	U
	1,2,4-Trimet		i	5	υ
	sec-Butylben	-	İ	5	U
	p-Isopropylt		i	5	υ
	1,3-Dichloro		İ	5	υ
	1,4-Dichloro		i	5	U
	n-Butylbenze		i	5	U
	1,2-Dichloro		i	5	U
	1,2-Dibromo-		i	5	U
	1,2,4-Trichl		i	5	U
	2,2,1		_		

	EPA	SAMPLE	NO.
- 1			1

		PAT17	
Contract:			

Lab Name: Lancaster Laboratories Co

Matrix: (soil/water) WATER

Lab Sample ID: 6769200

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s49.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or	ug/Kg) ug/L		Q
87-68-3	Hexachlorob	outadiene	1	5	U
91-20-3	Naphthalene	:		5	ט
87-61-6	1,2,3-Trich	lorobenzene		5	ט
1					1

PAT17 Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769200

Data file: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26
Data file Sample Info. Line: PAT17;6769200;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

In	ternal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26)	t-Butyl Alcohol-d10	4.259(-0.022)	439	65	315175 (-17)	250.00	
70)	Fluorobenzene	7.715(-0.004)	1007	96	1367064 (-10)	50.00	
98)	Chlorobenzene-d5	11.176(-0.010)	1576	117	978395 (-8)	50.00	
130)	1,4-Dichlorobenzene-d4	13.062(-0.034)	1886	152	552601 (-12)	50.00	

	rrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.796(-0.001)	113	320441	52.438	105%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.252(0.000)	102	83881	51.321	103%		77 - 113
86)	Toluene-d8	(2)	9.734(0.000)	98	1303450	47.617	95%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.186(-0.002)	95	473454	47.572	95%		78 - 113

		I.S.					Conc.	Conc.	Blank		Reportin Limit	LOQ
	get Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.		ample)
			======				=========					
	Dichlorodifluoromethane	(1)				Not Detected					1	5
-,	Chloromethane	(1)				Not Detected					1	5
	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
	Chloroethane	(1)				Not Detected					1	5
	Trichlorofluoromethane	(1)				Not Detected				_	1	5
	1,1-Dichloroethene	(1)		2(0.000)	96	5647	1.015	1.02		J	0.8	5
	Acetone	(1)	3.718	8(-0.012)	58	7264M	6.332	6.33		J	6	20
	Methylene Chloride	(1)				Not Detected					2	5
	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
	1,1-Dichloroethane	(1)				Not Detected					1	5
-	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
	2-Butanone	(1)	6.346	6 (-0.026)	43	31003A	5.726	5.73		J	3	10
	2,2-Dichloropropane	(1)				Not Detected					1	5
	Bromochloromethane	(1)				Not Detected					1	5
	Chloroform	(1)				Not Detected					0.8	5
	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
	1,1-Dichloropropene	(1)				Not Detected					1	5
	Carbon Tetrachloride	(1)				Not Detected	•				1	5
,	Benzene	(1)				Not Detected					0.5	5
	1,2-Dichloroethane	(1)				Not Detected					1	5
	Trichloroethene	(1)				Not Detected					1	5
	1,2-Dichloropropane	(1)				Not Detected					1	5
	Dibromomethane	(1)				Not Detected					1	5
-	Bromodichloromethane	(1)				Not Detected					1	5
	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)⋅				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PAT17

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 67

6769200

Data file: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26
Data file Sample Info. Line: PAT17;6769200;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

On-Column Amount units: ng

Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	roo
93)	Tetrachloroethene	(2)				Not Detected					0.8	5
94)	1,3-Dichloropropane	(2)				Not Detected	l				1	5
96)	Dibromochloromethane	(2)				Not Detected					1	5
97)	1,2-Dibromoethane	(2)				Not Detected	1				1	5
100)	Chlorobenzene	(2)				Not Detected					0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
102)	Ethylbenzene	(2)				Not Detected					0.8	5
103)	m+p-Xylene	(2)				Not Detected					0.8	5
106)	o-Xylene	(2)				Not Detected					0.8	5
109)	Styrene	(2)				Not Detected					1	5
110)	Bromoform	(2)				Not Detected					1	5
111)	Isopropylbenzene	(2)				Not Detected					1	5
116)	1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
117)	Bromobenzene	(3)				Not Detected					1	5
119)	1,2,3-Trichloropropane	(3)				Not Detected					1	5
120)	n-Propylbenzene	(3)				Not Detected					1	5
121)	2-Chlorotoluene	(3)				Not Detected					1	5
122)	1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
123)	4-Chlorotoluene	(3)				Not Detected					1	5
124)	tert-Butylbenzene	(3)				Not Detected					1	5
126)	1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
127)	sec-Butylbenzene	(3)				Not Detected					1	5
128)	p-Isopropyltoluene	(3)				Not Detected					1	5
129)	1,3-Dichlorobenzene	(3)				Not Detected					1	5
131)	1,4-Dichlorobenzene	(3)				Not Detected					1	5
136)	n-Butylbenzene	(3)				Not Detected					1	5
137)	1,2-Dichlorobenzene	(3)				Not Detected					1	5
· 139)	1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
140)	1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
141)	Hexachlorobutadiene	(3)				Not Detected					2	5
142)	Naphthalene	(3)				Not Detected					1	5
144)	1,2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5.

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PAT17 Lab Sample ID: 6769200

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Lab Sample ID: 6769200 Sample Name: PAT17

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d

Instrument ID: HP07159.i

Injection date and time: 05-SEP-2012 20:26

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PAT17

Lab Sample ID: 6769200

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.572	96	5647	1.015
19) Acetone	(1)	3.718	58	7264M	6.332
26) *t-Butyl Alcohol-d10	(4)	4.259	65	315175	250.000
42) 2-Butanone	(1)	6.346	43	31003A	5.726
51) \$Dibromofluoromethane	(1)	6.796	113	320441	52.438
62) \$1,2-Dichloroethane-d4	(1)	7.252	102	83881	51.321
70) *Fluorobenzene	(1)	7.715	96	1367064	50.000
86)\$Toluene-d8	(2)	9.734	98	1303450	47.617
98)*Chlorobenzene-d5	(2)	11.176	117	978395	50.000
114)\$4-Bromofluorobenzene	(2)	12.186	95	473454	47.572
130) *1,4-Dichlorobenzene-d4	(3)	13.062	152	552601	50.000

M = Compound was manually integrated.

page 1 of 1

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PAT17 Lab Sample ID: 6769200

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 326
Retention Time (minutes): 3.572
Relative Retention Time : 0.00054
Quant Ion : 96.00
Area (flag) : 5647
On-Column Amount (ng) : 1.0154

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PAT17 Lab Sample ID: 6769200

Compound Number : 19
Compound Name : Acetone
Scan Number : 350
Retention Time (minutes): 3.718
Relative Retention Time :-0.01287
Quant Ion : 58.00
Area (flag) : 7264M
On-Column Amount (ng) : 6.3317

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Lab Sample ID: 6769200 Sample Name: PAT17

Compound Number : 19 Compound Name : Acetone Scan Number 350 Retention Time (minutes): 3.718 Quant Ion Area (flag) 7264M : 6.3317

On-Column Amount (ng) 339 376 Integration start scan Integration stop scan: Y at integration start Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 20:46 Automation

Sample Name: PAT17 Lab Sample ID: 6769200

Compound Number : 19
Compound Name : Acetone
Scan Number : 350
Retention Time (minutes): 3.718
Quant Ion : 58.00
Area : 8115
On-column Amount (ng) : 7.0739

Integration start scan : 339 Integration stop scan: 403 Y at integration start : 0 Y at integration end: 0

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PAT17 Lab Sample ID: 6769200

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 782
Retention Time (minutes): 6.346
Relative Retention Time :-0.02612
Quant Ion : 43.00
Area (flag) : 31003A
On-Column Amount (ng) : 5.7263

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26

Instrument ID: HP07159.i Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23 Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Lab Sample ID: 6769200 Sample Name: PAT17

: 42 Compound Number

2-Butanone Compound Name

782 Scan Number Retention Time (minutes): 6.346 Quant Ion 43.00 Area (flag) 31003A On-Column Amount (ng) : 5.7263

802 769 Integration stop scan: Integration start scan 0 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s49.d Injection date and time: 05-SEP-2012 20:26

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 20:46 Automation

Sample Name: PAT17 Lab Sample ID: 6769200

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 782
Retention Time (minutes): 6.346
Quant Ion : 43.00
Area : 31003
On-column Amount (ng) : 5.7264

Integration start scan : 769 Integration stop scan: 802 Y at integration start : 0 Y at integration end: 0

PA18S

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769201

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s50.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug/K	g) ug/L		Q
75-71-8	Dichlorodifluoromethane		5	ע
74-87-3	Chloromethane	1	5	ן ט
75-01-4	Vinyl Chloride	1	5	U
74-83-9	Bromomethane	İ	5	ן ט
75-00-3	Chloroethane	İ	5	U
75-69-4	Trichlorofluoromethane	İ	5	ן ט
75-35-4	1,1-Dichloroethene	İ	14	1
67-64-1	Acetone	İ	12	J
75-09-2	Methylene Chloride	İ	5	U
156-60-5	trans-1,2-Dichloroethene	İ	5	U
1634-04-4-	Methyl Tertiary Butyl Ether	į	5	U
	1,1-Dichloroethane	İ	5	U
156-59-2	cis-1,2-Dichloroethene	İ	5	U
78-93-3	2-Butanone	İ	8	J
594-20-7	2,2-Dichloropropane	į	5	U
	Bromochloromethane	İ	5	U
67-66-3	Chloroform	İ	3	J
71-55-6	1,1,1-Trichloroethane	İ	1	J
563-58-6	1,1-Dichloropropene	İ	5	U
56 - 23-5	Carbon Tetrachloride	İ	5	U
71-43-2	Benzene	İ	5	ָ ט
107-06-2	1,2-Dichloroethane	İ	5	ט
79-01 - 6	Trichloroethene	İ	5	U
78-87 - 5	1,2-Dichloropropane	İ	5	U
	Dibromomethane	i	5	U
75-27-4 -	Bromodichloromethane	İ	5	U
	cis-1,3-Dichloropropene	İ	5	υ
	4-Methyl-2-Pentanone	İ	10	U
	Toluene	İ	5	U
	trans-1,3-Dichloropropene	İ	5	U
				i

1		
Ì	PA18S	

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769201

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s50.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATI CAS NO. COMPOUND (ug/L or ug/K		0
cas no. com cons	.g, wg, 2	*
79-00-51,1,2-Trichloroethane	5	ט
127-18-4Tetrachloroethene	5	U
142-28-91,3-Dichloropropane	5	U
124-48-1Dibromochloromethane	5	U
106-93-41,2-Dibromoethane	5	U
108-90-7Chlorobenzene	5	U
630-20-61,1,1,2-Tetrachloroethane	5	U
100-41-4Ethylbenzene	5	U
179601-23-1m+p-Xylene	5	U
95-47-6o-Xylene	5	Ū
100-42-5Styrene	5	U
75-25-2Bromoform	5	U
98-82-8Isopropylbenzene	5	Ū
79-34-51,1,2,2-Tetrachloroethane	5	U
108-86-1Bromobenzene	5	Ū
96-18-41,2,3-Trichloropropane	5	U
103-65-1n-Propylbenzene	5	U
95-49-82-Chlorotoluene	5	U
108-67-81,3,5-Trimethylbenzene	5	U
106-43-44-Chlorotoluene	5	U
98-06-6tert-Butylbenzene	5	ָוֹ <u>ע</u>
95-63-61,2,4-Trimethylbenzene	5	์ ซ
135-98-8sec-Butylbenzene	j 5	ָוֹ <u>ע</u>
99-87-6p-Isopropyltoluene	5	์ บ
541-73-11,3-Dichlorobenzene	5	U
106-46-71,4-Dichlorobenzene	5	υ
104-51-8n-Butylbenzene	5	Ü
95-50-11,2-Dichlorobenzene	5	Üυ
96-12-81,2-Dibromo-3-Chloropropane	5	ָוֹ ט
120-82-11,2,4-Trichlorobenzene	5	ָוֹ ד
	İ	_i

EPA SAMPLE NO.

PA18S

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769201

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s50.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 5 | U

87-68-3------Hexachlorobutadiene 5 | U 91-20-3-----Naphthalene 5 | U 87-61-6-----1,2,3-Trichlorobenzene

PA18S Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769201

Data file: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49
Data file Sample Info. Line: PA18S;6769201;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

	ternal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26)	t-Butyl Alcohol-d10	4.251 (-0.014)	438	65	303157 (-20)	250.00	
70)	Fluorobenzene	7.719(-0.008)	1008	96	1341635 (-11)	50.00	
98)	Chlorobenzene-d5	11.180(-0.014)	1577	117	970602 (-9)	50.00	
130)	1,4-Dichlorobenzene-d4	13.066(-0.038)	1887	152	545082 (-13)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51) Dibromofluoromethane	(1)	6.800 (-0.001)	113	312570	52.120	104%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	7.257(0.000)	102	82492	51.428	103%		77 - 113
86) Toluene-d8	(2)	9.733(0.000)	98	1275596	46.973	94%		80 - 113
114) 4-Bromofluorobenzene	(2)	12.184(-0.001)	95	463114	46.907	94%		78 - 113

		I.S.					Conc.	Conc.	Blank		Reportin	LOQ
	get Compounds	Ref.	RT	(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	imbre)
	Dichlorodifluoromethane	(1)				Not Detected					1.	5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)	3.582	2(-0.000)	96	78506	14.384	14.38			0.8	5
19)	Acetone	(1)	3.698	3(-0.010)	58	13720M	12.186	12.19		J	6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)	6.338	3(-0.024)	43	43485A	8.184	8.18		J	3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)	6.575	(-0.000)	83	33512	2.962	2.96		J	0.8	5
53)	1,1,1-Trichloroethane	(1)	6.831	(-0.000)	97	10142M	1.090	1.09		J	0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PA18S Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769201

Data file: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49
Data file Sample Info. Line: PA18S;6769201;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

-	et Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area		Conc. (on-column)	Con (in sa	mple)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ mple)
93) T	etrachloroethene	(2)				Not Det	ected						0.8	5
94) 1	,3-Dichloropropane	(2)				Not Det	ected						1	5
96) D	ibromochloromethane	(2)				Not Det	ected						1	5
97) 1	,2-Dibromoethane	(2)				Not Det	ected						1	5
100) C	Chlorobenzene	(2)				Not Det	ected						0.8	5
101) 1	,1,1,2-Tetrachloroethane	(2)				Not Det	ected						1	5
102) E	thylbenzene	(2)				Not Det	ected						0.8	5
103) m	ı+p-Xylene	(2)				Not Det	ected						0.8	5
106) o	-Xylene	(2)				Not Det	ected						0.8	5
109) S	tyrene	(2)				Not Det	ected						1	5
110) B	romoform	(2)				Not Det	ected						1	5
111) I	sopropylbenzene	(2)				Not Det	ected						1	5
116) 1	,1,2,2-Tetrachloroethane	(3)				Not Det	ected						1	5
117) B	romobenzene	(3)				Not Det	ected						1	5
119) 1	,2,3-Trichloropropane	(3)				Not Det	ected						1	5
120) n	-Propylbenzene	(3)				Not Det	ected						1	5
121) 2	-Chlorotoluene	(3)				Not Det	ected						1	5
122) 1	,3,5-Trimethylbenzene	(3)				Not Det	ected						1	5
123) 4	-Chlorotoluene	(3)				Not Det	ected						1	5
124) t	ert-Butylbenzene	(3)				Not Det	ected						1	5
126) 1	,2,4-Trimethylbenzene	(3)				Not Det	ected						1	5
127) s	ec-Butylbenzene	(3)				Not Det	ected						1	5
128) p	-Isopropyltoluene	(3)				Not Det	ected						1	5
129) 1	,3-Dichlorobenzene	(3)				Not Det	ected						1	5
131) 1	,4-Dichlorobenzene	(3)				Not Det	ected						1	5
136) n	-Butylbenzene	(3)				Not Det	ected						1	5
137) 1	,2-Dichlorobenzene	(3)				Not Det	ected						1	5
139) 1	,2-Dibromo-3-Chloropropane	(3)				Not Det	ected						2	5
140) 1	,2,4-Trichlorobenzene	(3)				Not Det	ected						1	5
141) H	exachlorobutadiene	(3)				Not Det	ected						2	5
142) N	aphthalene	(3)				Not Det	ected						1	5
	,2,3-Trichlorobenzene	(3)				Not Det	ected						1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d

Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Lab Sample ID: 6769201 Sample Name: PA18S

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18S Lab Sample ID: 6769201

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18S Lab Sample ID: 6769201

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.582	96	78506	14.384
19) Acetone	(1)	3.698	58	13720M	12.186
26) *t-Butyl Alcohol-d10	(4)	4.251	65	303157	250.000
42) 2-Butanone	(1)	6.338	43	43485A	8.184
50) Chloroform	(1)	6.575	83	33512	2.962
51) \$Dibromofluoromethane	(1)	6.800	113	312570	52.120
53) 1,1,1-Trichloroethane	(1)	6.831	97	10142M	1.090
62) \$1,2-Dichloroethane-d4	(1)	7.257	102	82492	51.428
70) *Fluorobenzene	(1)	7.719	96	1341635	50.000
86) \$Toluene-d8	(2)	9.733	98	1275596	46.973
98) *Chlorobenzene-d5	(2)	11.180	117	970602	50.000
114) \$4-Bromofluorobenzene	(2)	12.184	95	463114	46.907
130) *1,4-Dichlorobenzene-d4	(3)	13.066	152	545082	50.000

M = Compound was manually integrated.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 328
Retention Time (minutes): 3.582
Relative Retention Time :-0.00055
Quant Ion : 96.00
Area (flag) : 78506
On-Column Amount (ng) : 14.3844

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number : 19
Compound Name : Acetone
Scan Number : 347
Retention Time (minutes): 3.698
Relative Retention Time :-0.01000
Quant Ion : 58.00
Area (flag) : 13720M
On-Column Amount (ng) : 12.1858

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number : 19 Compound Name : Acetone Scan Number 347 Retention Time (minutes): 3.698 : 58.00 Quant Ion Area (flag) 13720M On-Column Amount (ng) : 12.1858

Integration start scan 336 Integration stop scan: Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 21:09 Automation

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number : 19
Compound Name : Acetone
Scan Number : 347
Retention Time (minutes): 3.698
Quant Ion : 58.00
Area : 14507
On-column Amount (ng) : 12.8852

Integration start scan : 336 Integration stop scan: 408 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 781
Retention Time (minutes): 6.338
Relative Retention Time :-0.02464
Quant Ion : 43.00
Area (flag) : 43485A
On-Column Amount (ng) : 8.1840

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Lab Sample ID: 6769201 Sample Name: PA18S

: 42 Compound Number

: 2-Butanone Compound Name

: 781 Scan Number Retention Time (minutes): 6.338 : 43.00 Quant Ion : 43485A Area (flag)

: 8.1840 On-Column Amount (ng)

766 Integration stop scan: 799 Integration start scan Y at integration start Y at integration end:

improper integration Reason for manual integration:

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 21:09 Automation

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number 42

Compound Name 2-Butanone

Scan Number 781 Retention Time (minutes): 6.338 Quant Ion 43.00 Area 43485

: 8.1842 On-column Amount (ng)

766 Integration start scan Integration stop scan: : 0 Y at integration end: Y at integration start

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number : 50

Compound Name : Chloroform

Scan Number : 820
Retention Time (minutes): 6.575
Relative Retention Time :-0.00094
Quant Ion : 83.00
Area (flag) : 33512
On-Column Amount (ng) : 2.9619

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number : 53

Compound Name : 1,1,1-Trichloroethane

Scan Number : 862
Retention Time (minutes): 6.831
Relative Retention Time :-0.00012
Quant Ion : 97.00
Area (flag) : 10142M
On-Column Amount (ng) : 1.0896

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number : 53

Compound Name : 1,1,1-Trichloroethane

Scan Number : 862
Retention Time (minutes): 6.831
Quant Ion : 97.00
Area (flag) : 10142M
On-Column Amount (ng) : 1.0896

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:34.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s50.d Injection date and time: 05-SEP-2012 20:49

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 05-Sep-2012 21:09 Automation

Sample Name: PA18S Lab Sample ID: 6769201

Compound Number : 53

Compound Name : 1,1,1-Trichloroethane

Scan Number : 862
Retention Time (minutes): 6.831
Quant Ion : 97.00
Area : 10235
On-column Amount (ng) : 1.0996

Integration start scan : 852 Integration stop scan: 888 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:34. Target 3.5 esignature user ID: sag03174

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories

Contract:

Lab Code: LANCAS

Case No.:_____ SAS No.:____

SDG No.:____

Q

5 l u

Matrix: (soil/water) WATER

COMPOUND

Lab Sample ID: 6769202

Sample wt/vol: 5.00 (g/mL) mL

Lab File ID: HP07159.i/12sep05b.b/ns05s51.d

Level: (low/med) LOW

Date Received: 08/28/12

CAS NO.

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

75-71-8-----Dichlorodifluoromethane 5 | U 74-87-3-----Chloromethane 5 | U 75-01-4-----Vinyl Chloride 5 | U 5 | U 74-83-9-----Bromomethane 5 75-00-3------Chloroethane U 75-69-4-----Trichlorofluoromethane 5 | U 75-35-4----1,1-Dichloroethene 21 67-64-1-----Acetone 11 5 Ιυ 75-09-2-----Methylene Chloride | 156-60-5-----trans-1,2-Dichloroethene 5 | U 5 | U 1634-04-4-----Methyl Tertiary Butyl Ether 75-34-3-----1,1-Dichloroethane 5 U 156-59-2----cis-1,2-Dichloroethene 5 | U 78-93-3-----2-Butanone 9 594-20-7----2,2-Dichloropropane 5 | U 74-97-5-----Bromochloromethane 5 IJ 67-66-3-----Chloroform 2 l J 71-55-6----1,1,1-Trichloroethane 5 | U 5 | U | 563-58-6-----1,1-Dichloropropene 56-23-5-----Carbon Tetrachloride 5 U ן ע 5 71-43-2-----Benzene 107-06-2----1,2-Dichloroethane 5 | U 79-01-6-----Trichloroethene 5 | U 78-87-5-----1,2-Dichloropropane 5 lυ 74-95-3------Dibromomethane 5 | U 75-27-4-----Bromodichloromethane 5 | U 5 Ιυ 10061-01-5----cis-1,3-Dichloropropene 108-10-1----4-Methyl-2-Pentanone 10 l U ן ע 108-88-3-----Toluene 5

page 1 of 3

10061-02-6----trans-1,3-Dichloropropene

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO
-----	--------	----

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769202

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s51.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONC	JEW.	TRATI	ЛИ	ONTIS	:
/ /T		/ 77	٠.١	/*	

CAS NO.	COMPOUND (ug/L or	ug/Kg) ug/L		Q
79-00-5	1,1,2-Trichloroethane	[5	ן די
127-18-4	Tetrachloroethene	<u> </u>	5	U
142-28-9	1,3-Dichloropropane	[5	U
124-48-1	Dibromochloromethane	İ	5	ן ש
106-93-4	1,2-Dibromoethane	İ	5	ן ט
108-90-7	Chlorobenzene		5	ן ש
630-20-6	1,1,1,2-Tetrachloroetha	ne	5	ן ט
100-41-4	Ethylbenzene		5	ן ט
179601-23-1	m+p-Xylene		5	ן ט
95-47-6	o-Xylene	Ì	5	ן ש ן
100-42-5	Styrene	İ	5	U
75-25-2	Bromoform	İ	5	ן ט
98-82-8	Isopropylbenzene	[5	ן ט
79-34-5	1,1,2,2-Tetrachloroetha	ne	5	ע
108-86-1	Bromobenzene	İ	5	ן ט
96-18-4	1,2,3-Trichloropropane		5	ן ט
103-65-1	n-Propylbenzene	1	5	ן ט
95-49-8	2-Chlorotoluene		5	ן ט
108-67-8	1,3,5-Trimethylbenzene	1	5	ן ט
106-43-4	4-Chlorotoluene		5	ן ט
98-06-6	tert-Butylbenzene		5	ן ט
95-63-6	1,2,4-Trimethylbenzene		5	ן ט
135-98-8	sec-Butylbenzene		5	ן ט
99-87-6	p-Isopropyltoluene		5	ן ש
541-73-1	1,3-Dichlorobenzene		5	ן ט
106-46-7	1,4-Dichlorobenzene		5	ן ט
104-51-8	n-Butylbenzene		5	ן ט
95-50-1	1,2-Dichlorobenzene		5	ן ט
96-12-8	1,2-Dibromo-3-Chloropro	pane	5	ן ט
120-82-1	1,2,4-Trichlorobenzene	1	5	ן ט ן

1 A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PA18D

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769202

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s51.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 87-68-3-----Hexachlorobutadiene 5 | U 91-20-3-----Naphthalene 5 | U 87-61-6----1,2,3-Trichlorobenzene

PA18D

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769202

Injection date and time: 05-SEP-2012 21:12 Data file: /chem/HP07159.i/12sep05b.b/ns05s51.d Data file Sample Info. Line: PA18D;6769202;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER

Level: Low

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

On-Column Amount units: ng

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.259(-0.022)	439	65	301102 (-21)	250.00	
70) Fluorobenzene	7.714(-0.003)	1007	96	1343545 (-11)	50.00	
98) Chlorobenzene-d5	11.182(-0.015)	1577	117	967250 (-9)	50.00	
130) 1,4-Dichlorobenzene-d4	13.062(-0.034)	1886	152	542832 (-14)	50.00	

	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.79	96(-0.001)	113	312520	52.037	104%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.25	58(-0.001)	102	79894	49.737	99%		77 - 113
86)	Toluene-d8	(2)	9.73	34 (0.000)	98	1278168	47.231	94%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.18	36(-0.001)	95	467114	47.476	95%		78 - 113

		I.S.					Conc.	Conc.	Blank		Reporting Limit	LOQ
	get Compounds	Ref.		(+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	197	ample)
			======				========					
	Dichlorodifluoromethane	(1)			•	Not Detected					1	5
	Chloromethane	(1)				Not Detected					1	5
	Vinyl Chloride Bromomethane	(1)				Not Detected					1	5 5
		(1)				Not Detected					1	•
	Chloroethane	(1)				Not Detected					1	5
	Trichlorofluoromethane	(1)	2 570		0.5	Not Detected	00 000	00.67			1	5
	1,1-Dichloroethene	(1)		(-0.000)	96	112945	20.665	20.67		_	0.8	5
	Acetone	(1)	3.693	(-0.009)	58	12719M	11.281	11.28		J	6	20
	Methylene Chloride	(1)				Not Detected					2	5
	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
-	1,1-Dichloroethane	(1)				Not Detected					1	5
-	cis-1,2-Dichloroethene	(1)				Not Detected				_	0.8	5
	2-Butanone	(1)	6.315	(-0.022)	43	46159A	8.675	8.67		J	3	10
	2,2-Dichloropropane	(1)				Not Detected					1	5
	Bromochloromethane	(1)				Not Detected				_	1	5
	Chloroform	(1)	6.589	(-0.003)	83	26205M	2.313	2.31		J	0.8	5
-	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
	1,1-Dichloropropene	(1)	•			Not Detected					1	5
	Carbon Tetrachloride	(1)				Not Detected					1	5
	Benzene	(1)				Not Detected					0.5	5
	1,2-Dichloroethane	(1)				Not Detected					1	5
	Trichloroethene	(1)				Not Detected					1	5
	1,2-Dichloropropane	(1)				Not Detected					1	5
-	Dibromomethane	(1)				Not Detected					1	5
	Bromodichloromethane	(1)				Not Detected					1	5
	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
	Toluene	(2)				Not Detected					0.7	5
	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PA18D Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769202

Data file: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12
Data file Sample Info. Line: PA18D;6769202;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sam	LOQ
	Tetrachloroethene	(2)				Not Detected		=======================================			0.8	5
94)	1,3-Dichloropropane	(2)				Not Detected					1	5
96)	Dibromochloromethane	(2)				Not Detected					1	5
97)	1,2-Dibromoethane	(2)				Not Detected					1	5
100)	Chlorobenzene	(2)				Not Detected					0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
102)	Ethylbenzene	(2)				Not Detected					0.8	5
103)	m+p-Xylene	(2)				Not Detected					0.8	5
106)	o-Xylene	(2)				Not Detected					0.8	5
109)	Styrene	(2)				Not Detected					1	5
110)	Bromoform	(2)				Not Detected					1	5
111)	Isopropylbenzene	(2)				Not Detected					1	5
116)	1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
117)	Bromobenzene	(3)				Not Detected					1	5
119)	1,2,3-Trichloropropane	(3)				Not Detected					1	5
120)	n-Propylbenzene	(3)				Not Detected					1	5
121)	2-Chlorotoluene	(3)				Not Detected					1	5
122)	1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
123)	4-Chlorotoluene	(3)				Not Detected					1	5
124)	tert-Butylbenzene	(3)				Not Detected					1	5
126)	1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
127)	sec-Butylbenzene	(3)				Not Detected					1	5
128)	p-Isopropyltoluene	(3)				Not Detected					1	5
129)	1,3-Dichlorobenzene	(3)				Not Detected					1	5
131)	1,4-Dichlorobenzene	(3)				Not Detected					1	5
136)	n-Butylbenzene	(3)				Not Detected					1	5
137)	1,2-Dichlorobenzene	(3)				Not Detected					1	5
139)	1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
140)	1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
141)	Hexachlorobutadiene	(3)				Not Detected					2	5
142)	Naphthalene	(3)				Not Detected					1	5
144)	1,2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35.
Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d

Instrument ID: HP07159.i

Injection date and time: 05-SEP-2012 21:12

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.578	96	112945	20.665
19) Acetone	(1)	3.693	58	12719M	11.281
26) *t-Butyl Alcohol-d10	(4)	4.259	65	301102	250.000
42) 2-Butanone	(1)	6.315	43	46159A	8.675
50) Chloroform	(1)	6.589	83	26205M	2.313
51) \$Dibromofluoromethane	(1)	6.796	113	312520	52.037
62) \$1,2-Dichloroethane-d4	(1)	7.258	102	79894	49.737
70)*Fluorobenzene	(1)	7.714	96	1343545	50.000
86) \$Toluene-d8	(2)	9.734	98	1278168	47.231
98)*Chlorobenzene-d5	(2)	11.182	117	967250	50.000
114)\$4-Bromofluorobenzene	(2)	12.186	95	467114	47.476
130) *1,4-Dichlorobenzene-d4	(3)	13.062	152	542832	50.000

M = Compound was manually integrated.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35.

Target 3.5 esignature user ID: sag03174

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 327
Retention Time (minutes): 3.578
Relative Retention Time :-0.00023
Quant Ion : 96.00
Area (flag) : 112945
On-Column Amount (ng) : 20.6652

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

Compound Number : 19
Compound Name : Acetone
Scan Number : 346
Retention Time (minutes): 3.693
Relative Retention Time :-0.00969
Quant Ion : 58.00
Area (flag) : 12719M
On-Column Amount (ng) : 11.2806

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i
Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

Compound Number : 19
Compound Name : Acetone
Scan Number : 346
Retention Time (minutes): 3.693
Quant Ion : 58.00
Area (flag) : 12719M

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:35.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 21:32 Automation

Sample Name: PA18D Lab Sample ID: 6769202

Compound Number : 19
Compound Name : Acetone
Scan Number : 346
Retention Time (minutes): 3.693
Quant Ion : 58.00
Area : 13234
On-column Amount (ng) : 11.7382

Integration start scan : 335 Integration stop scan: 411 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 777
Retention Time (minutes): 6.315
Relative Retention Time :-0.02217
Quant Ion : 43.00
Area (flag) : 46159A
On-Column Amount (ng) : 8.6749

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 777
Retention Time (minutes): 6.315
Quant Ion : 43.00
Area (flag) : 46159A
On-Column Amount (ng) : 8.6749

Integration start scan : 765 Integration stop scan: 801 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:35.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 21:32 Automation

Sample Name: PA18D Lab Sample ID: 6769202

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 777
Retention Time (minutes): 6.315
Quant Ion : 43.00
Area : 46159

On-column Amount (ng) : 8.6750Integration start scan : 765 Integration stop scan: 801Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

Reference Standard Spectrum for Chloroform

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

Compound Number : 50

Compound Name : Chloroform

Scan Number : 822
Retention Time (minutes): 6.589
Relative Retention Time :-0.00322
Quant Ion : 83.00
Area (flag) : 26205M
On-Column Amount (ng) : 2.3128

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:34 sag03174

Sample Name: PA18D Lab Sample ID: 6769202

50 Compound Number

Compound Name : Chloroform

Scan Number : 822 Retention Time (minutes): 6.589 Quant Ion : 83.00 Area (flag) 26205M On-Column Amount (ng) : 2.3128

807 841 Integration start scan Integration stop scan: Y at integration start Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:35.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s51.d Injection date and time: 05-SEP-2012 21:12

Instrument ID: HP07159.i
Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 21:32 Automation

Sample Name: PA18D Lab Sample ID: 6769202

Compound Number : 50

Compound Name : Chloroform

Scan Number : 820
Retention Time (minutes): 6.577
Quant Ion : 83.00
Area : 21509
On-column Amount (ng) : 1.8984

Integration start scan : 811 Integration stop scan: 826
Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

PA20S

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6769203

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s52.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

	•	CONCENTIONITY	on online.		
CAS NO.	COMPOUND	(ug/L or ug/Kg	g) ug/L		Q
"	Dichlorodifluo	romethane]	5	U
74-87-3	Chloromethane			5	ט
75-01-4	Vinyl Chloride			5	ן ט
74-83-9	Bromomethane			5	ט
75-00-3	Chloroethane			5	ט
75-69-4	Trichlorofluoro	omethane		5	ן ט
75-35-4	1,1-Dichloroeth	nene		5	ן ט
67-64-1	Acetone		,	14	J
75-09-2	Methylene Chlor	ride	ł	5	ט
156-60-5	trans-1,2-Dichl	loroethene		5	ט
1634-04-4	Methyl Tertiary	Butyl Ether		5	ט
75-34-3	1,1-Dichloroeth	nane		5	U
156-59-2	cis-1,2-Dichlor	coethene		5	U
78-93-3	2-Butanone			9	J
594-20-7	2,2-Dichloropro	pane		5	Ū
74-97-5	Bromochlorometh	nane		5	U
67-66-3	Chloroform			5	U
71-55-6	1,1,1-Trichlore	ethane		5	Ū
563-58-6	1,1-Dichloropro	pene		5	U
56-23-5	Carbon Tetrachl	oride		5	Ū
71-43-2	Benzene			5	U
107-06-2	1,2-Dichloroeth	nane		5	Ū
79-01-6	Trichloroethene	.		5	Ū
78-87-5	1,2-Dichloropro	pane		5	U
74-95-3	Dibromomethane			5	U
75-27-4	Bromodichlorome	thane		5	U
10061-01-5-	cis-1,3-Dichlor	copropene		5	U
108-10-1	4-Methyl-2-Pent	anone		10	Ū
108-88-3	Toluene	j		5	U
10061-02-6-	trans-1,3-Dich]	oropropene		5	U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

PA20S	

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769203

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s52.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L Q

CAS NO.	COMPOUND	(ug/L or ug/K		Q
79-00-5	1,1,2-Trich	loroethane	1 5	
	Tetrachloro		5	υ
	1,3-Dichlor		5	ו ט ו
	Dibromochlo		5	υ
	1,2-Dibromo		j 5	i u i
	Chlorobenze		j 5	i ʊ i
	1,1,1,2-Tet		j	i u i
	Ethylbenzen		5	i ʊ i
	m+p-Xylene		5	ן ט
95-47-6			5	i u i
100-42-5	-		j 5	i u i
	Bromoform		5	i u i
98-82-8	Isopropylbe	nzene	j 5	i u i
	1,1,2,2-Tet		j 5	i u i
	Bromobenzen		j 5	i u i
96-18-4	1,2,3-Trich	loropropane	5	i u i
	n-Propylben		5	i ʊ i
	2-Chlorotol		5	i ʊ i
	1,3,5-Trime		5	i u i
	4-Chlorotol	•	j 5	ו טו
	tert-Butylb		j 5	ו ט
	1,2,4-Trime		j 5	ו ט
	sec-Butylbe	_	j 5	ו טו
	p-Isopropyl		5	i ʊ i
	1,3-Dichlor		j 5	i ʊ i
	1,4-Dichlor		j 5	U İ
	n-Butylbenz		5	i u i
	1,2-Dichlor		5	ן ט ן
		-3-Chloropropane	5	ן ט ן
	1,2,4-Trich		5	j u j

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769203

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s52.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 87-68-3-----Hexachlorobutadiene 5 | U 5 91-20-3-----Naphthalene U 5 | U 87-61-6-----1,2,3-Trichlorobenzene

Lancaster Laboratories Analysis Summary for GC/MS Volatiles PA20S

6769203

Injection date and time: 05-SEP-2012 21:36 Data file: /chem/HP07159.i/12sep05b.b/ns05s52.d Instrument ID: HP07159.i Batch: N122492AA Data file Sample Info. Line: PA20S;6769203;1;0;;PTL09;PLM;;ns05b05; Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.256(-0.018)	438	65	308957 (-19)	250.00	
70) Fluorobenzene	7.717(-0.006)	1007	96	1309650 (-13)	50.00	
98) Chlorobenzene-d5	11.178(-0.012)	1576	117	946375 (-11)	50.00	
130) 1,4-Dichlorobenzene-d4	13.064 (-0.036)	1886	152	534443 (-15)	50.00	

Su ====	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.79	2(0.000)	113	311554	53.219	106%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.25	55(0.000)	102	82145	52.462	105%		77 - 113
86)	Toluene-d8	(2)	9.73	31 (0.000)	98	1262450	47.679	95%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.18	32 (-0.001)	95	457181	47.491	95%		78 - 113

Target Compounds	I.S. Ref.	RT (+/-R		Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	LOQ
	=====									
1) Dichlorodifluoromethane	(1)			Not Detected					1	5
Chloromethane	(1)			Not Detected					1	5
4) Vinyl Chloride	(1)			Not Detected					1	5
5) Bromomethane	(1)			Not Detected					1	5
7) Chloroethane	(1)			Not Detected					1	5
Trichlorofluoromethane	(1)			Not Detected					1	5
16) 1,1-Dichloroethene	(1)			Not Detected					0.8	5
19) Acetone	(1)	3.672(-0.0	06) 58	15763M	14.342	14.34		J	6	20
25) Methylene Chloride	(1)			Not Detected					2	5
29) trans-1,2-Dichloroethene	(1)			Not Detected					0.8	5
30) Methyl Tertiary Butyl Ether				Not Detected					0.5	5
36) 1,1-Dichloroethane	(1)			Not Detected					1	5
40) cis-1,2-Dichloroethene	(1)			Not Detected					0.8	5
42) 2-Butanone	(1)	6.318(-0.0	22) 43	46165MA	8.901	8.90		J	3	10
44) 2,2-Dichloropropane	(1)			Not Detected					1	5
48) Bromochloromethane	(1)			Not Detected					1	5
50) Chloroform	(1)			Not Detected					0.8	5
53) 1,1,1-Trichloroethane	(1)			Not Detected					0.8	5
58) 1,1-Dichloropropene	(1)			Not Detected					1	5
59) Carbon Tetrachloride	(1)			Not Detected					1	5
65) Benzene	(1)			Not Detected					0.5	5
66) 1,2-Dichloroethane	(1)			Not Detected					1	5
74) Trichloroethene	(1)			Not Detected					1	5
76) 1,2-Dichloropropane	(1)			Not Detected					1	5
78) Dibromomethane	(1)			Not Detected					1	5
81) Bromodichloromethane	(1)			Not Detected					1	5
84) cis-1,3-Dichloropropene	(1)			Not Detected					1	5
85) 4-Methyl-2-Pentanone	(1)			Not Detected					3	10
88) Toluene	(2)			Not Detected					0.7	5
89) trans-1,3-Dichloropropene	(2)			Not Detected					1	5
91) 1,1,2-Trichloroethane	(2)			Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PA20S Lancaster Laboratories
Analysis Summary for GC/MS Volatiles

6769203

Data file: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: O5-SEP-2012 21:36
Data file Sample Info. Line: PA20S;6769203;1;0;;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: O6-Sep-2012 16:35 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sam	LOQ mple)
	Tetrachloroethene	(2)				Not Detected					0.8	5
94)	1,3-Dichloropropane	(2)				Not Detected					1	5
96)	Dibromochloromethane	(2)				Not Detected					1	5
97)	1,2-Dibromoethane	(2)				Not Detected					1	5
100)	Chlorobenzene	(2)				Not Detected					0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
102)	Ethylbenzene	(2)				Not Detected					0.8	5
103)	m+p-Xylene	(2)				Not Detected					0.8	5
106)	o-Xylene	(2)				Not Detected					0.8	5
109)	Styrene	(2)				Not Detected					1	5
110)	Bromoform	(2)				Not Detected					1	5
111)	Isopropylbenzene	(2)				Not Detected					1	5
116)	1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
117)	Bromobenzene	(3)				Not Detected					1	5
119)	1,2,3-Trichloropropane	(3)				Not Detected					1	5
120)	n-Propylbenzene	(3)				Not Detected					1	5
121)	2-Chlorotoluene	(3)				Not Detected					1	5
122)	1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
123)	4-Chlorotoluene	(3)				Not Detected					1	5
124)	tert-Butylbenzene	(3)				Not Detected					1	5
126)	1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
127)	sec-Butylbenzene	(3)				Not Detected					1	5
128)	p-Isopropyltoluene	(3)				Not Detected					1	5
129)	1,3-Dichlorobenzene	(3)				Not Detected					1	5
131)	1,4-Dichlorobenzene	(3)				Not Detected					1	5
136)	n-Butylbenzene	(3)				Not Detected					1	5
137)	1,2-Dichlorobenzene	(3)				Not Detected					1	5
139)	1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
140)	1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
141)	Hexachlorobutadiene	(3)				Not Detected					2	5
142)	Naphthalene	(3)				Not Detected					1	5
144)	1,2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

page 2 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: 05-SEP-2012 21:36

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Lab Sample ID: 6769203 Sample Name: PA20S

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35.

Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: 05-SEP-2012 21:36

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20S Lab Sample ID: 6769203

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35.
Target 3.5 esignature user ID: sag03174

page 2 of 2

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: 05-SEP-2012 21:36

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20S Lab Sample ID: 6769203

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
19) Acetone	(1)	3.672	58	15763M	14.342
26) *t-Butyl Alcohol-d10	(4)	4.256	65	308957	250.000
42) 2-Butanone	(1)	6.318	43	46165MA	8.901
51) \$Dibromofluoromethane	(1)	6.792	113	311554	53.219
62) \$1,2-Dichloroethane-d4	(1)	7.255	102	82145	52.462
70)*Fluorobenzene	(1)	7.717	96	1309650	50.000
86)\$Toluene-d8	(2)	9.731	98	1262450	47.679
98) *Chlorobenzene-d5	(2)	11.178	117	946375	50.000
114)\$4-Bromofluorobenzene	(2)	12.182	95	457181	47.491
130) *1,4-Dichlorobenzene-d4	(3)	13.064	152	534443	50.000

M = Compound was manually integrated.

page 1 of 1

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: 05-SEP-2012 21:36

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20S Lab Sample ID: 6769203

Compound Number : 19
Compound Name : Acetone
Scan Number : 342
Retention Time (minutes): 3.672
Relative Retention Time :-0.00672
Quant Ion : 58.00
Area (flag) : 15763M
On-Column Amount (ng) : 14.3422

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: 05-SEP-2012 21:36

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20S Lab Sample ID: 6769203

Compound Number : 19
Compound Name : Acetone
Scan Number : 342
Retention Time (minutes): 3.672
Quant Ion : 58.00
Area (flag) : 15763M
On-Column Amount (ng) : 14.3422

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:35.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: 05-SEP-2012 21:36

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 21:56 Automation

Sample Name: PA20S Lab Sample ID: 6769203

Compound Number : 19
Compound Name : Acetone
Scan Number : 342
Retention Time (minutes): 3.672
Quant Ion : 58.00
Area : 16280
On-column Amount (ng) : 14.8131

Integration start scan : 335 Integration stop scan: 411 Y at integration start : 0 Y at integration end: 0

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: 05-SEP-2012 21:36

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20S Lab Sample ID: 6769203

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 777
Retention Time (minutes): 6.318
Relative Retention Time :-0.02223
Quant Ion : 43.00
Area (flag) : 46165AM
On-Column Amount (ng) : 8.9008

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: 05-SEP-2012 21:36

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20S Lab Sample ID: 6769203

: 42 Compound Number

Compound Name 2-Butanone

Scan Number 777 Retention Time (minutes): 6.318 Quant Ion Area (flag) : 46165AM On-Column Amount (ng) : 8.9008

765 Integration start scan : Integration stop scan: 801 Y at integration start Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:35.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s52.d Injection date and time: 05-SEP-2012 21:36

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 21:56 Automation

Sample Name: PA20S Lab Sample ID: 6769203

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 777
Retention Time (minutes): 6.318
Quant Ion : 43.00
Area : 70612

On-column Amount (ng) : 13.6140

Integration start scan : 765 Integration stop scan: 823 Y at integration start : 0 Y at integration end: 0

VOLATILE ORGANICS ANALYSIS DATA SHEET

PA20D

EPA SAMPLE NO.

T.ah	Name ·	Lancaster	Laborat	ories
Lau	Maille:	Dancascer	парота	COLTED

Contract:____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769204

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s53.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	ן ט
75-01-4Vinyl Chloride	5	ן ט
74-83-9Bromomethane	5	ט
75-00-3Chloroethane	5	ט
75-69-4Trichlorofluoromethane	5	ט

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	U
75-01-4Vinyl Chloride	5	Ŭ
74-83-9Bromomethane	5	U
75-00-3Chloroethane	5	U
75-69-4Trichlorofluoromethane	5	ע
75-35-41,1-Dichloroethene	7	
67-64-1Acetone	6	J
75-09-2Methylene Chloride	5	U
156-60-5trans-1,2-Dichloroethene	5	υ
1634-04-4Methyl Tertiary Butyl Ether	5	U
75-34-31,1-Dichloroethane	5	U
156-59-2cis-1,2-Dichloroethene	5	U
78-93-32-Butanone	6	J
594-20-72,2-Dichloropropane	5	U
74-97-5Bromochloromethane	5	ע
67-66-3Chloroform	5	ש
71-55-61,1,1-Trichloroethane	5	U
563-58-61,1-Dichloropropene	5	U
56-23-5Carbon Tetrachloride	5	U
71-43-2Benzene	5	U
107-06-21,2-Dichloroethane	5	U
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	U
74-95-3Dibromomethane	5	U
75-27-4Bromodichloromethane	5	U
10061-01-5cis-1,3-Dichloropropene	5	ע
108-10-14-Methyl-2-Pentanone	10	ע
108-88-3Toluene	5	ע
10061-02-6trans-1,3-Dichloropropene	5	ŭ

page 1 of 3

FORM I VOA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.

	PA20D
Contract:	

Lab Name: Lancaster Laboratories Contract:_____

Matrix: (soil/water) WATER Lab Sample ID: 6769204

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s53.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L Q

		CONCENTRATION	ONLID.	
CAS NO.	COMPOUND (1	g/L or ug/Kg)	ug/L	Q
79-00-5	1,1,2-Trichloroet	hane	5	U
127-18-4	Tetrachloroethene	:	5	ן ש
142-28-9	1,3-Dichloropropa	ine	5	ן ש
124-48-1	Dibromochlorometh	ane	5	ן ש
106-93-4	1,2-Dibromoethane	:	5	ן ט
108-90-7	Chlorobenzene	ţ	5	ן ט ן
630-20-6	1,1,1,2-Tetrachlo	roethane	5	ן ט
100-41-4	Ethylbenzene		· 5	ן ע
179601-23-	lm+p-Xylene		5	ן ט
95-47-6	o-Xylene	İ	5	ן ט
100-42-5	Styrene	ĺ	5	ן ט
75-25-2	Bromoform	ĺ	5	ן ט ן
98-82-8	Isopropylbenzene	İ	5	ן ט ן
79-34-5	1,1,2,2-Tetrachlo	roethane	5	ן ט ן
108-86-1	Bromobenzene	ĺ	5	ן ט
96-18-4	1,2,3-Trichloropi	opane	5	ן ט
103-65-1	n-Propylbenzene	į	5	ן ט ן
95-49-8	2-Chlorotoluene	ĺ	5	ן ט ן
108-67-8	1,3,5-Trimethylbe	nzene	5	ן ט ן
106-43-4	4-Chlorotoluene	j	5	ן ט ן
98-06-6	tert-Butylbenzene	: j	5	ן ט ן
95-63-6	1,2,4-Trimethylbe	nzene	5	ן ט ן
135-98-8	sec-Butylbenzene	ĺ	5	ן ט ן
99-87-6	p-Isopropyltoluer	le i	5	ן ט ן
541-73-1	1,3-Dichlorobenze	ne	5	ן ט ן
106-46-7	1,4-Dichlorobenze	ne	5	ן ט ן
104-51-8	n-Butylbenzene	į	5	ט
95-50-1	1,2-Dichlorobenze	ne	5	ן ט ן
	1,2-Dibromo-3-Chl		5	ן ט ן
•	1,2,4-Trichlorobe		5	ן ט ן
		i_		.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER

Lab Sample ID: 6769204

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s53.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q 87-68-3-----Hexachlorobutadiene 91-20-3-----Naphthalene 5 U 87-61-6-----1,2,3-Trichlorobenzene | U

PA20D

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769204

Data file: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58 Data file Sample Info. Line: PA20D; 6769204; 1; 0; ; PTL09; PLM; ; ns05b05; Instrument ID: HP07159.i Batch: N122492AA Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.255 (-0.017)	438	65	304596 (-20)	250.00	
70) Fluorobenzene	7.716(-0.005)	1007	96	1307010 (-14)	50.00	
98) Chlorobenzene-d5	11.178(-0.011)	1576	117	926400 (-13)	50.00	
130) 1,4-Dichlorobenzene-d4	13.064 (-0.036)	1886	152	529556 (-16)	50.00	

Su	rrogate Standards	I.S. Ref.	RT (+	-/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.798(-	0.001)	113	309263	52.934	106%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.260(~	0.001)	102	81912	52.419	105%		77 - 113
86)	Toluene-d8	(2)	9.736(0.000)	98	1248308	48.162	96%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.188(-	0.002)	95	453908	48.168	96%		78 - 113

Tar	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sa	LOQ
1)	Dichlorodifluoromethane	(1)				Not Detected					1	5
	Chloromethane	(1)				Not Detected					1	5
4)		(1)				Not Detected					1	5
5)	Bromomethane	(1)				Not Detected					1	5
7)		(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)	3.58	6(-0.001)	96	37376	7.030	7.03			0.8	5
19)	Acetone	(1)	3.73	2(-0.014)	58	6642M	6.056	6.06		J	6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)	6.35	4 (-0.026)	43	30192A	5.833	5.83		J	3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected		N.			1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
85)	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

M = Compound was manually integrated. A = User selected an alternate peak.

PA20D

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769204

Injection date and time: 05-SEP-2012 21:58 Data file: /chem/HP07159.i/12sep05b.b/ns05s53.d Data file Sample Info. Line: PA20D;6769204;1;0;PTL09;PLM;;ns05b05; Ins: Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174 Instrument ID: HP07159.i Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

93) Tetrachloroethene (2)		get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reportin Limit (in sa	roō
95 Dibromochloromethane (2)	93)	Tetrachloroethene	(2)				Not Detected	Į.				0.8	5
97) 1,2-Dibromoethane (2) Not Detected 0.8 100) Chlorobenzene (2) Not Detected 0.8 1101) 1,1,2-Tetrachloroethane (2) Not Detected 1.8 102) Ethylbenzene (2) Not Detected 0.8 103) m+p-Xylene (2) Not Detected 0.8 106) o-Xylene (2) Not Detected 0.8 107) Styrene (2) Not Detected 0.8 108) Styrene (2) Not Detected 0.8 109) Styrene (2) Not Detected 1.1 110) Bromoform (2) Not Detected 1.1 111) Isopropylbenzene (2) Not Detected 1.1 111) Isopropylbenzene (2) Not Detected 1.1 111) Isopropylbenzene (3) Not Detected 1.1 112) 1,2,2-Tetrachloroethane (3) Not Detected 1.1 113) 1,2,2-Tetrachloropropane (3) Not Detected 1.1 114) 1,2,3-Trichloropropane (3) Not Detected 1.1 115) 1,2,3-Trichloropropane (3) Not Detected 1.1 116) 1,1,2,3-Trimethylbenzene (3) Not Detected 1.1 117) 2-Chlorotoluene (3) Not Detected 1.1 118) 1,2,3-Trimethylbenzene (3) Not Detected 1.1 119) 1,2,3-Trimethylbenzene (3) Not Detected 1.1 119) 1,2-Trimethylbenzene (3) Not Detected 1.1 119) 1,2-Trimethylbenzene (3) Not Detected 1.1 119) 1,2-Trimethylbenzene (3) Not Detected 1.1 119) 1,2-Dibromo-ander (3) Not Detected 1.1 119) 1,2-Dibromo-ander (3) Not Detected 1.1 1110 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected 1.1 1111 1,4-Dichlorobenzene (3) Not Detected	94)	1,3-Dichloropropane	(2)		•		Not Detected	l				1	5
100 Chlorobenzene (2)	96)	Dibromochloromethane	(2)				Not Detected	I				1	5
101	97)	1,2-Dibromoethane	(2)				Not Detected	l				1	5
102 Ethylbenzene (2)	100)	Chlorobenzene	(2)				Not Detected	l				0.8	5
103 m+p-Xylene (2)	101)	1,1,1,2-Tetrachloroethane	(2)				Not Detected	l				1	5
106	102)	Ethylbenzene	(2)				Not Detected					0.8	5
109 Styrene (2)	103)	m+p-Xylene	(2)				Not Detected	l				0.8	5
110) Bromoform (2) Not Detected 1 1111 I Isopropylbenzene (2) Not Detected 1 116) 1,1,2,2-Tetrachloroethane (3) Not Detected 1 117) Bromobenzene (3) Not Detected 1 119) 1,2,3-Trichloropropane (3) Not Detected 1 120) n-Propylbenzene (3) Not Detected 1 121) 2-Chlorotoluene (3) Not Detected 1 122) 1,3,5-Trimethylbenzene (3) Not Detected 1 123) 4-Chlorotoluene (3) Not Detected 1 124) tetr-Butylbenzene (3) Not Detected 1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) N	106)	o-Xylene	(2)				Not Detected	l				0.8	5
1111 Isopropylbenzene (2) Not Detected 1 116) 1,1,2,2-Tetrachloroethane (3) Not Detected 1 117) Bromobenzene (3) Not Detected 1 119) 1,2,3-Trichloropropane (3) Not Detected 1 120) n-Propylbenzene (3) Not Detected 1 121) 2-Chlorotoluene (3) Not Detected 1 122) 1,3,5-Trimethylbenzene (3) Not Detected 1 123) 4-Chlorotoluene (3) Not Detected 1 124) tert-Butylbenzene (3) Not Detected 1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) <t< td=""><td>109)</td><td>Styrene</td><td>(2)</td><td></td><td></td><td></td><td>Not Detected</td><td>l</td><td></td><td></td><td></td><td>1</td><td>5</td></t<>	109)	Styrene	(2)				Not Detected	l				1	5
116) 1,7,2,7-Tetrachloroethane (3) Not Detected 1 117) Bromobenzene (3) Not Detected 1 119) 1,2,3-Trichloropropane (3) Not Detected 1 120) n-Propylbenzene (3) Not Detected 1 121) 2-Chlorotoluene (3) Not Detected 1 122) 1,3,5-Trimethylbenzene (3) Not Detected 1 123) 4-Chlorotoluene (3) Not Detected 1 124) tert-Butylbenzene (3) Not Detected 1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3)	110)	Bromoform	(2)				Not Detected	l				1	5
117) Bromobenzene (3) Not Detected 1 119) 1, 2, 3-Trichloropropane (3) Not Detected 1 120) n-Propylbenzene (3) Not Detected 1 121) 2-Chlorotoluene (3) Not Detected 1 122) 1, 3, 5-Trimethylbenzene (3) Not Detected 1 123) 4-Chlorotoluene (3) Not Detected 1 124) tert-Butylbenzene (3) Not Detected 1 126) 1, 2, 4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1, 3-Dichlorobenzene (3) Not Detected 1 131) 1, 4-Dichlorobenzene (3) Not Detected 1 137) 1, 2-Dichlorobenzene (3) Not Detected 1 137) 1, 2-Dichlorobenzene (3) Not Detected 2 140) 1, 2, 4-Trichlorobenzene (3) Not Detect	111)	Isopropylbenzene	(2)				Not Detected					1	5
1199 1,2,3-Trichloropropane (3)	116)	1,1,2,2-Tetrachloroethane	(3)				Not Detected	I				1	5
120 n-Propylbenzene (3)	117)	Bromobenzene	(3)				Not Detected	!				1	5
121) 2-Chlorotoluene (3) Not Detected 1 122) 1,3,5-Trimethylbenzene (3) Not Detected 1 123) 4-Chlorotoluene (3) Not Detected 1 124) tert-Butylbenzene (3) Not Detected 1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	119)	1,2,3-Trichloropropane	(3)				Not Detected	t				1	5
122) 1,3,5-Trimethylbenzene (3) Not Detected 1 123) 4-Chlorotoluene (3) Not Detected 1 124) tert-Butylbenzene (3) Not Detected 1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	120)	n-Propylbenzene	(3)				Not Detected	i				1	5
123) 4-Chlorotoluene (3) Not Detected 1 124) tert-Butylbenzene (3) Not Detected 1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 2 141) Hexachlorobutadiene (3) Not Detected 2	121)	2-Chlorotoluene	(3)				Not Detected	t				1	5
124) tert-Butylbenzene (3) Not Detected 1 126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	122)	1,3,5-Trimethylbenzene	(3)				Not Detected	l				1	5
126) 1,2,4-Trimethylbenzene (3) Not Detected 1 127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	123)	4-Chlorotoluene	(3)				Not Detected	l				1	5
127) sec-Butylbenzene (3) Not Detected 1 128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	124)	tert-Butylbenzene	(3)				Not Detected	l				1	5
128) p-Isopropyltoluene (3) Not Detected 1 129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	126)	1,2,4-Trimethylbenzene	(3)				Not Detected	l				1	5
129) 1,3-Dichlorobenzene (3) Not Detected 1 131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	127)	sec-Butylbenzene	(3)				Not Detected	l				1	5
131) 1,4-Dichlorobenzene (3) Not Detected 1 136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	128)	p-Isopropyltoluene	(3)				Not Detected	l				1	5
136) n-Butylbenzene (3) Not Detected 1 137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	129)	1,3-Dichlorobenzene	(3)				Not Detected	!				1	5
137) 1,2-Dichlorobenzene (3) Not Detected 1 139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	131)	1,4-Dichlorobenzene	(3)				Not Detected	1				1	5
139) 1,2-Dibromo-3-Chloropropane (3) Not Detected 2 140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	136)	n-Butylbenzene	(3)				Not Detected	1				1	5
140) 1,2,4-Trichlorobenzene (3) Not Detected 1 141) Hexachlorobutadiene (3) Not Detected 2	137)	1,2-Dichlorobenzene	(3)				Not Detected	!				1	5
141) Hexachlorobutadiene (3) Not Detected 2	139)	1,2-Dibromo-3-Chloropropane	(3)				Not Detected	1				2	5
,	140)	1,2,4-Trichlorobenzene	(3)				Not Detected	!				1	5
	141)	Hexachlorobutadiene	(3)				Not Detected					2	5
142) Naphthalene (3) Not Detected 1	142)	Naphthalene	(3)				Not Detected					1	5
144) 1,2,3-Trichlorobenzene (3) Not Detected 1	144)	1,2,3-Trichlorobenzene	(3)				Not Detected	l				1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20D Lab Sample ID: 6769204

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20D Lab Sample ID: 6769204

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35. Target 3.5 esignature user ID: sag03174

page 2 of 2

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23 Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20D Lab Sample ID: 6769204

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
16) 1,1-Dichloroethene	(1)	3.586	96	37376	7.030
19) Acetone	(1)	3.732	· 58	6642M	6.056
26) *t-Butyl Alcohol-d10	(4)	4.255	65	304596	250.000
42) 2-Butanone	(1)	6.354	43	30192A	5.833
51) \$Dibromofluoromethane	(1)	6.798	113	309263 .	52.934
62) \$1,2-Dichloroethane-d4	(1)	7.260	102	81912	52.419
70)*Fluorobenzene	(1)	7.716	96	1307010	50.000
86)\$Toluene-d8	(2)	9.736	98	1248308	48.162
98) *Chlorobenzene-d5	(2)	11.178	117	926400	50.000
114)\$4-Bromofluorobenzene	(2)	12.188	95	453908	48.168
130) *1,4-Dichlorobenzene-d4	(3)	13.064	152	529556	50.000

M = Compound was manually integrated.

page 1 of 1

Digitally signed by Sarah A. Guill on 09/06/2012 at 16:35.

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Reference Standard Spectrum for 1,1-Dichloroethene

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20D Lab Sample ID: 6769204

Compound Number : 16

Compound Name : 1,1-Dichloroethene

Scan Number : 328
Retention Time (minutes): 3.586
Relative Retention Time :-0.00116
Quant Ion : 96.00
Area (flag) : 37376
On-Column Amount (ng) : 7.0297

Reference Standard Spectrum for Acetone

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i
Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20D Lab Sample ID: 6769204

Compound Number : 19
Compound Name : Acetone
Scan Number : 352
Retention Time (minutes): 3.732
Relative Retention Time :-0.01456
Quant Ion : 58.00
Area (flag) : 6642M
On-Column Amount (ng) : 6.0555

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20D Lab Sample ID: 6769204

Compound Number : 19
Compound Name : Acetone
Scan Number : 352
Retention Time (minutes): 3.732
Quant Ion : 58.00
Area (flag) : 6642M
On-Column Amount (ng) : 6.0555

Integration start scan : 339 Integration stop scan: 373 Y at integration start : 0 Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:35.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i
Analyst ID: ERS02237

Sublist used: 8732

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 22:18 Automation

Sample Name: PA20D Lab Sample ID: 6769204

Compound Number : 19
Compound Name : Acetone
Scan Number : 352
Retention Time (minutes): 3.732
Quant Ion : 58.00
Area : 7564
On-column Amount (ng) : 6.8961

On-column Amount (ng) : 6.8961Integration start scan : 339 Integration stop scan: 387Y at integration start : 0 Y at integration end: 0

Reference Standard Spectrum for 2-Butanone

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20D Lab Sample ID: 6769204

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 783
Retention Time (minutes): 6.354
Relative Retention Time :-0.02695
Quant Ion : 43.00
Area (flag) : 30192A
On-Column Amount (ng) : 5.8328

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 06-Sep-2012 16:35 sag03174

Sample Name: PA20D Lab Sample ID: 6769204

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 783
Retention Time (minutes): 6.354
Quant Ion : 43.00
Area (flag) : 30192A
On-Column Amount (ng) : 5.8328

Integration start scan : 769 Integration stop scan: 803 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 09/06/2012 at 16:35.

Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 17:04. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05s53.d Injection date and time: 05-SEP-2012 21:58

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 22:18 Automation

Sample Name: PA20D Lab Sample ID: 6769204

Compound Number : 42

Compound Name : 2-Butanone

Scan Number : 783
Retention Time (minutes): 6.354
Quant Ion : 43.00
Area : 30192
On-column Amount (ng) : 5.8329

Integration start scan : 769 Integration stop scan: 803 Y at integration start : 0 Y at integration end: 0

Standards Data

Lancaster Laboratories Runlog for Hewelet Packard GC/MS System HP07159 **HP #11**

*	Shift #1 Analys	t:_		ADS** Shift #2 Analyst:	s	G	** Shift #3 Analyst:*
	Comment Code:	R	=	Reinjection necessary	Х	=	Sample sent to be reextracted
		S	=	Surrogate problem	I	==	Internal Standard problem
		NU	=	Not used	F	=	Further dilution required
	•	MR	=	Meets requirements	IUO	=	Internal use only
		Cz	=	Confirms z, $(z = S, I \text{ or } X)$	T	=	Injected outside valid tune period
	Other problems	or	COI	mments are as follows:			
							*
							*

Data Directory Path is - C:\HPCHEM\1\DATA\12AUG15A\

FILE	SAMPLE	LLI#	DATE		TIME	BATCH	D.F.	NOTES
NG15T01.D	BFB MAR28-12	50NG BFB	15 Aug	2012	11:32			MR
NG15I01.D	VSTD300	VSTD300	15 Aug	2012	11:55			NU
NG15I02.D	VSTD100	VSTD100	15 Aug	2012	12:19	•		NU
NG15I03.D	VSTD050	VSTD050	15 Aug	2012	12:42			MR
NG15I04.D	VSTD020	VSTD020	15 Aug	2012	13:05			MR
NG15I05.D	VSTD010	VSTD010	15 Aug	2012	13:28	•		NU
NG15I06.D	VSTD004	VSTD004	15 Aug	2012	13:51			MR
NG15I07.D	VSTD001	VSTD001	15 Aug	2012	14:15			MR
NG15M01.D	0.5PPB	0.5PPB	15 Aug	2012	14:38			MR
NG15I08.D	VSTD300	VSTD300	15 Aug	2012	15:01			MR
NG15I09.D	VSTD100	VSTD100	15 Aug	2012	15:24			MR
NG15X01.D	BLK	BLK .	15 Aug	2012	15:48		•	טע
NG15I10.D	VSTD010	VSTD010	15 Aug	2012	16:11			MR
NG15V01.D	LCSNICV	LCSNICV	15 Aug	2012	16:34			MR
NG15X02.D	BLK	BLK	15 Aug	2012	17:18			NU

Lancaster Laboratories Runlog for Hewelet Packard GC/MS System HP07159 **HP #11**

**	Shift #1 Analy	st:_	_ER	S** Shift #2 Analyst:_	_51	** Shift #3 Analyst:*
	Comment Code:	R	=	Reinjection necessary	х	= Sample sent to be reextracted
		S	=	Surrogate problem	I	= Internal Standard problem
		UИ	_	Not used	F	= Further dilution required
		MR	=	Meets requirements	IUO) = Internal use only
		Cz	=	Confirms z, $(z = S, I \text{ or } X)$	Т	= Injected outside valid tune period
	Other problem	s or	. co	mments are as follows:		
*_						*
*_	8260B	WAT	ERS			*
*_						*
*					•	· *

Data Directory Path is - C:\HPCHEM\1\DATA\12SEP05B\

FILE	SAMPLE	LLI#	DATE		TIME	BATCH	D.F.	NOTES
NS05T05.D	BFB MAR28-12	50NG BFB	5 Ser	2012	12:02			MR
NS05C01.D	VSTD050	VSTD050		2012	12:18	N122492AA		MR.
.NS05B05.D	VBLKN08	VBLKN08	5, Sep	2012	12:41	N122492AA		MR
NS05S31.D	LCSN08	LCSN08	5 Sep	2012	13:05	N122492AA		MR
NS05S32.D	PAT-T	6769183	5 Sep	2012	13:48	N122492AA		MR
NS05S33.D	PAT23	6769184	5 Sep	2012	14:11	N122492AA		MR
NS05S34.D	PAT11	6769185	5 Sep	2012	14:35	N122492AA	•	MR
NS05S35.D	PAT-4	6769186	5 Sep	2012	14:58	N122492AA		MR
NS05S36.D	PAT-9	6769187	5 Sep	2012	15:21	N122492AA		MR
NS05S37.D	PAT10	6769188	5 Sep	2012	15:45	N122492AA		MR
NS05S38.D	PAT-8	6769189	5 Sep	2012	16:08	N122492AA		MR
NS05S39.D	PAT15	6769190		2012	16:32	N122492AA		MR
NS05S40.D	PAT-7	6769191		2012	16:55	N122492AA		· MR
NS05S41.D	PAT7A	6769192	5 Sep	2012	17:19	N122492AA		MR
NS05S42.D	PATVA	6769193		2012	17:42	N122492AA		MR
NS05S43.D	PAT-D	6769194	5 Sep	2012	18:06	N122492AA		MR
NS05S44.D	PAT16	6769195		2012	18:29	N122492AA		MR
NS05S45.D	PAT16MS	6769196MS	5 Sep	2012	18:52	N122492AA		MR
NS05S46.D	PAT16MSD	6769197MSD		2012	19:16	N122492AA		MR
NS05S47.D	PA19D	6769198	5 Sep	2012	19:39	N122492AA		MR
NS05S48.D	PA19S	6769199		2012	20:02	N122492AA		MR
NS05S49.D	PAT17	6769200		2012	20:26	N122492AA		MR
NS05S50.D	PA18S	6769201	5 Sep	2012	20:49	N122492AA		МR
NS05S51.D	PA18D	6769202	5 Sep	2012	21:12	N122492AA		MR
NS05S52.D	PA20S	6769203	5 Sep	2012	21:36	N122492AA		MR
NS05S53.D	PA20D	6769204	5 Sep	2012	21:58	N122492AA		MR

Data File: /chem/HP07159.i/12aug15a.b/ng15t01.d Page 1

Date : 15-AUG-2012 11:32

Client ID: BFB MAR28-12

Instrument: HP07159.i

entrement of the second

Sample Info: BFB MAR28-12;50NG BFB;1;2;;

Operator: ads01731

Column phase: DB-624

Data File: /chem/HP07159.i/12aug15a.b/ng15t01.d

Date : 15-AUG-2012 11:32

Client ID: BFB MAR28-12

Instrument: HP07159.i

Sample Info: BFB MAR28-12;50NG BFB;1;2;;

Operator: ads01731

Column diameter: 0.25

Column phase: DB-624

1 bfb

Page 3

Data File: /chem/HP07159.i/12aug15a.b/ng15t01.d

Date : 15-AUG-2012 11:32

Client ID: BFB MAR28-12

Instrument: HP07159.i

Sample Info: BFB MAR28-12;50NG BFB;1;2;;

Operator: ads01731

Column phase: DB-624

Column diameter: 0.25

Data File: ng15t01.d Spectrum: Avg. Soans 106-108 (4.74), Background Soan 100

Location of Maximum: 95.00 Number of points: 69

	m/z	Y		m/z	Y	m/z	Y		m/z	Υ .
+-	36.00	1036	+-	62.00	4421 I	87,00	5270	1	133.00	5 !
1	37,00	4840	ı	63,00	3226 (88.00	5049	ı	135,00	90
1	38,00	4301	ı	64.00	304 1	91.00	305	ì	141.00	743 I
ı	39.00	1753	ı	67,00	188 1	92,00	2845	ı	143.00	790 I
ī	40,00	101	١	68.00	9940	93.00	4201	I	148.00	197 I
+-			+-		4424	04.00	49779	+	156,00	+ 223 I
1	44,00	391		69,00	10431 (90392 I
ı	45.00	995	ł	70,00	808 1	•	118480			
ı	47,00	1473	1	72,00	599 1	96,00	8090	ı	175,00	6714 I
ı	48.00	568	ı	73.00	4486	97,00	254	ı	176.00	88344 I
ļ	49.00	4151	1	74.00	16536	104.00	415	ı	177.00	6083 1
+			+-					+		+
1	50,00	19424	t	75,00	52760 I	105.00	335	١	178,00	104
1	51,00	6114	I.	76.00	4554	106.00	370	1	191,00	17 I
1	52.00	314	ı	77.00	742	116.00	347	ı	208.00	27 I
1	55,00	435	ı	78.00	955 I	117.00	524	١	209,00	104 I
1	56.00	1385	ı	79.00	2085	118.00	320	ı	283,00	16
+-			+-					+		+
ı	57,00	2639	1	80.00	686	119,00	485	1		ı
ı	60,00	916	1	81.00	2212	128,00	395	I		1
1	61,00	4602	ı	82,00	496	130,00	376	İ		1
+-			+-			 -		-+		+

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

المراج والمستعمل والمراج يهجم فالمراج المستعملين والمستعملين والمستعملين

Calibration date and time: 15-AUG-2012 15:21

Sample Name: VSTD300

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Lab Sample ID: VSTD300

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06. Target 3:5 esignature user ID: sag

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Analyst ID: ads01731
Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Calibration date and time: 15-AUG-2012 15:21

0001100 0000. 0100...1

Instrument ID: HP07159.i

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 15:01 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

مالمصطفية ووقا يموجه والمستقد مراجات والمالية

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
=======================================			85	3032560	303.637
 Dichlorodifluoromethane Chloromethane 	(1) (1)	1.916 2.087	50	2479649	278.837
- · - · - · - · · · · · · · · · · · · ·	(1)	2.214	62	2506286	278.402
4) Vinyl Chloride5) Bromomethane	(1)	2.537	94	1231583	226.099
7) Chloroethane	(1)	2.628	64	1109593	240.785
8) Trichlorofluoromethane	(1)	2.944	101	2911762	290.928
12) Ethanol	(4)	3.084	45	991293	7501.554
13) Acrolein	(4)	3.364	56	7281969	2878.394
16) 1,1-Dichloroethene	(1)	3.528	96	1740249	281.635
18) Freon 113	(1)	3.534	101	1731135	275.628
19) Acetone	(1)	3.547	58	723703	567.732
21) 2-Propanol	(4)	3.717	45	1541551	1423.517
20) Methyl Iodide	(1)	3.723	142	3131825	286.756
22) Carbon Disulfide	(1)	3.833	76	5998383	287.064
23) Allyl Chloride	(1)	3.972	41	3513261	269.244
24) Methyl Acetate	(1)	3.985	43	2494037	267.852
25) Methylene Chloride	(1)	4.149	84	2169224	275.677
26)*t-Butyl Alcohol-d10	(4)	4.179	65	373652	250.000
27) t-Butyl Alcohol	(4)	4.295	59	2337187	1298.663
28) Acrylonitrile	(1)	4.502	53	1409134	303.832
29) trans-1,2-Dichloroethene	(1)	4.556	96	2060841	289.570
30) Methyl Tertiary Butyl Ether	(1)	4.556	73	7060972	282.663
34) n-Hexane	(1)	4.982	57	2777330	291.513
36) 1,1-Dichloroethane	(1)	5.195	63 45	3956428	291.341
37) di-Isopropyl Ether	(1)	5.311	45 96	7131156 4424293	280.982 579.930
33) 1,2-Dichloroethene (total)	(1)	5.335	53	3093611	284.118
38) 2-Chloro-1,3-Butadiene	(1) (1)	5.846	59	6855853	276.167
<pre>39) Ethyl t-Butyl Ether 40) cis-1,2-Dichloroethene</pre>	(1)	6.047	96	2363452	290.361
42) 2-Butanone	(1)	6.059	43	3767517	626.280
44) 2,2-Dichloropropane	(1)	6.065	77	2862783	291.557
45) Propionitrile	(4)	6.138	54	2904842	1527.037
47) Methacrylonitrile	(1)	6.363	67	3593842	695.569
48) Bromochloromethane	(1)	6.381	128	1187308	284.311
49) Tetrahydrofuran	(4)	6.448	71	1073648	612.175
50) Chloroform	(1)	6.503	83	3614425	282.160
51) \$Dibromofluoromethane	(1)	6.728	113	341587	50.308
52) \$Dibromofluoromethane (mz111)	(1)	6.728	111	349117	50.337

^{* =} Compound is an internal standard.

page 1 of 4

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 15:01 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

And the second of the second o

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
53) 1,1,1-Trichloroethane	(1)	6.771	97	3023281	286.879
54) Cyclohexane (mz 84)	(1)	6.856	84	3182444	289.878
55) Cyclohexane (mz 69)	(1)	6.856	69	1169211	283.211
56) Cyclohexane (M2 05)	(1)	6.856	56	3771767	286.060
58) 1,1-Dichloropropene	(1)	6.990	75	2942575	271.215
59) Carbon Tetrachloride	(1)	7.002	117	2456336	318.033
61) Isobutyl Alcohol	(4)	7.154	41	1995532	3490.370
63) \$1,2-Dichloroethane-d4 (mz65)		7.184	65	392737	49.230
64) \$1,2-Dichloroethane-d4 (mz104		7.191	104	58188	50.459
62) \$1,2-Dichloroethane-d4	(1)	7.191	102	90770	49.982
65) Benzene	(1)	7.270	78	8810688	282.380
67) 1,2-Dichloroethane (mz 98)	(1)	7.288	98	289426M	283.787
66) 1,2-Dichloroethane	(1)	7.288	62	2829692	286.313
68) t-Amyl Methyl Ether	(1)	7.434	73	6981614	291.303
69) n-Heptane	(1)	7.647	43	2486286	274.322
70) *Fluorobenzene	(1)	7.653	96	1518971	50.000
71) n-Butanol	(4)	8.048	56	3540671	7449.647
74) Trichloroethene	(1)	8.134	95	2239373	290.129
75) Methylcyclohexane	(1)	8.395	83	3660688	285.641
76) 1,2-Dichloropropane	(1)	8.419	63	2502653	290.003
78) Dibromomethane	(1)	8.572	93	1555593	297.800
77) Methyl Methacrylate	(1)	8.590	69 [.]	2488601	285.574
80) 1,4-Dioxane	(4)	8.602	88	481191	3464.165
81) Bromodichloromethane	(1)	8.784	83	2788217	320.372
82) 2-Nitropropane	(4)	9.070	41	1749086	700.463
83) 2-Chloroethyl Vinyl Ether	(1)	9.180	63 75	1969983A	334.774 305.874
84) cis-1,3-Dichloropropene	(1)	9.356	43	3847772 7545992A	582.366
85) 4-Methyl-2-Pentanone	(1) (2)	9.539 9.679	98	1492903	49.988
86) \$Toluene-d8	(2)	9.679	100	1016090	50.872
87)\$Toluene-d8(mz100) 88) Toluene	(2)	9.752	92	5669645	280.288
89) trans-1,3-Dichloropropene	(2)	9.989	75	3677577	306.941
90) Ethyl Methacrylate	(2)	10.086	69	4170870	284.715
91) 1,1,2-Trichloroethane	(2)	10.178	97	2271471	284.193
93) Tetrachloroethene	(2)	10.336	166	2239329	290.121
94) 1,3-Dichloropropane	(2)	10.348	76	3977476	286.445
95) 2-Hexanone	(2)	10.433	43	5830065MA	605.535
96) Dibromochloromethane	(2)	10.579	129	2330263	299.165
•					

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06. Target 3,5 esignature user ID: sag03174

page 2 of 4

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 15:01 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
97) 1,2-Dibromoethane 98)*Chlorobenzene-d5 100) Chlorobenzene 101) 1,1,1,2-Tetrachloroethane 102) Ethylbenzene 103) m+p-Xylene 104) Xylene (Total) 106) o-Xylene 109) Styrene 110) Bromoform 111) Isopropylbenzene 112) Cyclohexanone 114)\$4-Bromofluorobenzene 115)\$4-Bromofluorobenzene 117) Bromobenzene 118) trans-1,4-Dichloro-2-Butene 119) 1,2,3-Trichloropropane 120) n-Propylbenzene 121) 2-Chlorotoluene 122) 1,3,5-Trimethylbenzene 123) 4-Chlorotoluene 124) tert-Butylbenzene 125) Pentachloroethane 126) 1,2,4-Trimethylbenzene 127) sec-Butylbenzene	Ref. (2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	10.689 11.127 11.151 11.218 11.248 11.352 11.686 11.705 11.857 11.990 12.070 12.118 12.124 12.216 12.246 12.258 12.313 12.392 12.447 12.696 12.720 12.733 12.860	107 117 112 131 106 106 106 104 173 105 55 95 174 83 156 53 110 91 126 105 126 134 167 105	2492676 1067454 6300296 2107787 10065312A 7597194 11353782 3756588 6607606 1777094 9362950 2050570 554475 432440 3665857 2576816 2275385MA 977719 10683164A 2465880A 8099300 2594402 1815731 1598045 8267541 9247884	Amount
129) 1,3-Dichlorobenzene 128) p-Isopropyltoluene 130)*1,4-Dichlorobenzene-d4 131) 1,4-Dichlorobenzene 132) 1,2,3-Trimethylbenzene 133) Benzyl Chloride 134) 1,3-Diethylbenzene 135) 1,4-Diethylbenzene 136) n-Butylbenzene	(3) (3) (3) (3) (3) (3) (3) (3)	12.952 12.958 13.000 13.019 13.043 13.110 13.171 13.231 13.250	146 119 152 146 105 91 105 105	4389929 7777909A 580637 5014115 8715623 7435676 5182484A 4856514 4043432A	278.867 253.913 50.000 251.639 262.332 298.813 273.791 268.649 250.267
137) 1,2-Dichlorobenzene 138) 1,2-Diethylbenzene 139) 1,2-Dibromo-3-Chloropropane	(3) (3) (3)	13.292 13.323 13.828	146 105 75	4846579 5252995 908834A	268.256 300.079 297.856

M = Compound was manually integrated.

No. 1 124. Ch	3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contractional registrations.	111 11 113 11 11 11 1 1 1 1 1 1 1 1 1 1	man none all the first transfer of the second and t
Digitall		~ · · · · · · · · · · · · · · · · · · ·		and a which committees the visit facility.
	v · Sidiled i	U.V	A CONTRACTOR OF THE PROPERTY O	and the second that the second th
on 08/16	100000	5.A	: : ": : : : : : : : : : : : : : : : :	hand commended to be the large to a
\cdots \sim	ひゃとけい ジェーコはつこと	261 - 1136 - 114		1217 1 1 1 1 1 4 h . h . h . h . h . h . h . h . h . h
CII. U.O. A. E.O.	7 Z U 1 Z U C C Z			the property of the contract o
				The Continue to the continue of the continue o
m - Line Line A.				g03174
TATE OF THE STATE	::::::::::::::::::::::::::::::::::::::		2 (Fritania 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	(T 1:3
TALALOCC. S.		- u - u - u - u - u		4-0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	, - ; - , - ; ; - : ; -			T. 1.11

A = User selected an alternate hit.

^{* =} Compound is an internal standard. \$ = Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d

Instrument ID: HP07159.i

Injection date and time: 15-AUG-2012 15:01

Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300

Lab Sample ID: VSTD300

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
140) 1,2,4-Trichlorobenzene	(3)	14.387	180	3156671	255.314
141) Hexachlorobutadiene	(3)	14.485	225	1140499	265.649
142) Naphthalene	(3)	14.558	128	11210426	242.611
144) 1,2,3-Trichlorobenzene	(3)	14.716	180	3090898	249.085
145) 2-Methylnaphthalene	(3)	15.324	142	6258292	230.993

page 4 of 4

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 67

Compound Name : 1,2-Dichloroethane (mz 98)

Scan Number : 937
Retention Time (minutes): 7.288
Quant Ion : 98.00
Area (flag) : 289426M
On-Column Amount (ng) : 283.7873

Integration start scan : 924 Integration stop scan: 957 Y at integration start : 0 Y at integration end: 907

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/16/2012 at 20:06. Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval: Jaw on 685 8/17/12

The second of th

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

mental manager

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 67

Compound Name : 1,2-Dichloroethane (mz 98)

Scan Number : 995
Retention Time (minutes): 7.641
Quant Ion : 98.00
Area : 4541
On-column Amount (ng) : 5.6830

Integration start scan : 989 Integration stop scan: 1023 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06.
Target 3.5 esignature user ID: sag03174

The state of the control of the state of the

Manually Integrated Quant Ion 1.2

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 83

Compound Name 2-Chloroethyl Vinyl Ether

Scan Number 1248 Retention Time (minutes): 9.180 Quant Ion 63.00 Area (flag) 1969983A : 334.7739 On-Column Amount (ng)

: 1240 Integration start scan Integration stop scan: 1271 Y at integration start Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/16/2012 at 20:06. Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval:

**** 2.32 (

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Calibration date and time: 15-AUG-2012 15:21

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 83

Compound Name : 2-Chloroethyl Vinyl Ether

Scan Number : 1277
Retention Time (minutes): 9.356
Quant Ion : 63.00
Area : 33126
On-column Amount (ng) : 7.3293

Integration start scan : 1271 Integration stop scan: 1299
Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06. Target 3.5 esignature user ID. sag03174

Manually Integrated Quant Ion HP MS ng15108.d, Ion 43.00 4.5 4.2 3.9-539 3.6 3.3-3.0 2.4 2.1-1.5-1.2 0.9 0.6 0.3 9.40 9.42 9.44 9.46 9.48 9.50 9.52 9.54 9.56 9.58 9.60 9.62 9.64 9.66 9.68 9.70 9.72 9.74 9.76 9.78 9.80 Time (Min)

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 85

Compound Name : 4-Methyl-2-Pentanone

Scan Number : 1307
Retention Time (minutes): 9.539
Quant Ion : 43.00
Area (flag) : 7545992A
On-Column Amount (ng) : 582.3658

Integration start scan : 1296 Integration stop scan: 1335 Y at integration start : 1803 Y at integration end: 1803

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/16/2012 at 20:06

Target 3.5 esignature user ID: sag03174

COMPANY OF THE STATE OF THE STA

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 85

Compound Name : 4-Methyl-2-Pentanone

Scan Number : 1341
Retention Time (minutes): 9.746
Quant Ion : 43.00
Area : 113020
On-column Amount (ng) : 10.7449

Integration start scan : 1335 Integration stop scan: 1359 Y at integration start : 1803 Y at integration end: 1803

Manually Integrated Quant Ion HP MS ng15108.d, Ion 43.00 3.9 3,6-3.3 3.0-2,7-2.4 2.1-1.8 1.5 1.2-0.9-0.6 0.3 10,28 10,30 10,32 10,34 10,36 10,38 10,40 10,42 10,44 10,46 10,48 10,50 10,52 10,54 10,55 10,58 10,60 10,62 10,64 10,66 Time (Min)

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Lab Sample ID: VSTD300 Sample Name: VSTD300

Compound Number : 95

Compound Name : 2-Hexanone

: 1454 Scan Number Retention Time (minutes): 10.433 : 43.00 Quant Ion Area (flag) : 5830065MA : 605.5349 On-Column Amount (ng)

: 1442 Integration stop scan: 1477 Integration start scan Y at integration end: 1513 Y at integration start : 1513

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: +on 08/16/2012 at 20:06. Target 3.5 esignature user ID:

GC/MS audit/management approval:

120

130

150

160

160

210

200

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 15:01 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

80

90

100

110

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 95

Compound Name : 2-Hexanone

Scan Number : 1441
Retention Time (minutes): 10.354
Quant Ion : 43.00
Area : 772
On-column Amount (ng) : 0.1122

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06. Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion

HP MS ng15108.d, Ion 91.00

8.0:
7.0:
6.0:
5.0:
0 4.0:
0 3.0:
2.0:
1.0:

22 11.24 Time (Min)

11.22

11.26 11.28

11.30

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

11,18

Sublist used: 8260WI

11.32 11.34 11.36 11.38

Calibration date and time: 15-AUG-2012 15:21

11,16

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

11.20

Compound Number : 102

11.12

11.14

Compound Name : Ethylbenzene

Scan Number : 1588
Retention Time (minutes): 11.248
Quant Ion : 91.00
Area (flag) : 10065312A
On-Column Amount (ng) : 271.8636

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/16/2012 at 20:06 — Target: 3.5 esignature user ID: saq0317.4

Sample Spectrum (Background Subtracted) HP ChemStation MS ng15i08.d, Scan 1604: 11.346 min. (SUB) 7.2-6.9 6.6 6.3 6.0 5.7-5.4 5.1-4.8 106 3.9 3.6 3.3-3.0 2.7-2.4 2.1-1.8 1.5 1.2-0.9-0.6 **2**07 /133 0.3 100 170 190 200 120 110

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 102

Compound Name : Ethylbenzene

Scan Number : 1604
Retention Time (minutes): 11.346
Quant Ion : 91.00
Area : 14213208
On-column Amount (ng) : 391.0101

Digitally signed by Sarah A. Guill on 08/16/2012 at 20.06. Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion HP MS ng15i0B.d, Ion 53.00 2.0-1.8 1.6 1.4 1.2-1.0 0.8 0.6-0.4 0.2 12.24 Time 12,30 12.36 12,38 12.14 12.16 12.22 12.26 12,28 12.32 12.34 12.18 12.20

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Lab Sample ID: VSTD300 Sample Name: VSTD300

Compound Number : 118

: trans-1,4-Dichloro-2-Butene Compound Name

Scan Number : 1754 Retention Time (minutes): 12.258 Quant Ion : 53.00 Area (flag) 2275385MA On-Column Amount (ng) : 688.2153

Integration start scan : 1746 Integration stop scan: 1760 Y at integration start 0 Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/16/2012 at 20:06: Target 3:5 esignature user TD: sag03174

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 118

Compound Name : trans-1, 4-Dichloro-2-Butene

Scan Number : 1763
Retention Time (minutes): 12.313
Quant Ion : 53.00
Area : 80367

On-column Amount (ng) : 32.2049Integration start scan : 1760 Integration stop scan: 1769Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06 Target 3.5 esignature user ID. sag03174

Manually Integrated Quant Ion HP MS ng15108.d, Ion 91.00 1.0-0.9 313 0.8 12 0.7 0.6 0.5 0.4 0.3 0.2-0.1-12.44 12,28 12.42 12,20 12,22 12,26 12.30 12.32 12.36 12,38 12,40 Time (Min)

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 120

Compound Name : n-Propylbenzene

Scan Number : 1763
Retention Time (minutes): 12.313
Quant Ion : 91.00
Area (flag) : 10683164A
On-Column Amount (ng) : 259.4078

Integration start scan : 1757 Integration stop scan: 1769 Y at integration end: 987

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/16/2012 at 20:06 Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval: [auffor 60 8/14/12]

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 120

Compound Name : n-Propylbenzene

Scan Number : 1776

Retention Time (minutes): 12.392
Quant Ion : 91.00
Area : 6990878

On-column Amount (ng) : 198.4353
Integration start scan : 1769

Integration start scan : 1769 Integration stop scan: 1780 Y at integration start : 987 Y at integration end: 987

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06.
Target 3.5 esignature user ID: sag03174

Consideration of the Constitution of the Const

Manually Integrated Quant Ion HP MS ng15108.d, Ion 126,00 2,2 2.0 1.B-1.6 1,2 1.0 0.8 0.6 0.4 0.2 12.28 12.38 12.40 12.42 12,44 12.26 12,30 12.32 12.34 12.36

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 121

Compound Name : 2-Chlorotoluene

Scan Number : 1776
Retention Time (minutes): 12.392
Quant Ion : 126.00
Area (flag) : 2465880A
On-Column Amount (ng) : 281.4862

Integration start scan : 1768 Integration stop scan: 1783 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill
Analyst responsible for change: on 08/16/2012 at 20:06.

Target 3:5 esignature user ID: sag03174

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Lab Sample ID: VSTD300 Sample Name: VSTD300

Compound Number : 121

: 2-Chlorotoluene Compound Name

: 1789 Scan Number Retention Time (minutes): 12.471 : 126.00 Quant Ion 2594402 Area 321.4487

On-column Amount (ng) : Integration stop scan: 1819 Integration start scan : 1783 Y at integration end: Y at integration start

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06. Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 128

Compound Name : p-Isopropyltoluene

Scan Number : 1869 Retention Time (minutes): 12.958 Quant Ion : 119.00 Area (flag) : 7777909A On-Column Amount (ng) : 253.9127

Integration start scan : 1858 Integration stop scan: 1877 Y at integration start : 303 Y at integration end: 303

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/16/2012 at 20:06 Target 3.5 estignature user ID: sag03174

GC/MS audit/management approval: Jaule on 185 8/17/

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Calibration date and time: 15-AUG-2012 15:21

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 128

Compound Name : p-Isopropyltoluene

Scan Number : 1883
Retention Time (minutes): 13.043
Quant Ion : 119.00
Area : 968540
On-column Amount (ng) : 40.3091

Integration start scan : 1877 Integration stop scan: 1897 Y at integration start : 303 Y at integration end: 303

Digitally-signed by Sarah A. Guill on 08/16/2012 at 20:06. Target 3.5 esignature user 10 sag03174

Manually Integrated Quant Ion HP MS ng15108.d, Ion 105.00 5.6 5,2 4.8 4.4 Ę. 4.0 3.6 3.2 2,8 2.4 2.0 1.6 1.2 0.8 0.4 13.06 13.08 13.10 13, 12 13.16 13.18 13.20 13,22

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 134

Compound Name : 1,3-Diethylbenzene

Scan Number : 1904
Retention Time (minutes): 13.171
Quant Ion : 105.00
Area (flag) : 5182484A
On-Column Amount (ng) : 273.7914

Integration start scan : 1897 Integration stop scan: 1908 Y at integration start : 887 Y at integration end: 887

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/16/2012 at 20:06:11

Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval: Jaufforn 665 8/17/12

and the second s

Integration of Quant Original Ion

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

: 134 Compound Number

Compound Name : 1,3-Diethylbenzene

Scan Number : 1914 Retention Time (minutes): 13.231 : 105.00 Quant Ion Area : 4856514 : 287.1370 On-column Amount (ng)

Integration start scan : 1908 Integration stop scan: 1922 Y at integration start 887 Y at integration end:

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06. Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion HP MS ng15108,d, Ion 92,00 3.9 3.6-3.3-3.0 2.7 2.4 2,1-1.8 1.5 1.2 0.9-0.6 0.3-13.26 13.28 13,30 13.14 13.16 13.18 13,24 13.32 13.38 13.20 13.22 13.34 13.36

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 136

Compound Name : n-Butylbenzene

Scan Number : 1917
Retention Time (minutes): 13.250
Quant Ion : 92.00
Area (flag) : 4043432A
On-Column Amount (ng) : 250.2665

Integration start scan : 1908 Integration stop scan: 1924 Y at integration start : 281 Y at integration end: 281

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill.

Analyst responsible for change: on 08/16/2012 at 20:06.

Target 3.5 esignature user ID: sag03174.

GC/MS audit/management approval: [auditom: 187 8/17/12

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i
Analyst ID: ads01731

137

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 136

0.4

0.2

Compound Name : n-Butylbenzene

Scan Number : 1929
Retention Time (minutes): 13.323
Quant Ion : 92.00
Area : 212642
On-column Amount (ng) : 16.9661

Integration start scan : 1924 Integration stop scan: 1968 Y at integration end: 281

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06.
Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion

HP MS ng15108.d. Ion 75.00

8.07.06.05.02.01.00.013.68 13.70 13.72 13.74 13.76 13.78 13.80 13.82 13.84 13.86 13.89 13.90 13.92 13.94 13.95 13.98 14.00 14.02

Time (Min)

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 16-Aug-2012 19:18 sag03174

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 139

Compound Name : 1,2-Dibromo-3-Chloropropane

Scan Number : 2012
Retention Time (minutes): 13.828
Quant Ion : 75.00
Area (flag) : 908834A
On-Column Amount (ng) : 297.8562

Integration start scan : 2000 Integration stop scan: 2028 Y at integration start : 271 Y at integration end: 271

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/16/2012 at 20:06 Target 3:5 esignature user ID: sag03174

GC/MS audit/management approval: [audit/management approval]

Data File: /chem/HP07159.i/12aug15a.b/ng15i08.d Injection date and time: 15-AUG-2012 15:01

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:21

Date, time and analyst ID of latest file update: 15-Aug-2012 15:21 Automation

Sample Name: VSTD300 Lab Sample ID: VSTD300

Compound Number : 139

Compound Name : 1,2-Dibromo-3-Chloropropane

Scan Number : 2036
Retention Time (minutes): 13.974
Quant Ion : 75.00
Area : 505652
On-column Amount (ng) : 193.7730

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:06. Target 3.5 esignature user ID: sag03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 15:24 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Sample Name: VSTD100 Lab Sample ID: VSTD100

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID: sag03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 15:24 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:45
Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Sample Name: VSTD100 Lab Sample ID: VSTD100

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3:5 esignature user ID: sag03174

page 2 of 2

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Instrument ID: HP07159.i Analyst ID: ads01731 Injection date and time: 15-AUG-2012 15:24

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 15:45
Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Lab Sample ID: VSTD100 Sample Name: VSTD100

	Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	Dichlorodifluoromethane	(1)	1.919	85	1006146	101.912
	Chloromethane	(1)	2.071	50	869582	103.017
- •	Vinyl Chloride	(1)	2.205	62	854601	99.811
•	Bromomethane	(1)	2.534	94	485289	94.311
•	Chloroethane	(1)	2.625	64	417377	95.527
	Trichlorofluoromethane	(1)	2.947	101	996284	102.064
	Ethanol	(4)	3.087	45	394811	2407.642
	Acrolein	(4)	3.367	56	2698385	1045.653
	1,1-Dichloroethene	(1)	3.525	96	618181	106.768
•	Freon 113	(1)	3.531	101	613604	105.150
19)	Acetone	(1)	3.556	58	270236	224.759
	Methyl Iodide	(1)	3.720	142	1113723	108.789
21)	2-Propanol	(4)	3.720	45	581565	543.445
	Carbon Disulfide	(1)	3.829	76	2119238	109.251
	Allyl Chloride	(1)	3.975	41	1194799	98.248
	Methyl Acetate	(1)	3.988	43	898791	103.067
	Methylene Chloride	(1)	4.152	84	767529	103.252
26)	*t-Butyl Alcohol-d10	(4)	4.170	65	403539	250.000
	t-Butyl Alcohol	(4)	4.292	59	870050M	480.264
28)	Acrylonitrile	(1)	4.517	53	497315	113.199
30).	Methyl Tertiary Butyl Ether	(1)	4.553	73	2500033	105.630
29)	trans-1,2-Dichloroethene	(1)	4.565	96	731309	109.600
	n-Hexane	(1)	4.985	57	965199	108.693
36)	1,1-Dichloroethane	(1)	5.192	63	1384500	108.611
37)	di-Isopropyl Ether	(1)	5.314	45	2544069	106.102
33)	1,2-Dichloroethene (total)	(1)		96	1554627	217.683
	2-Chloro-1,3-Butadiene	(1)	5.338	53	1085019	107.776
	Ethyl t-Butyl Ether	(1)	5.855	59	2419670	103.305
	cis-1,2-Dichloroethene	(1)	6.050	96	823318	108.083
	2-Butanone	(1)	6.068	43	1321855	232.287
	2,2-Dichloropropane	(1)	6.068	77	1005191	109.158
	Propionitrile	(4)	6.153	54	1029557	525.708
	Methacrylonitrile	(1)	6.366	67	1272236	266.114
	Bromochloromethane	(1)	6.384	128	403681	103.679
49)	Tetrahydrofuran	(4)	6.451	71	384697	213.766
	Chloroform	(1)	6.506	83	1253982	104.036
	\$Dibromofluoromethane	(1)	6.731	113	339359	49.982
52)	\$Dibromofluoromethane(mz111)	(1)	6.731	111	346386	50.117

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3:5 esignature user ID: sag03174

page 1 of 4

On-Column

M = Compound was manually integrated.
* = Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Company of the following of the control of the cont

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 15:24 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	=====	=====	=====	========	
53) 1,1,1-Trichloroethane	(1)	6.768	97	1042810	105.494
54) Cyclohexane (mz 84)	(1)	6.853	84	1084058	106.348
55) Cyclohexane (mz 69)	(1)	6.853	69	398741	103.456
56) Cyclohexane	(1)	6.853	56	1301050	106.175
58) 1,1-Dichloropropene	(1)	6.993	75	1029693	100.956
59) Carbon Tetrachloride	(1)	6.999	117	832160	115.081
61) Isobutyl Alcohol	(4)	7.157	41	728562	1299.737
63) \$1,2-Dichloroethane-d4 (mz65)	(1)	7.187	65	386937M	48.576
64) \$1,2-Dichloroethane-d4 (mz104) (1)	7.187	104	58071	50.372
62) \$1, 2-Dichloroethane-d4	(1)	7.194	102	87687	48.378
65) Benzene	(1)	7.273	78	3109146	106.341
67) 1,2-Dichloroethane (mz 98)	(1)	7.291	98	103855	108.003
66) 1,2-Dichloroethane	(1)	7.291	62	988310	106.129
68) t-Amyl Methyl Ether	(1)	7.437	73	2415898	106.685
69) n-Heptane	(1)	7.650	43	879907	105.216
70) *Fluorobenzene	(1)	7.656	96	1515397	50.000
71) n-Butanol	(4)	8.057	56	1335068	3022.798
74) Trichloroethene	(1)	8.136	95	775033	107.238
75) Methylcyclohexane	(1)	8.398	83	1180428	99.107
76) 1,2-Dichloropropane	(1)	8.422	63	875000	107.583
78) Dibromomethane	(1)	8.581	93	536273	108.943
77) Methyl Methacrylate	(1)	8.599	69	859242	106.846
80) 1,4-Dioxane	(4)	8.611	88	202087	1445.117
81) Bromodichloromethane	(1)	8.787	83	941636	114.759
82) 2-Nitropropane	(4)	9.073	41	583461	226.829
83) 2-Chloroethyl Vinyl Ether	(1)	9.189	63	648164	116.028
84) cis-1,3-Dichloropropene	(1)	9.359	75	1309682	110.504
85) 4-Methyl-2-Pentanone	(1)	9.542	43	2770614	221.733
86) \$Toluene-d8	(2)	9.676	98	1487254	50.524
87) \$Toluene-d8 (mz100)	(2)	9.676	100	1000313	50.881
88) Toluene	(2)	9.755	92	2007308	107.350
89) trans-1,3-Dichloropropene	(2)	9.992	75	1244706	111.903
90) Ethyl Methacrylate	(2)	10.095	69	1435963	107.007
91) 1,1,2-Trichloroethane	(2)	10.181	97	773889	104.658
93) Tetrachloroethene	(2)	10.339	166	785348	110.760
94) 1,3-Dichloropropane	(2)	10.351	76	1391222	108.113
95) 2-Hexanone	(2)	10.442	43	2150372	258.613
96) Dibromochloromethane	(2)	10.576	129	772901	122.673

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user TD: sag03174 page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 15:24 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
07\ 1 2 Pibromonthone		10.691	107	856214	111.372
97) 1,2-Dibromoethane	(2)				
98) *Chlorobenzene-d5	(2)	11.130	117	1045923	50.000
100) Chlorobenzene	(2)	11.154	112	2233534	108.569
101) 1,1,1,2-Tetrachloroethane	(2)	11.221	131	726353	113.755
102) Ethylbenzene	(2)	11.245	91	3679221	102.401
103) m+p-Xylene	(2)	11.349	106	2939365	215.101
104) Xylene (Total)	(2)	11 (00	106	4365410	321.429
106) o-Xylene	(2)	11.689	106	1426045	106.328
109) Styrene	(2)	11.701	104	2453359	109.368
110) Bromoform	(2)	11.860	173	571042	121.079
111) Isopropylbenzene	(2)	11.993	105	3542136	107.503
112) Cyclohexanone	(4)	12.072	55	801145	1380.584
115) \$4-Bromofluorobenzene (mz174)		12.121	174	423123	50.707
114) \$4-Bromofluorobenzene	(2)	12.121	95	537859	50.687
116) 1,1,2,2-Tetrachloroethane	(3)	12.218	83	1314983	105.274
117) Bromobenzene	(3)	12.249	156	923871	106.481
119) 1,2,3-Trichloropropane	(3)	12.255	110	361163	104.957
118) trans-1,4-Dichloro-2-Butene		12.261	53	864100	286.000
120) n-Propylbenzene	(3)	12.316	91	4132273	115.234
121) 2-Chlorotoluene	(3)	12.389	126	864481	105.616
122) 1,3,5-Trimethylbenzene	(3)	12.450	105	3029888	107.625
123) 4-Chlorotoluene	(3)	12.474	126	933855	105.108
124) tert-Butylbenzene	(3)	12.699	134	667436	108.647
125) Pentachloroethane	(3)	12.717	167	545357	110.398
126) 1,2,4-Trimethylbenzene	(3)	12.736	105	3139033	109.811
127) sec-Butylbenzene	(3)	12.857	105	3623047	109.083
129) 1,3-Dichlorobenzene	(3)	12.955	146	1680978	114.738
128) p-Isopropyltoluene	(3)	12.961	119	3163844	111.775
130) *1, 4-Dichlorobenzene-d4	(3)	13.003	152	584303	50.000
131) 1,4-Dichlorobenzene	(3)	13.015	146	1837929	98.371
132) 1,2,3-Trimethylbenzene	(3)	13.046	105	3196944	103.614
133) Benzyl Chloride	(3)	13.113	91	2544544M	127.810
134) 1,3-Diethylbenzene	(3)	13.167	105	1886384	108.542
135) 1,4-Diethylbenzene	(3)	13.234	105	1797738	106.927
136) n-Butylbenzene	(3)	13.253	92	1543071M	103.495
137) 1,2-Dichlorobenzene	(3)	13.295	146	1745227	103.158
138) 1,2-Diethylbenzene	(3)	13.320	105	1902470	91.850
139) 1,2-Dibromo-3-Chloropropane	(3)	13.831	75	316047	110.178

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user TD: sag03174 page 3 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d

Instrument ID: HP07159.i Analyst ID: ads01731

Injection date and time: 15-AUG-2012 15:24

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 15:45
Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Sample Name: VSTD100

Lab Sample ID: VSTD100

Compounds	I.S. Ref.	RT ======	QIon	Area	On-Column Amount (ng)
140) 1,2,4-Trichlorobenzene 141) Hexachlorobutadiene 142) Naphthalene 144) 1,2,3-Trichlorobenzene 145) 2-Methylnaphthalene	(3) (3) (3) (3)	14.390 14.482 14.561 14.719 15.339	180 225 128 180 142	1238198 446902 4570908 1228655 2596249	106.930 111.980 103.533 105.308 99.610

page 4 of 4

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Injection date and time: 15-AUG-2012 15:24

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 27

Compound Name : t-Butyl Alcohol

Scan Number : 444
Retention Time (minutes): 4.292
Quant Ion : 59.00
Area (flag) : 870050M
On-Column Amount (ng) : 480.2643

Reason for manual integration: improper integration

Analyst responsible for change: On 08/15/2012 at 19:07. Target 3:5 esignature user 10: sag03174

GC/MS audit/management approval: Jaul Monn 685 8/16/12

105

110

120

130

140

60

80

90

100

2.8 2.4-2.0 1.6 1,2 0,8

0.4 0.0

40

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Injection date and time: 15-AUG-2012 15:24

Instrument ID: HP07159.i Analyst ID: ads01731

200

160

170

180

190

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 15:45 Automation

Lab Sample ID: VSTD100 Sample Name: VSTD100

: 27 Compound Number

: t-Butyl Alcohol Compound Name

Scan Number : 444 Retention Time (minutes): 4.292 59.00 Quant Ion 942725 Area 514.6971 On-column Amount (ng)

Integration stop scan: : 426 Integration start scan Y at integration end: Y at integration start

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Injection date and time: 15-AUG-2012 15:24

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Lab Sample ID: VSTD100 Sample Name: VSTD100

Compound Number 63

1,2-Dichloroethane-d4(mz65) Compound Name

Scan Number 920 7.187 Retention Time (minutes): Quant Ion 65.00 386937M Area (flag) 48.5758 On-Column Amount (ng)

Integration start scan 930 911 Integration stop scan: Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A Guill Analyst responsible for change: on 08/15/2012 at 19:07

Target 3.5 esignature user ID:

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Injection date and time: 15-AUG-2012 15:24

Instrument ID: HP07159.i Analyst ID: ads01731

Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 15:45 Automation

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 63

Compound Name 1,2-Dichloroethane-d4(mz65)

Scan Number 920 Retention Time (minutes): 7.187 65.00 Quant Ion 443271 Area 54.6143 On-column Amount (ng)

Integration stop scan: 911 Integration start scan Y at integration end: Y at integration start

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion HP MS ng15109.d, Ion 91.00 2.2-2.0 1.B-1.6 1.4-1.2 1.0 0.8 0,6 0.4 0.2 13.04 13.14 13,12 13.18 13.08 13.10 13.00

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Injection date and time: 15-AUG-2012 15:24

Instrument ID: HP07159.i
Analyst ID: ads01731

Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 133

Compound Name : Benzyl Chloride

Scan Number : 1894
Retention Time (minutes): 13.113
Quant Ion : 91.00
Area (flag) : 2544544M
On-Column Amount (ng) : 127.8096

Integration start scan : 1887 Integration stop scan: 1899
Y at integration start : 1734 Y at integration end: 1734

Reason for manual integration: improper integration

Analyst responsible for change: Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19:07 Farget 3.5 esignature user ID sag03174

GC/MS audit/management approval:_

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Injection date and time: 15-AUG-2012 15:24

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 15:45 Automation

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 133

Compound Name : Benzyl Chloride

Scan Number : 1894
Retention Time (minutes): 13.113
Quant Ion : 91.00
Area : 3063097
On-column Amount (ng) : 147.4494

Integration start scan : 1887 Integration stop scan: 1908 Y at integration start : 1734 Y at integration end: 1734

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07.

Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Injection date and time: 15-AUG-2012 15:24

Instrument ID: HP07159.i Analyst ID: ads01731

Sublist used: 8260WI Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 16:01 sag03174

Lab Sample ID: VSTD100 Sample Name: VSTD100

: 136 Compound Number

: n-Butylbenzene Compound Name

: 1917 Scan Number Retention Time (minutes): 13.253 : 92.00 Quant Ion : 1543071M Area (flag) : 103.4951 On-Column Amount (ng)

Integration start scan : 1908 Integration stop scan: 1924 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19.07

Target 3.5 esignature user ID: säg03174

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i09.d Injection date and time: 15-AUG-2012 15:24

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 15:45

Date, time and analyst ID of latest file update: 15-Aug-2012 15:45 Automation

Sample Name: VSTD100 Lab Sample ID: VSTD100

Compound Number : 136

Compound Name : n-Butylbenzene

Scan Number : 1917
Retention Time (minutes): 13.253
Quant Ion : 92.00
Area : 1638788
On-column Amount (ng) : 108.4944

Integration start scan : 1908 Integration stop scan: 1938 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3:5 esignature user ID: sag03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Injection date and time: 15-AUG-2012 12:42

Analyst ID: ads01731

Instrument ID: HP07159.i

Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 13:05
Date, time and analyst ID of latest file update: 15-Aug-2012 13:05 ads01731

Lab Sample ID: VSTD050 Sample Name: VSTD050

Digitally signed by Sarah A. Gulll on 08/15/2012 at 19.06 Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 12:42 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 13:05
Date, time and analyst ID of latest file update: 15-Aug-2012 13:05 ads01731

Lab Sample ID: VSTD050 Sample Name: VSTD050

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06 Target 3.5 esignature user ID: sag03174

page 2 of 2

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 12:42 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:05

SERBOLATA CONTRACTOR AND AND A

Date, time and analyst ID of latest file update: 15-Aug-2012 13:05 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
Compounds		====== V1	~		(119 <i>)</i>
1) Dichlorodifluoromethane	(1)	1.922	85	555149	55.621
3) Chloromethane	(1)	2.068	50	446836	54.695
4) Vinyl Chloride	(1)	2.208	62	472957	56.572
5) Bromomethane	(1)	2.537	94	276541	60.376
7) Chloroethane	(1)	2.628	64	236778	59.691
8) Trichlorofluoromethane	(1)	2.950	101	545872	55.623
12) Ethanol	(4)	3.102	45	217191	1296.508
13) Acrolein	(4)	3.376	56	1380777	532.101
16) 1,1-Dichloroethene	(1)	3.534	96	322138	54.464
18) Freon 113	(1)	3.540	101	329186	55.354
19) Acetone	(1)	3.571	58	138895	106.481
20) Methyl Iodide	(1)	3.735	142	579161	54.063
21) 2-Propanol	(4)	3.741	45	309778	269.688
22) Carbon Disulfide	(1)	3.838	76	1090030	53.826
23) Allyl Chloride	(1)	3.984	41	636446	87.294
24) Methyl Acetate	(1)	4.009	43	474579	72.228
25) Methylene Chloride	(1)	4.167	84	395786	53.175
26)*t-Butyl Alcohol-d10	(4)	4.179	65	402809	250.000
27) t-Butyl Alcohol	(4)	4.313	59		282.484
28) Acrylonitrile	(1)	4.538	53	250864	51.834
29) trans-1,2-Dichloroethene	(1)	4.575	96	375606	53.757
30) Methyl Tertiary Butyl Ether	(1)	4.575	73	1306589	53.264
34) n-Hexane	(1)	4.994	57	504680	54.244
36) 1,1-Dichloroethane	(1)	5.207	63	710523	53.465
37) di-Isopropyl Ether	(1)	5.323	45	1308443	53.494
33) 1,2-Dichloroethene (total)	(1)	F 252	96	796017	106.762
38) 2-Chloro-1,3-Butadiene	(1)	5.353	53	568467	54.746 53.816
39) Ethyl t-Butyl Ether	(1)	5.864	59	1286247	
40) cis-1,2-Dichloroethene	(1)	6.065	96 77	420411 520082	53.005 53.699
44) 2,2-Dichloropropane	(1)	6.071	43	660920	102.595
42) 2-Butanone	(1)	6.089	54	550845	268.258
45) Propionitrile	(4)	6.168 6.381	54 67	671481	133.531
47) Methacrylonitrile	(1)	6.394	128	209668	65.420
48) Bromochloromethane	(1) (4)	6.460	71	193779	102.980
<pre>49) Tetrahydrofuran 50) Chloroform</pre>	(1)	6.515	83	647144	53.109
52) \$Dibromofluoromethane (mz111)	(1)	6.740	111	341961	49.868
51) \$Dibromofluoromethane	(1)	6.740	113	335253	49.878
21 ADIDIOMOTIMOTOME CHAME	(-)	0.130		22220	23.0.0

M = Compound was manually integrated.

Digitally signed by Sarah A. Ghill on 08/15/2012 at 19:06. Target 3.5 esignature user ID sag03174 page 1 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 12:42 Analyst ID: ads01731

Sublist used: 8260WI Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 13:05
Date, time and analyst ID of latest file update: 15-Aug-2012 13:05 ads01731

Lab Sample ID: VSTD050 Sample Name: VSTD050

	I.S.				On-Column Amount
Compounds	Ref.	RT	QIon	Area == === ===	(ng) ========
53) 1,1,1-Trichloroethane	(1)	6.777	97	533544	53.082
56) Cyclohexane	(1)	6.862	56	680743	53.985
55) Cyclohexane (mz 69)	(1)	6.862	69	212605	54.416
54) Cyclohexane (mz 84)	(1)	6.862	84	569848	53.959
58) 1,1-Dichloropropene	(1)	7.002	75	536479	53.969
59) Carbon Tetrachloride	(1)	7.008	117	424214	52.484
61) Isobutyl Alcohol	(4)	7.172	41	410211	685.377
63) \$1, 2-Dichloroethane-d4 (mz65)	(1)	7.197	65	381662M	49.880
64) \$1,2-Dichloroethane-d4 (mz104) (1)	7.203	104	56727	50.009
62) \$1, 2-Dichloroethane-d4	(1)	7.203	102	88278	50.107
65) Benzene	(1)	7.282	78	1616271	53.655
66) 1,2-Dichloroethane	(1)	7.300	62	516732	52.963
67) 1,2-Dichloroethane (mz 98)	(1)	7.300	98	53394	52.558
68) t-Amyl Methyl Ether	(1)	7.440	73	1251824	52.665
70) *Fluorobenzene	(1)	7.659	96	1495760	50.000
69) n-Heptane	(1)	7.659	43	446226	52.897
71) n-Butanol	(4)	8.073	56	728327	1327.811
74) Trichloroethene	(1)	8.152	95	399756	53.461
75) Methylcyclohexane	(1)	8.401	83	641385	73.416
76) 1,2-Dichloropropane	(1)	8.431	63	450714	52.552
78) Dibromomethane	(1)	8.590	93	273581	52.006
77) Methyl Methacrylate	(1)	8.608	69	451452	52.413
80) 1,4-Dioxane	(4)	8.620	88	102894	633.161
81) Bromodichloromethane	(1)	8.790	83	480763	51.460
82) 2-Nitropropane	(4)	9.082	41	283526	96.963
83) 2-Chloroethyl Vinyl Ether	(1)	9.198	63	301371	48.489
84) cis-1,3-Dichloropropene	(1)	9.368	75	669239	51.972
85) 4-Methyl-2-Pentanone	(1)	9.551	43	1389611	104.294
86) \$Toluene-d8	(2)	9.685	98	1466345	50.423
87) \$Toluene-d8 (mz100)	(2)	9.685	100	985278	50.448
88) Toluene	(2)	9.758	92	1036027	54.709
89) trans-1,3-Dichloropropene	(2)	10.001	75	645700	52.963
90) Ethyl Methacrylate	(2)	10.104	69	774584	54.464
91) 1,1,2-Trichloroethane	(2)	10.184	97	417627	54.658
93) Tetrachloroethene	(2)	10.342	166	403804	54.263
94) 1,3-Dichloropropane	(2)	10.354	76	729560	54.178
95) 2-Hexanone	(2)	10.451	43	1080003	105.812
96) Dibromochloromethane	(2)	10.585	129	395493	51.723

Digitally signed by Sarah A: Guill on 08/15/2012 at 19:06. Target 3.5 esignature user ID: sag03174

page 2 of 4

M = Compound was manually integrated.
* = Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 12:42 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:05

Date, time and analyst ID of latest file update: 15-Aug-2012 13:05 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT =====	QIon	Area	On-Column Amount (ng)
97) 1,2-Dibromoethane	(2)	10.695	107	446365	53.459 50.000
98) *Chlorobenzene-d5	(2)	11.133	117 112	1031045 1163516	54.340
100) Chlorobenzene	(2)	11.157	131	375382	53.017
101) 1,1,1,2-Tetrachloroethane	(2)	11.224 11.254	91	1914376	54.912
102) Ethylbenzene	(2) (2)	11.254	106	1541771	112.081
103) m+p-Xylene		11.332	106	2296549	167.442
104) Xylene (Total)	(2) (2)	11.692	106	754778	55.362
106) o-Xylene	(2)	11.710	104	1297100	54.828
109) Styrene	(2)	11.863	173	287663	50.825
110) Bromoform	(2)	11.996	105	1858832	55.888
111) Isopropylbenzene	(4)	12.075	55	393528	632.243
<pre>112) Cyclohexanone 115)\$4-Bromofluorobenzene(mz174)</pre>	(2)	12.124	174	411659	49.744
114) \$4-Bromofluorobenzene	(2)	12.124	95	519370	49.629
116) 1,1,2,2-Tetrachloroethane	(3)	12.221	83	706438	54.871
117) Bromobenzene	(3)	12.252	156	480453	54.017
118) trans-1,4-Dichloro-2-Butene		12.264	53	454552	137.634
119) 1,2,3-Trichloropropane	(3)	12.264	110	197855	55.828
120) n-Propylbenzene	(3)	12.319	91	2167503	55.850
121) 2-Chlorotoluene	(3)	12.392	126	447889	53.588
122) 1,3,5-Trimethylbenzene	(3)	12.453	105	1558572	54.428
123) 4-Chlorotoluene	(3)	12.483	126	486624	54.068
124) tert-Butylbenzene	(3)	12.696	134	341951	54.389
125) Pentachloroethane	(3)	12.720	167	276284	53.474
126) 1,2,4-Trimethylbenzene	(3)	12.739	105	1628893	54.741
127) sec-Butylbenzene	(3)	12.860	105	1857271	55.191
128) p-Isopropyltoluene	(3)	12.958	119	1632422	56.091
129) 1,3-Dichlorobenzene	(3)	12.958	146	871864	55.040
130) *1,4-Dichlorobenzene-d4	(3)	13.006	152	575556	50.000
131) 1,4-Dichlorobenzene	(3)	13.018	146	983800	54.973
132) 1,2,3-Trimethylbenzene	(3)	13.049	105	1669643	57.646
133) Benzyl Chloride	(3)	13.116	91	1281356M	51.198
134) 1,3-Diethylbenzene	(3)	13.171	105	981467	57.182
135) 1,4-Diethylbenzene	(3)	13.231	105	938104	57.272 56.049
136) n-Butylbenzene	(3)	13.256	92	852260	56.948 54.044
137) 1,2-Dichlorobenzene	(3)	13.298	146	918106	58.214
138) 1,2-Diethylbenzene	(3)	13.329	105 75	1022045 164634	53.007
139) 1,2-Dibromo-3-Chloropropane	(3)	13.840	13	104024	33.007

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06. Target 3:5 esignature user TD: sag03174 page 3 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Injection date and time: 15-AUG-2012 12:42

Instrument ID: HP07159.i

Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:05 Date, time and analyst ID of latest file update: 15-Aug-2012 13:05 ads01731

Sample Name: VSTD050

Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
140) 1,2,4-Trichlorobenzene	(3)	14.399	180	639111	54.847
141) Hexachlorobutadiene	(3)	14.485	225	218683	52.329
142) Naphthalene	(3)	14.570	128	2397300	56.074
144) 1,2,3-Trichlorobenzene	(3)	14.728	180	637330	55.144
145) 2-Methylnaphthalene	(3)	15.348	142	1332375	55.487

page 4 of 4

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Injection date and time: 15-AUG-2012 12:42

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

26W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:05

Date, time and analyst ID of latest file update: 15-Aug-2012 13:05 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 27

Compound Name : t-Butyl Alcohol

Scan Number : 448
Retention Time (minutes): 4.313
Quant Ion : 59.00
Area (flag): 515345M
On-Column Amount (ng): 282.4836

Integration start scan : 427 Integration stop scan: 486 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill.

Analyst responsible for change: on 08/15/2012 at 19:06

Target 3:5 esignature user ID: sag031/4...

GC/MS audit/management approval: | January 685 8/16/12

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Injection date and time: 15-AUG-2012 12:42

Instrument ID: HP07159.i
Analyst ID: ads01731

Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 13:02

Date, time and analyst ID of latest file update: 15-Aug-2012 13:02 Automation

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 27

Compound Name : t-Butyl Alcohol

Scan Number : 448
Retention Time (minutes): 4.313
Quant Ion : 59.00
Area : 546947
On-column Amount (ng) : 293.0376

Integration start scan : 427 Integration stop scan: 504 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Gull on 08/15/2012 at 19:06 Target 3:5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Injection date and time: 15-AUG-2012 12:42

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:05

Date, time and analyst ID of latest file update: 15-Aug-2012 13:05 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 63

Compound Name : 1,2-Dichloroethane-d4(mz65)

Scan Number : 922
Retention Time (minutes): 7.197
Quant Ion : 65.00
Area (flag) : 381662M
On-Column Amount (ng) : 49.8799

Integration start scan : 913 Integration stop scan: 933 Y at integration start : 0 Y at integration end: 33

Reason for manual integration: improper integration

Analyst responsible for change: On 08/15/2012 at 19:06. Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval: Jauliani 685 8/16/12

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Injection date and time: 15-AUG-2012 12:42

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:02

Date, time and analyst ID of latest file update: 15-Aug-2012 13:02 Automation

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 63

Compound Name : 1,2-Dichloroethane-d4(mz65)

Scan Number : 922
Retention Time (minutes): 7.197
Quant Ion : 65.00
Area : 414973
On-column Amount (ng) : 52.7037

Integration start scan : 913 Integration stop scan: 954 Y at integration start : 0 Y at integration end: 69

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Injection date and time: 15-AUG-2012 12:42

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:05

Date, time and analyst ID of latest file update: 15-Aug-2012 13:05 ads01731

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 133

Compound Name : Benzyl Chloride

Scan Number : 1895
Retention Time (minutes): 13.116
Quant Ion : 91.00
Area (flag) : 1281356M
On-Column Amount (ng) : 51.1978

Integration start scan : 1888 Integration stop scan: 1900 Y at integration start : 1302 Y at integration end: 1302

Reason for manual integration: improper integration

GC/MS audit/management approval: [auditon: 65 8/15/12

Data File: /chem/HP07159.i/12aug15a.b/ng15i03.d Injection date and time: 15-AUG-2012 12:42

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:02

Date, time and analyst ID of latest file update: 15-Aug-2012 13:02 Automation

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 133

Compound Name : Benzyl Chloride

Scan Number : 1895
Retention Time (minutes): 13.116
Quant Ion : 91.00
Area : 1569654
On-column Amount (ng) : 58.2441

Integration start scan : 1888 Integration stop scan: 1909
Y at integration start : 1302 Y at integration end: 1302

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06. Target 3.5 esignature user ID: seg03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 13:05 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 13:33
Date, time and analyst ID of latest file update: 15-Aug-2012 13:33 ads01731

Lab Sample ID: VSTD020 Sample Name: VSTD020

Digitally signed by Sarah A. Guill on 08/15/2012 at 19.06. Target 3.5 esignature user ID. sag

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Injection date and time: 15-AUG-2012 13:05

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:33 Date, time and analyst ID of latest file update: 15-Aug-2012 13:33 ads01731

Lab Sample ID: VSTD020 Sample Name: VSTD020

Digitally signed by Sarah Al Guill on 08/15/2012 at 19:06 Target 3.5 esignature user ID: sag031/74

page 2 of 2

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 13:05 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:33

Date, time and analyst ID of latest file update: 15-Aug-2012 13:33 ads01731

Sample Name: VSTD020 Lab Sample ID: VSTD020

	Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
=====	-				========	=======================================
1)	Dichlorodifluoromethane	(1)	1.925	85	216074	21.215
,	Chloromethane	(1)	2.065	50	178068	21.321
4)	Vinyl Chloride	(1)	2.205	62	183481	21.429
	Bromomethane	(1)	2.533	94	112956	23.307
7)	Chloroethane	(1)	2.630	64	96813	23.136
8)	Trichlorofluoromethane	(1)	2.953	101	212022	21.183
12)	Ethanol	(4)	3.105	45	145320	944.020
13)	Acrolein	(4)	3.391	56	503026	205.269
16)	1,1-Dichloroethene	(1)	3.537	96	115061	19.590
18)	Freon 113	(1)	3.543	101	113715	19.337
19)	Acetone	(1)	3.585	58	50489	39.028
20)	Methyl Iodide	(1)	3.731	142	209027	19.635
21)	2-Propanol	(4)	3.762	45	199249	188.777
22)	Carbon Disulfide	(1)	3.841	76	380298	19.074
	Allyl Chloride	(1)	3.993	41	264637	30.159
	Methyl Acetate	(1)	4.023	43	182956	25.362
	Methylene Chloride	(1)	4.169	84	150128	20.131
	*t-Butyl Alcohol-d10	(4)	4.188	65	377056	250.000
27)	t-Butyl Alcohol	(4)	4.316	59	362789	209.189
	Acrylonitrile	(1)	4.571	53	89421	18.838
30)			4.577	73	494779	20.130
29)		(1)	4.583	96	135987	19.597
	n-Hexane	(1)	5.003	57	177663M	19.317
36)		(1)	5.216	63	262297	19.806
	1,2-Dichloroethene (total)	(1)	r 220	96	290149	39.175
	di-Isopropyl Ether	(1)	5.338	45	500356 200104	20.344 19.451
38)	2-Chloro-1, 3-Butadiene	(1)	5.362	53		19.431
	Ethyl t-Butyl Ether	(1)	5.873	59	476051	19.578
	cis-1,2-Dichloroethene	(1)	6.074	96 77	154162	19.249
	2,2-Dichloropropane	(1)	6.080	43	184080 229798	36.670
42)	2-Butanone	(1)	6.134 6.171	54	396321	204.606
45)		(4)	6.390	67	506511	100.559
	Methacrylonitrile	(1) (1)	6.396	128	83715	24.268
	Bromochloromethane	(4)	6.475	71	70605	40.063
49)	Tetrahydrofuran	(1)	6.518	83	239093	19.718
	Chloroform \$Dibromofluoromethane(mz111)	(1)	6.743	111	339196	49.605
	\$Dibromofluoromethane	(1)	6.743	113	330047	49.333
21)	ADTDI OROTI GOLOME CHAME	(1 /	0.743		555017	13.000

M = Compound was manually integrated.

Digltally signed by Sarah A. Guill on 08/15/2012 at 19:06. Target 3:5 esignature user ID: sag03174. page 1 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 13:05 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:33

Date, time and analyst ID of latest file update: 15-Aug-2012 13:33 ads01731

Sample Name: VSTD020 Lab Sample ID: VSTD020

Company de	I.S.	יים	OTon	Area	On-Column Amount
-				•	======================================
53) 1,1,1-Trichloroethane 56) Cyclohexane 55) Cyclohexane (mz 69) 54) Cyclohexane (mz 84) 59) Carbon Tetrachloride 58) 1,1-Dichloropropene 61) Isobutyl Alcohol 63)\$1,2-Dichloroethane-d4(mz65) 64)\$1,2-Dichloroethane-d4(mz104) 62)\$1,2-Dichloroethane-d4 65) Benzene 66) 1,2-Dichloroethane 67) 1,2-Dichloroethane 67) 1,2-Dichloroethane 67) 1,2-Dichloroethane 67) 1,2-Dichloroethane 69) n-Heptane 70)*Fluorobenzene 69) n-Heptane 71) n-Butanol 74) Trichloroethene 75) Methylcyclohexane	Ref. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	6.785 6.858 6.864 6.864 7.010 7.017 7.181 7.205 7.205 7.205 7.290 7.309 7.309 7.448 7.667 8.087 8.160 8.404	97 569 84 117 75 41 65 104 102 78 98 36 95 83	199115 238049 73998 196656 144961 191328 273243 403577 55699 90421 595499 194600 19801 472364 1495429 159946 462926 144448 255425	Amount (ng) ====================================
76) 1,2-Dichloropropane 78) Dibromomethane 77) Methyl Methacrylate 80) 1,4-Dioxane 81) Bromodichloromethane 82) 2-Nitropropane 83) 2-Chloroethyl Vinyl Ether 84) cis-1,3-Dichloropropene 85) 4-Methyl-2-Pentanone 86)\$Toluene-d8 87)\$Toluene-d8(mz100) 88) Toluene 89) trans-1,3-Dichloropropene 90) Ethyl Methacrylate 91) 1,1,2-Trichloroethane 93) Tetrachloroethene 94) 1,3-Dichloropropane 95) 2-Hexanone 96) Dibromochloromethane	(1) (1) (1) (4) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2)	8.440 8.592 8.629 8.635 8.799 9.097 9.219 9.377 9.559 9.687 9.766 10.010 10.125 10.344 10.362 10.478 10.588	63 93 69 88 83 41 63 75 43 98 100 92 75 69 97 166 76 43 129	169874 104358 168744 65701 171422 93495 115684 242901 501809 1464939 967953 384671 231416 276647 153252 144120 268875 346360 136637	19.858 19.881 19.695 447.130 18.739 35.452 18.944 19.138 38.227 50.957 50.341 20.505 19.489 19.852 20.313 19.786 20.244 35.765 18.613

^{* =} Compound is an internal standard.

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06 ...
Target 3.5:esignature user ID: sag03174

page 2 of 4

^{\$ =} Compound is a surrogate standard.

interesting the contraction of the contraction of the forest contraction of the contracti

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Instrument ID: HP07159.i Analyst ID: ads01731 Injection date and time: 15-AUG-2012 13:05

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 13:33
Date, time and analyst ID of latest file update: 15-Aug-2012 13:33 ads01731

Lab Sample ID: VSTD020 Sample Name: VSTD020

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	_====			=========	
97) 1,2-Dibromoethane	(2)	10.703	107	165652	20.147
98)*Chlorobenzene-d5	(2)	11.135	117	1012774	50.000
100) Chlorobenzene	(2)	11.165	112	427109	20.229
101) 1,1,1,2-Tetrachloroethane	(2)	11.226	131	136125	19.678
102) Ethylbenzene	(2)	11.263	91	683702	19.974
103) m+p-Xylene	(2)	11.366	106	565346	41.364
104) Xylene (Total)	(2)		106	843980	61.963
106) o-Xylene	(2)	11.701	106	278634	20.599
109) Styrene	(2)	11.731	104	468992	20.136
110) Bromoform	(2)	11.871	173	94224	17.620
111) Isopropylbenzene	(2)	11.999	105	672343	20.431
112) Cyclohexanone	(4)	12.084	.55	280797	486.333 49.994
114)\$4-Bromofluorobenzene	(2)	12.127	95	513895	
115)\$4-Bromofluorobenzene(mz174)	(2)	12.133	174	410429	50.367 20.320
116) 1,1,2,2-Tetrachloroethane	(3)	12.224	83	263562	20.149
,117) Bromobenzene	(3)	12.261	156	180024	98.073
118) trans-1,4-Dichloro-2-Butene	(3)	12.267	53	322490	20.758
119) 1,2,3-Trichloropropane	(3)	12.267	110	74660 784692	20.738
120) n-Propylbenzene	(3)	12.321	91 126	163837	19.670
121) 2-Chlorotoluene	(3)	12.400	126 105	575362	20.038
122) 1,3,5-Trimethylbenzene	(3)	12.461	126	182294	20.038
123) 4-Chlorotoluene	(3)	12.492	134	124587	19.831
124) tert-Butylbenzene	(3)	12.705	167	104029	20.070
125) Pentachloroethane	(3)	12.723	105	593462	19.927
126) 1,2,4-Trimethylbenzene	(3)	12.747 12.863	105	672439	19.956
127) sec-Butylbenzene	(3)	12.966	119	592726	20.243
128) p-Isopropyltoluene	(3)	12.966	146	315968	19.929
129) 1,3-Dichlorobenzene	(3)	13.009	152	576736	50.000
130) *1, 4-Dichlorobenzene-d4	(3) (3)	13.009	146	376989	20.757
131) 1,4-Dichlorobenzene		13.027	105	674575	22.337
132) 1,2,3-Trimethylbenzene	(3) (3)	13.124	91	412392M	17.209
133) Benzyl Chloride	(3)	13.179	105	389659	21.928
134) 1,3-Diethylbenzene	(3)	13.240	105	364268	21.601
135) 1,4-Diethylbenzene	(3)	13.240	92	315581	20.773
136) n-Butylbenzene	(3)	13.307	146	349724	20.405
137) 1,2-Dichlorobenzene	(3)	13.331	105	431510	23.214
138) 1,2-Diethylbenzene 139) 1,2-Dibromo-3-Chloropropane	, ,	13.854	75	58711	19.136
139) 1,2-Dibromo-3-Chloropropane	. (3)	10.004	, 5	00,11	23.240

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06 Taxget 3:5 esignature user ID:-sag03174.

page 3 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Injection date and time: 15-AUG-2012 13:05

Instrument ID: HP07159.i

Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:33
Date, time and analyst ID of latest file update: 15-Aug-2012 13:33 ads01731

Sample Name: VSTD020

Lab Sample ID: VSTD020

Compounds	I.S. Ref. =====	RT	QIon	Area	On-Column Amount (ng)
140) 1,2,4-Trichlorobenzene 141) Hexachlorobutadiene 142) Naphthalene 144) 1,2,3-Trichlorobenzene 145) 2-Methylnaphthalene	(3) (3) (3) (3)	14.414 14.487 14.590 14.736 15.375	180 225 128 180 142	243796 85513 911224 249369 565342	20.652 20.314 20.938 21.127 22.512

page 4 of 4

Digitally signed by Sarah A: Guill on 08/15/2012 at 19.06. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Injection date and time: 15-AUG-2012 13:05

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:33

Date, time and analyst ID of latest file update: 15-Aug-2012 13:33 ads01731

Lab Sample ID: VSTD020 Sample Name: VSTD020

: 34 Compound Number

: n-Hexane Compound Name

: 561 Scan Number Retention Time (minutes): 5.003 : 57.00 Quant Ion : 177663M Area (flag) : 19.3173 On-Column Amount (ng)

601 543 Integration stop scan: Integration start scan Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Gurll.

Analyst responsible for change: on 08/15/2012 at 19:06.

Target 3:5 esignature user ID: sag03174

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Injection date and time: 15-AUG-2012 13:05

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:25

Date, time and analyst ID of latest file update: 15-Aug-2012 13:25 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 34

Compound Name : n-Hexane Scan Number : 561 Retention Time (minutes): 5.003 Quant Ion : 57.00 Area : 182256

On-column Amount (ng) : 19.6938
Integration start scan : 543 Integration stop scan: 63
Y at integration start : 0 Y at integration end:

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Injection date and time: 15-AUG-2012 13:05

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:33

Date, time and analyst ID of latest file update: 15-Aug-2012 13:33 ads01731

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 133

Compound Name : Benzyl Chloride

Scan Number : 1896
Retention Time (minutes): 13.124
Quant Ion : 91.00
Area (flag) : 412392M
On-Column Amount (ng) : 17.2088

Integration start scan : 1890 Integration stop scan: 1901 Y at integration start : 1275 Y at integration end: 1275

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/15/2012 at 19:06.

Target 3.5 esignature user ID sag03174

GC/MS audit/management approval: | audifor 185 5/16/12

Data File: /chem/HP07159.i/12aug15a.b/ng15i04.d Injection date and time: 15-AUG-2012 13:05 Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 13:25

Date, time and analyst ID of latest file update: 15-Aug-2012 13:25 Automation

Sample Name: VSTD020 Lab Sample ID: VSTD020

Compound Number : 133

Compound Name : Benzyl Chloride

Scan Number : 1896
Retention Time (minutes): 13.124
Quant Ion : 91.00
Area : 541438
On-column Amount (ng) : 21.1688

Integration start scan : 1890 Integration stop scan: 1910 Y at integration start : 1275 Y at integration end: 1275

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06.
Target 3.5 esignature user ID: sag03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 16:31 Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Lab Sample ID: VSTD010 Sample Name: VSTD010

Digitally signed by Sarah A. Cuill on 08/15/2012 at 19:07 Target 3:5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Calibration date and time: 15-AUG-2012 16:31

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Lab Sample ID: VSTD010 Sample Name: VSTD010

Digitally signed by Sarah A. Guill on 98/15/2012 at 19:07. Target 3:5 esignature user ID: sag031

page 2 of 2

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11 Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 16:31 Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compounds	I.S. Ref.	RT	QIon	Area ========	On-Column Amount (ng)
1) Dichlorodifluoromethane	(1)	1.918	85	78398	8.123
Chloromethane	(1)	2.052	50	93635	10.896
4) Vinyl Chloride	(1)	2.186	62	93048	10.696
5) Bromomethane	(1)	2.521	94	60011M	11.401
7) Chloroethane	(1)	2.618	64	50044	11.238
8) Trichlorofluoromethane	(1)	2.946	101	88203	9.120
12) Ethanol	(4)	3.165	45	78364	497.759
13) Acrolein	(4)	3.390	56	267197	105.424
<pre>16) 1,1-Dichloroethene</pre>	(1)	3.530	96	67420	11.291
18) Freon 113	(1)	3.543	101	64906	10.694
19) Acetone	(1)	3.603	58	24906M	20.219
20) Methyl Iodide	(1)	3.725	142	119317	11.305
21) 2-Propanol	(4)	3.762	45	127858M	117.853
22) Carbon Disulfide	(1)	3.828	76	216731	10.733
23) Allyl Chloride	(1)	3.993	41	135976M	10.784
24) Methyl Acetate	(1)	4.029	43	97174	10.800
25) Methylene Chloride	(1)	4.157	84	82253	10.817
26) *t-Butyl Alcohol-d10	(4)	4.181	65	374335	250.000
27) t-Butyl Alcohol	(4)	4.321	59	217612M	120.696
30) Methyl Tertiary Butyl Ether		4.571	73	262634M	10.880
29) trans-1,2-Dichloroethene	(1)	4.577	96	76910M	11.187
28) Acrylonitrile	(1)	4.589	53	44588	9.949
34) n-Hexane	(1)	4.997	57	101252	10.998
36) 1,1-Dichloroethane	(1)	5.203	63	146334M	11.151
37) di-Isopropyl Ether	(1)	5.331	45	268987	10.968
33) 1,2-Dichloroethene (total)	(1)	- 260	96	165843	22.490
38) 2-Chloro-1,3-Butadiene	(1)	5.362	53	114262	10.859
39) Ethyl t-Butyl Ether	(1)	5.866	59	266854	11.124
40) cis-1,2-Dichloroethene	(1)	6.073	96 77	88903	11.302
44) 2,2-Dichloropropane	(1)	6.073 6.152	43	105336 110482	11.101 19.005
42) 2-Butanone	(1)		54	194448M	102.032
45) Propionitrile	(4)	6.183 6.390	54 67	273061	54.690
47) Methacrylonitrile	(1)	6.390	128	43186	10.701
48) Bromochloromethane 49) Tetrahydrofuran	(1) (4)	6.481	71	35049M	19.948
50) Chloroform	(1)	6.511	83	135568	10.952
51) \$Dibromofluoromethane	(1)	6.736	113	327891	49.973
52) \$Dibromofluoromethane (mz111)	(1)	6.736	111	336992	50.281
25 \ ADIDIOMOTIGOTOMO CHAHE (MSTIT)	(+ /	3.730		330332	50.201

M = Compound was manually integrated.
* = Compound is an internal standard.

Digitally signed by Sarah A. Guill on 0871572012 at 19:07. Target 3.5 esignature user ID: sag03174

page 1 of 4

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Lab Sample ID: VSTD010 Sample Name: VSTD010

Signature	Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
56) Cyclohexane (mz 84) (1) 6.852 56 134172 10.530 54) Cyclohexane (mz 84) (1) 6.852 84 112536 10.607 55) Cyclohexane (mz 69) (1) 6.858 69 42023M 10.533 58) 1,1-Dichloropropene (1) 7.010 75 112740 10.753 59) Carbon Tetrachloride (1) 7.010 117 81406 10.907 61) Isobutyl Alcohol (4) 7.181 41 171884 300.092 63)\$1,2-Dichloroethane-d4 (mz65) (1) 7.193 65 394935 51.229 62)\$1,2-Dichloroethane-d4 (mz104) (1) 7.193 102 89359 50.918 64)\$1,2-Dichloroethane (1) 7.193 104 55392 49.707 65) Benzene (1) 7.284 78 338392 11.223 66) 1,2-Dichloroethane (mz 98) (1) 7.302 62 106556 11.157 67) 1,2-Dichloroethane (mz 98) (1) 7.302 98 10345 10.497 68) t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70)*Fluorobenzene (1) 7.655 96 1467854 50.000 69) n-Heptane (1) 7.655 96 1467854 50.000 69) n-Heptane (1) 7.661 43 92664 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (1) 8.393 83 90939 10.813 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (2) 9.681 98 1444130 50.407 86) Toluene-d8 (2) 9.681 98 1444130 50.407 87) \$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 88) Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 88) Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 89) Tetrachloroethene (2) 10.143 69 15064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.364 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		=====				
56) Cyclohexane (1) 6.852 56 134172 10.530 54) Cyclohexane (mz 84) (1) 6.852 84 112536 10.607 55) Cyclohexane (mz 69) (1) 6.858 69 42023M 10.533 58) 1,1-Dichloropropene (1) 7.010 75 112740 10.753 59) Carbon Tetrachloride (1) 7.010 117 81406 10.907 61) Isobutyl Alcohol (4) 7.181 41 171884 300.092 63)\$1,2-Dichloroethane-d4 (mz65) (1) 7.193 65 394935 51.229 62)\$1,2-Dichloroethane-d4 (mz104) (1) 7.193 102 89359 50.918 64)\$1,2-Dichloroethane-d4 (mz104) (1) 7.193 104 55392 49.707 65) Benzene (1) 7.302 62 106556 11.157 67) 1,2-Dichloroethane (mz 98) (1) 7.302 62 106556 11.157 67) 1,2-Dichloroethane (mz 98) (1) 7.302 98 10345 10.497 68) t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70)*Fluorobenzene (1) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.733 83 90939 10.813 82) 2-Nitropropane (1) 8.736 83 90939 10.813 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (2) 9.681 98 1444130 50.407 86) Toluene-d8 (2) 9.681 98 1444130 50.407 87) \$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 88) Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 89) Tetrachloroethene (2) 10.143 69 15064 10.750 91) 1,1,2-Tirchloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.364 76 150831 11.324 95) 2-Hexanone (2) 10.364 76 150831 11.324	53) 1,1,1-Trichloroethane	(1)	6.779	97	111759	10.974
54) Cyclohexane (mz 84) (1) 6.852 84 112536 10.607 55) Cyclohexane (mz 69) (1) 6.858 69 42023M 10.533 58) 1,1-Dichloropropene (1) 7.010 75 112740 10.753 59) Carbon Tetrachloride (1) 7.010 117 81406 10.907 61) Isobutyl Alcohol (4) 7.181 41 171884 300.092 63)\$1,2-Dichloroethane-d4 (mz104) (1) 7.193 65 394935 51.229 62)\$1,2-Dichloroethane-d4 (mz104) (1) 7.193 102 89359 50.918 64)\$1,2-Dichloroethane-d4 (mz104) (1) 7.284 78 338392 11.223 66)\$1,2-Dichloroethane (1) 7.284 78 338392 11.223 66)\$1,2-Dichloroethane (1) 7.302 98 10345 10.497 68)\$1-Amyl Methyl Ether (1) 7.655 96 167684 50.000 70)*Fluorobenzene (1) 7.655 96 146785		(1)	6.852	56		10.530
55 Cyclohexane (mz 69)		(1)	6.852	84	112536	10.607
Section Tetrachloride (1) 7.010 117 81406 10.907 61 Isobutyl Alcohol (4) 7.181 41 171884 300.092 63)\$1,2-Dichloroethane-d4 (mz65) (1) 7.193 65 394935 51.229 62)\$1,2-Dichloroethane-d4 (1) 7.193 102 89359 50.918 64)\$1,2-Dichloroethane-d4 (mz104) (1) 7.193 104 55392 49.707 65 8enzene (1) 7.284 78 338392 11.223 66 1,2-Dichloroethane (1) 7.302 62 106556 11.157 67 1,2-Dichloroethane (mz 98) (1) 7.302 98 10345 10.497 68 t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70) *Fluorobenzene (1) 7.655 96 1467854 50.000 69 n-Heptane (1) 7.661 43 29654 10.579 71 n-Butanol (4) 8.105 56 275511 614.660 74 Trichloroethene (1) 8.160 95 83361 11.176 75 Methylcyclohexane (1) 8.397 83 134191 10.835 76 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78 Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 69 91322 10.844 81 Bromodichloromethane (1) 8.647 69 91322 10.844 81 Bromodichloromethane (1) 8.793 83 90939 10.813 82 2-Mitropropane (1) 9.243 63 52956 9.313 84 cis-1,3-Dichloropropene (1) 9.383 75 12555 10.906 85 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86 \$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 89 trans-1,3-Dichloropropene (2) 9.766 92 218708 11.271 89 trans-1,3-Dichloropropene (2) 10.143 69 151064 10.750 91 1,1,2-Tichloroethane (2) 10.143 69 7 87002 11.347 93 Tetrachloroethane (2) 10.346 76 150831 11.324 95 2-Hexanone (2) 10.502 43 179116 20.464 95 2-Hexanone (2) 10.502 43 179116 20.464 95 2-Hexanone (2) 10.502 43 179116 20.464 95 2-Hexanone (2) 10.502 43 179116 20.464 95 2-Hexanone (2) 10.502 43 179116 20.464 95 2-Hexanone (2) 10.502 43 179116 20.4	55) Cyclohexane (mz 69)	(1)	6.858		42023M	
Section Tetrachloride	58) 1,1-Dichloropropene	(1)			112740	
61) Isobutyl Alcohol (4) 7.181 41 171884 300.092 63) \$1,2-Dichloroethane-d4(mz65) (1) 7.193 65 394935 51.229 62) \$1,2-Dichloroethane-d4 (1) 7.193 102 89359 50.918 64) \$1,2-Dichloroethane-d4(mz104) (1) 7.193 104 55392 49.707 65) Benzene (1) 7.284 78 338392 11.223 66) 1,2-Dichloroethane (mz 98) (1) 7.302 62 106556 11.157 67) 1,2-Dichloroethane (mz 98) (1) 7.302 98 10345 10.497 68) t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70) *Fluorobenzene (1) 7.655 96 1467854 50.000 69) n-Heptane (1) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 83) Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 88) Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 89) Tetrachloroethene (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloropropane (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloropropane (2) 10.143 69 151064 10.750 94) 1,2-Trichloropropane (2) 10.344 166 85119 11.347 93) Tetrachloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.368 76 150831 11.324	59) Carbon Tetrachloride	(1)	7.010	117	81406	
63) \$1,2-Dichloroethane-d4 (mz65) (1) 7.193 65 394935 51.229 62) \$1,2-Dichloroethane-d4 (1) 7.193 102 89359 50.918 64) \$1,2-Dichloroethane-d4 (mz104) (1) 7.193 104 55392 49.707 65) Benzene (1) 7.284 78 338392 11.223 66) 1,2-Dichloroethane (1) 7.302 62 106556 11.157 67) 1,2-Dichloroethane (mz 98) (1) 7.302 98 10345 10.497 68) t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70) *Fluorobenzene (1) 7.655 96 1467854 50.000 69) n-Heptane (1) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86) \$Toluene-d8 (2) 9.661 98 1444130 50.407 88) Toluene-d8 (2) 9.661 98 1444130 50.407 88) Toluene-d8 (2) 9.661 98 1444130 50.407 89) trans-1,3-Dichloropropene (2) 10.15 75 124865 10.864 90) Ethyl Methacrylate (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(4)	7.181	41	171884	300.092
62)\$1,2-Dichloroethane-d4 (I) 7.193 102 89359 50.918 64)\$1,2-Dichloroethane-d4(mz104) (I) 7.193 104 55392 49.707 65) Benzene (I) 7.284 78 338392 11.223 66) 1,2-Dichloroethane (I) 7.302 62 106556 11.157 67) 1,2-Dichloroethane (mz 98) (I) 7.302 98 10345 10.497 68) t-Amyl Methyl Ether (I) 7.448 73 252324 10.895 70)*Fluorobenzene (I) 7.655 96 1467854 50.000 69) n-Heptane (I) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (I) 8.160 95 83361 11.176 75) Methylcyclohexane (I) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (I) 8.434 63 91172 10.933 78) Dibromomethane (I) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (I) 8.647 69 91322 10.844 81) Bromodichloromethane (I) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (I) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (I) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (I) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (2) 9.681 100 963886 50.307 88) Toluene-d8 (2) 9.681 100 963886 50.307 88) Toluene-d8 (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.143 69 151064 10.750 91 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)	7.193	65	394935	51.229
64)\$1,2-Dichloroethane-d4(mz104) (1) 7.193 104 55392 49.707 65) Benzene (1) 7.284 78 338392 11.223 66) 1,2-Dichloroethane (1) 7.302 62 106556 11.157 67) 1,2-Dichloroethane (mz 98) (1) 7.302 98 10345 10.497 68) t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70)*Fluorobenzene (1) 7.661 43 92654 50.000 69) n-Heptane (1) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86) \$Toluene-d8 (mz100) (2) 9.681 100 963886 50.307 88) Toluene-d8 (mz100) (2) 9.681 100 963886 50.307 88) Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 89) trans-1,3-Dichloropropene (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethene (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethene (2) 10.368 76 150831 11.324 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464	62) \$1,2-Dichloroethane-d4	(1)	7.193	102	89359	50.918
65) Benzene (1) 7.284 78 338392 11.223 66) 1,2-Dichloroethane (mz 98) (1) 7.302 62 106556 11.157 67) 1,2-Dichloroethane (mz 98) (1) 7.302 98 10345 10.497 68) t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70)*Fluorobenzene (1) 7.655 96 1467854 50.000 69) n-Heptane (1) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (2) 9.681 98 1444130 50.407 87) \$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87) \$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87) \$Toluene-d8 (mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.148 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464) (1)		104	55392	
67) 1,2-Dichloroethane (mz 98) (1) 7.302 98 10345 10.497 68) t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70)*Fluorobenzene (1) 7.655 96 1467854 50.000 69) n-Heptane (1) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86) \$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87) \$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87) \$Toluene-d8 (mz100) (2) 9.681 100 963886 50.307 88) Toluene-d8 (mz100) (2) 9.681 90 963886 50.307 89) Trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464			7.284		338392	
68) t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70)*Fluorobenzene (1) 7.655 96 1467854 50.000 69) n-Heptane (1) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.793 83 90939 10.813 82) 2-Mitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.368 76 150831 11.324	66) 1,2-Dichloroethane	(1)	7.302		106556	11.157
68) t-Amyl Methyl Ether (1) 7.448 73 252324 10.895 70)*Fluorobenzene (1) 7.655 96 1467854 50.000 69) n-Heptane (1) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Mitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.148 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.368 76 150831 11.324	67) 1,2-Dichloroethane (mz 98)	(1)				
70)*Fluorobenzene (1) 7.655 96 1467854 50.000 69) n-Heptane (1) 7.661 43 92654 10.579 71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)				
71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)	7.655	96	1467854	
71) n-Butanol (4) 8.105 56 275511 614.660 74) Trichloroethene (1) 8.160 95 83361 11.176 75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone	69) n-Heptane	(1)	7.661		92654	10.579
75) Methylcyclohexane (1) 8.397 83 134191 10.835 76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(4)	8.105			
76) 1,2-Dichloropropane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464	74) Trichloroethene	(1)	8.160			
76) 1,2-Dichloropropane 78) Dibromomethane (1) 8.434 63 91172 10.933 78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116	75) Methylcyclohexane	(1)	8.397		134191	
78) Dibromomethane (1) 8.592 93 55875 11.069 80) 1,4-Dioxane (4) 8.647 88 39710M 285.359 77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 98 1444130 50.407 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)	8.434			10.933
77) Methyl Methacrylate (1) 8.647 69 91322 10.844 81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)	8.592		55875	
81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464	80) 1,4-Dioxane	(4)	8.647	88	39710M	
81) Bromodichloromethane (1) 8.793 83 90939 10.813 82) 2-Nitropropane (4) 9.097 41 45795 18.306 83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)	8.647		91322	10.844
83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8 (mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)	8.793	83	90939	10.813
83) 2-Chloroethyl Vinyl Ether (1) 9.243 63 52956 9.313 84) cis-1,3-Dichloropropene (1) 9.383 75 132575 10.906 85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8(mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464	82) 2-Nitropropane	(4)	9.097		45795	18.306
85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8(mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)				
85) 4-Methyl-2-Pentanone (1) 9.571 43 235322M 18.794 86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8(mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)			132575	10.906
86)\$Toluene-d8 (2) 9.681 98 1444130 50.407 87)\$Toluene-d8(mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(1)	9.571	43	235322M	18.794
87)\$Toluene-d8(mz100) (2) 9.681 100 963886 50.307 88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(2)	9.681	98	1444130	50.407
88) Toluene (2) 9.766 92 218708 11.271 89) trans-1,3-Dichloropropene (2) 10.015 75 124865 10.864 90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(2)	9.681	100	963886	
90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(2)	9.766		218708	11.271
90) Ethyl Methacrylate (2) 10.143 69 151064 10.750 91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464	89) trans-1,3-Dichloropropene	(2)	10.015	75	124865	10.864
91) 1,1,2-Trichloroethane (2) 10.198 97 87002 11.347 93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(2)	10.143	69	151064	10.750
93) Tetrachloroethene (2) 10.344 166 85119 11.496 94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(2)				
94) 1,3-Dichloropropane (2) 10.368 76 150831 11.324 95) 2-Hexanone (2) 10.502 43 179116 20.464		(2)				
95) 2-Hexanone (2) 10.502 43 179116 20.464			10.368	76	150831	11.324
			10.502	43	179116	20.464
		(2)	10,593	129	69665	10.658

M = Compound was manually integrated.
* = Compound is an internal standard.

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07 Target 3.5 esignature user ID: sag03174

page 2 of 4

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 16:11 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
			107	90040	11.308
97) 1,2-Dibromoethane	(2)	10.715		1023982M	50.000
98) *Chlorobenzene-d5	(2)	11.135	117 112		11.590
100) Chlorobenzene	(2)	11.165	131	248592 76035	11.425
101) 1,1,1,2-Tetrachloroethane	(2)	11.226	91	399212	10.582
102) Ethylbenzene	(2)	11.269	106	331271	22.974
103) m+p-Xylene	(2)	11.372	106	495505	34.566
104) Xylene (Total)	(2)	11 712	106	164234	11.592
106) o-Xylene	(2)	11.713		267189	11.279
109) Styrene	(2)	11.743	104 173		9.771
110) Bromoform	(2)	11.877		48322	11.677
111) Isopropylbenzene	(2)	12.005	105	409108	
112) Cyclohexanone	(4)	12.090	55 174	137118	243.543 51.769
115) \$4-Bromofluorobenzene (mz174)	(2)	12.132	174	422312	50.778
114)\$4-Bromofluorobenzene	(2)	12.132	95 03	528908	11.781
116) 1,1,2,2-Tetrachloroethane	(3)	12.224	83	154040	11.761
117) Bromobenzene	(3)	12.266	156	103864	11.845
119) 1,2,3-Trichloropropane	(3)	12.272	110	43333	57.234
118) trans-1,4-Dichloro-2-Butene		12.278	53	185641	
120) n-Propylbenzene	(3)	12.327	91	464297 97367	12.094 11.238
121) 2-Chlorotoluene	(3)	12.406	126		11.236
122) 1,3,5-Trimethylbenzene	(3)	12.461	105	348416	
123) 4-Chlorotoluene	(3)	12.504	126	109165 75587	11.614 11.535
124) tert-Butylbenzene	(3)	12.704	134		11.252
125) Pentachloroethane	(3)	12.729	167	59028	
126) 1,2,4-Trimethylbenzene	(3)	12.747	105	349225	11.482
127) sec-Butylbenzene	(3)	12.869	105	402621	11.399 11.341
128) p-Isopropyltoluene	(3)	12.972	119	340812	
129) 1,3-Dichlorobenzene	(3)	12.972	146	168237	10.894 50.000
130) *1, 4-Dichlorobenzene-d4	(3)	13.008	152	569627	
131) 1,4-Dichlorobenzene	(3)	13.027	146	224922A	11.506 11.610
132) 1,2,3-Trimethylbenzene	(3)	13.057	105	378415	8.984
133) Benzyl Chloride	(3)	13.136	91	186922	
134) 1,3-Diethylbenzene	(3)	13.185	105	207535	11.284
135) 1,4-Diethylbenzene	(3)	13.246	105	199965	11.275 11.680
136) n-Butylbenzene	(3)	13.276	92	185128	11.332
137) 1,2-Dichlorobenzene	(3)	13.313	146	200860	12.048
138) 1,2-Diethylbenzene	(3)	13.337	105	262182	
139) 1,2-Dibromo-3-Chloropropane	(3)	13.866	75	30992	10.353

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07 Target 3:5 esignature user ID: sag03174

page 3 of 4

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i

Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Calibration date and time: 15-AUG-2012 16:31

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010

Lab Sample ID: VSTD010

Compounds	I.S. Ref. =====	RT ======	QIon	Area === === ===	On-Column Amount (ng)
140) 1,2,4-Trichlorobenzene	(3)	14.426	180	137561	11.341
141) Hexachlorobutadiene	(3)	14.493	225	46928	11.142
142) Naphthalene	(3)	14.608	128	494469	10.908
144) 1,2,3-Trichlorobenzene	(3)	14.742	180	138190	11.351
145) 2-Methylnaphthalene	(3)	15.405	142	292216	10.994

page 4 of 4

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07 Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010

Lab Sample ID: VSTD010

: 5 Compound Number

Compound Name : Bromomethane : 153 Scan Number

Retention Time (minutes): 2.521 : 94.00 Quant Ion 60011M Area (flag)

On-Column Amount (ng) : 11.4008

Integration stop scan: 143 Integration start scan : Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah An Guill Analyst responsible for change: on 08/15/2012 at 19:07

Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 5

Compound Name : Bromomethane

Scan Number : 153
Retention Time (minutes): 2.521
Quant Ion : 94.00
Area : 60212
On-column Amount (ng) : 11.4327

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 35 5 esignature user ID: sag03174

Commence of the company of the commence of

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31 Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Lab Sample ID: VSTD010 Sample Name: VSTD010

Compound Number Compound Name : Acetone : 331 Scan Number Retention Time (minutes): 3.603 : 58.00 Quant Ion : 24906M Area (flag)

On-Column Amount (ng) : 20.2189 Integration stop scan: 369 322 Integration start scan : Y at integration end: 0 Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/45/2012 at 19:07

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 19
Compound Name : Acetone
Scan Number : 331
Retention Time (minutes): 3.603
Quant Ion : 58.00
Area : 26130
On-column Amount (ng) : 21.0383

Integration start scan : 322 Integration stop scan: 393 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3:5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Lab Sample ID: VSTD010 Sample Name: VSTD010

: 21 Compound Number

Compound Name : 2-Propanol

: 357 Scan Number Retention Time (minutes): 3.762 Quant Ion : 45.00 : 127858M Area (flag) On-Column Amount (ng) : 117.8532

Integration stop scan: 416 Integration start scan 347 : Y at integration end: 0 Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19:07

Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval:

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 21

Compound Name : 2-Propanol

Scan Number : 357
Retention Time (minutes): 3.762
Quant Ion : 45.00
Area : 131542
On-column Amount (ng) : 120.5660

Integration start scan : 319 Integration stop scan: 415 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07 Target 3:5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 23

Compound Name : Allyl Chloride .

Scan Number : 395
Retention Time (minutes): 3.993
Quant Ion : 41.00
Area (flag) : 135976M
On-Column Amount (ng) : 10.7837

Integration start scan : 379 Integration stop scan: 416 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/15/2012 at 19:07

Target 3:5 esignature user 10: sag03174

The state of the s

Sample Spectrum (Background Subtracted) HP ChemStation M5 ng15110.d, Scan 395: 3.993 min. (SUB) 3.4-3.2-3.0 2.8 2.6-2.0 1.8 1.6 1.4-1,2-1.0-0.8-0.6-0.4-

120

130

140

/105

110

100

70

0.2-0.0-

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

170

180

190

207

200

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Lab Sample ID: VSTD010 Sample Name: VSTD010

: 23 Compound Number

: Allyl Chloride Compound Name

Scan Number 395 Retention Time (minutes): 3.993 41.00 Quant Ion 142771 Area 11.2217 On-column Amount (ng)

379 Integration stop scan: Integration start scan Y at integration end: Y at integration start.:

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07-Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 16:31 Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Lab Sample ID: VSTD010 Sample Name: VSTD010

: 27 Compound Number

: t-Butyl Alcohol Compound Name

: 449 Scan Number Retention Time (minutes): 4.321 : 59.00 Quant Ion Area (flag) : 217612M : 120.6962 On-Column Amount (ng)

Integration stop scan: Integration start scan : 430 Y at integration end: 0 Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19:07

Target 3.5 esignature user ID: sag03174

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 27

Compound Name : t-Butyl Alcohol

Scan Number : 449
Retention Time (minutes): 4.321
Quant Ion : 59.00
Area : 231101
On-column Amount (ng) : 126.8219

Integration start scan : 430 Integration stop scan: 523 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID: sag03174

make the state of the second control of the

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010

Lab Sample ID: VSTD010

: 30 Compound Number

: Methyl Tertiary Butyl Ether Compound Name

: 490 Scan Number Retention Time (minutes): 4.571 73.00 Quant Ion Area (flag) 262634M : 10.8798 On-Column Amount (ng)

GC/MS audit/management approval:

Integration stop scan: 473 Integration start scan Y at integration end: Y at integration start

Reason for manual integration: improper integration

Target: 3.5 esignature user 1D: sag03174

auffor

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 30

Compound Name : Methyl Tertiary Butyl Ether

Scan Number : 490
Retention Time (minutes): 4.571
Quant Ion : 73.00
Area : 265048
On-column Amount (ng) : 10.9642

Integration start scan : 473 Integration stop scan: 569 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user 10: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010 Lab S

Lab Sample ID: VSTD010

Compound Number : 29

Compound Name : trans-1,2-Dichloroethene

Scan Number : 491
Retention Time (minutes): 4.577
Quant Ion : 96.00
Area (flag) : 76940M

On-Column Amount (ng) : 11.1874
Integration start scan : 480 Integration stop scan: 527
Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Drg.tally signed by Sarah A: Guill Analyst responsible for change: on 0871572012 at 19 07. Target 3.5 esignature user iD: sag03174

GC/MS audit/management approval: Janham 185 8/16/12

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 29

Compound Name : trans-1,2-Dichloroethene

Scan Number : 491
Retention Time (minutes): 4.577
Quant Ion : 96.00
Area : 77427
On-column Amount (ng) : 11.2469

Integration start scan : 480 Integration stop scan: 565 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07 Target 3:5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 36

Compound Name : 1,1-Dichloroethane

Scan Number : 594
Retention Time (minutes): 5.203
Quant Ion : 63.00
Area (flag) : 146334M
On-Column Amount (ng) : 11.1510

Reason for manual integration: improper integration

Digitally signed by Sarah A Gulli
Analyst responsible for change: on 08/15/2012 at 19:07

Target 3.5 esignature usen ID: sag03174

Instrument ID: HP07159.i
Analyst ID: ads01731

Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 36

Compound Name : 1,1-Dichloroethane

Scan Number : 594
Retention Time (minutes): 5.203
Quant Ion : 63.00
Area : 146874
On-column Amount (ng) : 11.1855

Integration start scan : 583 Integration stop scan: 672 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID: sag03174

The state of the second of the state of the

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Lab Sample ID: VSTD010 Sample Name: VSTD010

: 45 Compound Number

: Propionitrile Compound Name

: 755 Scan Number Retention Time (minutes): 6.183 : 54.00 Quant Ion : 194448M Area (flag) On-Column Amount (ng) : 102.0324

745 Integration stop scan: Integration start scan Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19 07. Target 3.5 esignature user ID: sag03174

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 45

Compound Name : Propionitrile

Scan Number : 755
Retention Time (minutes): 6.183
Quant Ion : 54.00
Area : 228297
On-column Amount (ng) : 116.3496

Integration start scan : 745 Integration stop scan: 834 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3:5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Calibration date and time: 15-AUG-2012 16:31

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010

Lab Sample ID: VSTD010

Compound Number : 49

Compound Name : Tetrahydrofuran

Scan Number : 804
Retention Time (minutes): 6.481
Quant Ion : 71.00
Area (flag) : 35049M
On-Column Amount (ng) : 19.9480

On-Column Amount (ng) : 19.9480 Integration start scan : 792 Integration stop scan: 835 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19:07

Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval: Janhailm 8/16/12

Instrument ID: HP07159.i
Analyst ID: ads01731

Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 49

0.1-

Compound Name : Tetrahydrofuran

Scan Number : 804
Retention Time (minutes): 6.481
Quant Ion : 71.00
Area : 35601
On-column Amount (ng) : 20.2094

Integration start scan : 792 Integration stop scan: 858 Y at integration start : 0 Y at integration end: 0

pigitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010

Lab Sample ID: VSTD010

Compound Number : 55

: Cyclohexane (mz 69) Compound Name

: 866 Scan Number Retention Time (minutes): 6.858 : 69.00 Quant Ion 42023M Area (flag) : 10.5335

On-Column Amount (ng) Integration stop scan: 880 852 Integration start scan : Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill. Analyst responsible for change: on 08/15/2012 at 19:07:

Target 3.5 esignature user 1D: sag031.74

Instrument ID: HP07159.i
Analyst ID: ads01731

manufacture of the second seco

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 55

Compound Name : Cyclohexane (mz 69)

Scan Number : 866
Retention Time (minutes): 6.858
Quant Ion : 69.00
Area : 42917
On-column Amount (ng) : 10.7175

Integration start scan : 852 Integration stop scan: 903 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19 07 Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010

Lab Sample ID: VSTD010

Compound Number : 80

Compound Name : 1,4-Dioxane

Scan Number : 1160
Retention Time (minutes): 8.647
Quant Ion : 88.00
Area (flag) : 39710M

On-Column Amount (ng) : 285.3593

Integration start scan : 1144 Integration stop scan: 1201 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/15/2012 at 19:07

Target 3.5 esignature user ID: sag03174

Instrument ID: HP07159.i
Analyst ID: ads01731

Sublist used: 8260WI

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 80

Compound Name : 1,4-Dioxane

Scan Number : 1160
Retention Time (minutes): 8.647
Quant Ion : 88.00
Area : 40693
On-column Amount (ng) : 291.0537

Integration start scan : 1144 Integration stop scan: 1288 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010

Lab Sample ID: VSTD010

: 85 Compound Number

: 4-Methyl-2-Pentanone Compound Name

: 1312 Scan Number Retention Time (minutes): 9.571 : 43.00 Quant Ion Area (flag) 235322M : 18.7936 On-Column Amount (ng)

Integration start scan : 1303 Integration stop scan: 1327 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19 07

Target 3.5 esignature user ID: sag03174

Man 685 8/11/12 GC/MS audit/management approval:

170

190

200

110

120

130

140

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 16:11 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 85

20-

Compound Name : 4-Methyl-2-Pentanone

Scan Number : 1302
Retention Time (minutes): 9.510
Quant Ion : 43.00
Area : 102
On-column Amount (ng) : 0.0097

Integration start scan : 1296 Integration stop scan: 1302 Y at integration start : 485 Y at integration end: 485

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07 b Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion HP MS ng15i10.d, Ion 117.00 7,0 6:5 6.0 5.5 5.0-4.0-3.5 3.0-2.5 2,0 1.5 1.0 0.5 0.0 11,12 11,14 Time (Min) 11.16 11.18 11.20 11,22 11,24 11,02 11,06 11,08 11.10

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Lab Sample ID: VSTD010 Sample Name: VSTD010.

: 98 Compound Number

Compound Name : Chlorobenzene-d5

Scan Number : 1569 Retention Time (minutes): 11.135 : 117.00 Quant Ion : 1023982M Area (flag) 50.0000 On-Column Amount (ng)

Integration stop scan: 1580 Integration start scan : 1560 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A Guill Analyst responsible for change: on 08/15/2012 at 19 07

Target 3.5 esignature user ID: sag03174

Sample Spectrum (Background Subtracted)

5.14.84.54.23.93.63.33.06.2.76.2.42.11.81.51.20.9-

0.6-

100

110

120

130

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

170

180

190

200

160

150

140

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 98

Compound Name : Chlorobenzene-d5

Scan Number : 1569
Retention Time (minutes): 11.135
Quant Ion : 117.00
Area : 1111135
On-column Amount (ng) : 50.0000

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i10.d Injection date and time: 15-AUG-2012 16:11

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:42 sag03174

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 131

Compound Name : 1,4-Dichlorobenzene

Scan Number : 1880
Retention Time (minutes): 13.027
Quant Ion : 146.00
Area (flag) : 224922A
On-Column Amount (ng) : 11.5061

Reason for manual integration: improper integration

Analyst responsible for change: Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07.

Target 3:5 esignature user 10: sag03174.

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 16:31 Automation

Sample Name: VSTD010 Lab Sample ID: VSTD010

Compound Number : 131

Compound Name : 1,4-Dichlorobenzene

Scan Number : 1880
Retention Time (minutes): 13.027
Quant Ion : 146.00
Area : 224922
On-column Amount (ng) : 11.5062

Integration start scan : 1875 Integration stop scan: 1919 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:07. Target 3.5 esignature user ID: sag03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Calibration date and time: 15-AUG-2012 14:11

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Sample Name: VSTD004 Lab Sample ID: VSTD004

Digitally Signed by Sarah A. Guill on 08/15/2012 at:19:06. Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11 Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Lab Sample ID: VSTD004 Sample Name: VSTD004

Digitally signed by Sarah A. Guill on 08715/2012 at 19:06 Target 3:5 esignature user ID: sag03174

page 2 of 2

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
Compounds ===================================	Ref. ====================================	1.922 2.055 2.183 2.518 2.621 2.950 3.169 3.412 3.534 3.734 3.783 3.783 3.783 4.008 4.075 4.172 4.197 4.337 4.586 4.653 5.018 5.225 5.347 5.389 5.882 6.077 6.180 6.405 6.411 6.509	======================================	43367 36982 36562 23694 19782 43407 33158 95515 25031 25558 8589 42942 73924 78613 54982 37096 30929 352356 132022 96909 28579 15115M 40214 54218 60101 99396 41179 96954 37874 31522 38240 122359M 15809 188476 12497	
50) Chloroform 52) \$Dibromofluoromethane (mz111 51) \$Dibromofluoromethane	(1) (1) (1)	6.527 6.746 6.746	83 111 113	50422 335624 332985	49.876 50.545

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill. on 08/15/2012 at 19:06. Target 3.5 esignature user ID: sag03174 page 1 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Instrument ID: HP07159.i Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51 Analyst ID: ads01731

Sublist used: 8260WI Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Lab Sample ID: VSTD004 Sample Name: VSTD004

is a summation of the parameters of (α,β) . In

	I.S.			D	On-Column Amount
-					(ng)
53) 1,1,1-Trichloroethane 56) Cyclohexane 55) Cyclohexane (mz 69) 54) Cyclohexane (mz 84) 59) Carbon Tetrachloride 58) 1,1-Dichloropropene 61) Isobutyl Alcohol 63)\$1,2-Dichloroethane-d4 (mz65) 62)\$1,2-Dichloroethane-d4 64)\$1,2-Dichloroethane-d4 (mz104) 65) Benzene 66) 1,2-Dichloroethane 67) 1,2-Dichloroethane 67) 1,2-Dichloroethane 67) 1,2-Dichloroethane 69) n-Heptane 70) *Fluorobenzene 69) n-Heptane 71) n-Butanol 74) Trichloroethene 75) Methylcyclohexane 76) 1,2-Dichloropropane 77) Methyl Methacrylate 80) 1,4-Dioxane 77) Methyl Methacrylate 81) Bromodichloromethane 82) 2-Nitropropane 83) 2-Chloroethyl Vinyl Ether 84) cis-1,3-Dichloropropene 85) 4-Methyl-2-Pentanone 86)\$Toluene-d8 87)\$Toluene-d8 (mz100) 88) Toluene	Ref. (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	RT	9769475152482836365338931353802 1002	44010 53159 17276 43429 29288 44619M 98424 394430 89990 56353 124463 38335 3698 91018 1473777 40745 139373 31056 50353 33601 19659 21489 31781 31455 16099MA 18502 47913 95101 1468188 976185 80987	Amount (ng) 4.304 4.155 4.313 4.077 3.908 4.239 182.557 50.958 51.072 50.367 4.111 3.998 3.737 3.914 50.000 4.633 330.334 4.147 4.049 4.013 3.879 164.053 3.759 3.725 6.837 3.241 3.926 7.565 47.895 47.617 3.901
88) Toluene 89) trans-1,3-Dichloropropene 90) Ethyl Methacrylate 91) 1,1,2-Trichloroethane 93) Tetrachloroethene 94) 1,3-Dichloropropane 95) 2-Hexanone 96) Dibromochloromethane	(2) (2) (2) (2) (2) (2) (2)	9.775 10.043 10.201 10.213 10.359 10.390 10.548 10.603	92 75 69 97 166 76 43 129	45653 53258 31293 30808 52655 61041M 21767	3.712 3.542 3.814 3.889 3.695 6.177 3.112
JOI DEDICHOCHEOLOMO CHANC	(-/				

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06 11 k Target 3.5 esignature user ID: sag03174

page 2 of 4

A = User selected an alternate hit.

^{* =} Compound is an internal standard.
\$ = Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 13:51 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compounds	I.S. Ref.	RT =====	QIon	Area	On-Column Amount (ng)
97) 1,2-Dibromoethane 98)*Chlorobenzene-d5	(2) (2)	10.737 11.138	107 117	30812 1095636	3.617 50.000
100) Chlorobenzene	(2)	11.168	112	88212	3.844
101) 1,1,1,2-Tetrachloroethane	(2)	11.235	131	25296	3.552
102) Ethylbenzene	(2)	11.290	91	138578	3.433
103) m+p-Xylene	(2)	11.400	106	118273	7.666
104) Xylene (Total)	(2)		106	176192	11.486
106) o-Xylene	(2)	11.734	106	57919	3.821
109) Styrene	(2)	11.765	104	89023	3.512
110) Bromoform	(2)	11.892	173	13224	2.499
111) Isopropylbenzene	(2)	12.008	105	144515	3.855
112) Cyclohexanone	(4)	12.099	55	102521	193.452
114) \$4-Bromofluorobenzene	(2)	12.136	95	545371	48.934
115) \$4-Bromofluorobenzene (mz174)		12.142	174	411955	47.197
116) 1,1,2,2-Tetrachloroethane	(3)	12.233	83	50619	3.830
119) 1,2,3-Trichloropropane	(3)	12.282	110	13325	3.603
117) Bromobenzene	(3)	12.282	156	35221	3.806
118) trans-1,4-Dichloro-2-Butene		12.288	53	105870	32.289 4.075
120) n-Propylbenzene	(3)	12.349	91	158131	3.869
121) 2-Chlorotoluene	(3)	12.428	126	33885	3.980
122) 1,3,5-Trimethylbenzene	(3)	12.482	105 126	120676 37437	3.940
123) 4-Chlorotoluene	(3)	12.531	134	25843	3.902
124) tert-Butylbenzene	(3) (3)	12.714 12.732	167	17890	3.374
125) Pentachloroethane	(3)	12.732	105	114734	3.732
126) 1,2,4-Trimethylbenzene	(3)	12.702	105	146111	4.092
127) sec-Butylbenzene	(3)	12.072	119	114695	3.776
128) p-Isopropyltoluene 129) 1,3-Dichlorobenzene	(3)	12.981	146	49464	3.168
130) *1, 4-Dichlorobenzene-d4	(3)	13.018	152	575820	50.000
131) 1,4-Dichlorobenzene	(3)	13.036	146	90538	4.582
132) 1,2,3-Trimethylbenzene	(3)	13.079	105	128141	3.889
133) Benzyl Chloride	(3)	13.158	91	45660M	2.171
134) 1,3-Diethylbenzene	(3)	13.200	105	67353	3.623
135) 1,4-Diethylbenzene	(3)	13.267	105	66504	3.710
137) 1,2-Dichlorobenzene	(3)	13.334	146	72597	4.052
136) n-Butylbenzene	(3)	13.334	92	64163	4.005
138) 1,2-Diethylbenzene	(3)	13.352	105	109520	4.979
139) 1,2-Dibromo-3-Chloropropane	(3)	13.894	75	10715	3.541

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06. Target 3/5 esignature user ID: sag03174. page 3 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Consideration to a continuous and the contract of the contract

Instrument ID: HP07159.i

Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Sample Name: VSTD004

Lab Sample ID: VSTD004

Compounds	I.S. Ref.	RT 	QIon	Area =======	On-Column Amount (ng)
140) 1,2,4-Trichlorobenzene 141) Hexachlorobutadiene 142) Naphthalene 144) 1,2,3-Trichlorobenzene 145) 2-Methylnaphthalene	(3)	14.466	180	48266	3.936
	(3)	14.502	225	15933	3.742
	(3)	14.666	128	178045	3.885
	(3)	14.764	180	49362	4.011
	(3)	15.439	142	122059	4.543

page 4 of 4

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Sample Name: VSTD004

Lab Sample ID: VSTD004

: 28 Compound Number

: Acrylonitrile Compound Name

Scan Number : 504 Retention Time (minutes): 4.653 : 53.00 Ouant Ion : 15115M Area (flag) : 3.3590

On-Column Amount (ng) 556 Integration stop scan: Integration start scan : 491 Y at integration end: : Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19:06. Target 3 5 esignature user 10 sag031/4

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 14:11 Automation

Lab Sample ID: VSTD004 Sample Name: VSTD004

Compound Number : 28

Compound Name : Acrylonitrile

: 504 Scan Number Retention Time (minutes): 4.653 : 53.00 Quant Ion : 16585 Area : 3.8316 On-column Amount (ng)

Integration start scan Integration stop scan: : 491 Y at integration start Y at integration end:

Digitally signed by sarah A. Guill on 08/15/2012 at 19 06. Target 3.5 esignature user ID: sag03174.

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst TD of latest file update: 15-Aug-2012 18:10 sag03174

Lab Sample ID: VSTD004 Sample Name: VSTD004

Compound Number : 45

: Propionitrile Compound Name

Scan Number : 759 Retention Time (minutes): 6.204 : 54.00 Ouant Ion : 122359M Area (flag) : 68.2101

On-Column Amount (ng) : Integration stop scan: Integration start scan 750 Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19:06: Tanget 3.5 esignature user ID:

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 14:11 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 45

Compound Name : Propionitrile

Scan Number : 759
Retention Time (minutes): 6.204
Quant Ion : 54.00
Area : 149553
On-column Amount (ng) : 85.9733

Integration start scan : 750 Integration stop scan: 834 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/15/2012 at U9:06 Target 3.5 esignature user 1D. sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 14:11

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Sample Name: VSTD004

Lab Sample ID: VSTD004

: 58 Compound Number

: 1,1-Dichloropropene Compound Name

: 895 Scan Number Retention Time (minutes): 7.032 Quant Ion : 75.00 Quant Ion : 44619M Area (flag) : 4.2386 On-Column Amount (ng)

Integration stop scan: 933 881 Integration start scan Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digatally signed by Sarah A. Gun Analyst responsible for change: on 08/15/2012 at 19 06 Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 14:11 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 58

Compound Name : 1,1-Dichloropropene

Scan Number : 895
Retention Time (minutes): 7.032
Quant Ion : 75.00
Area : 47753
On-column Amount (ng) : 4.9557

On-column Amount (ng) : 4.9557
Integration start scan : 881 Integration stop scan: 947
Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08715/2012 at 19:06 Target 3.5 esignature usem IDs sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Sublist used: 8260WI

الروا ويصفاعه ومحاض ومداويسيونيندي المهال والمنطوعة لماطرون والاراب الراايات

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Sample Name: VSTD004

Lab Sample ID: VSTD004

: 82 Compound Number

: 2-Nitropropane Compound Name

: 1236 Scan Number Retention Time (minutes): 9.106 : 41.00 Quant Ion : 16099MA Area (flag) : 6.8369 On-Column Amount (ng)

Integration stop scan: 1250 : 1230 Integration start scan Y at integration end: 227 Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Gulll Analyst responsible for change: on 08/15/2012 at 19:06

Target 3:5 esignature user 10: sag03174

GC/MS audit/management approval:

There is no spectral abundance to print at 9.156 minutes

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 14:11 Automation

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 82

Compound Name : 2-Nitropropane

Scan Number : 1225
Retention Time (minutes): 9.039
Quant Ion : 41.00
Area : 550
On-column Amount (ng) : 0.2890

On-column Amount (ng) : 0.2890 Integration start scan : 1222 Integration stop scan: 1226 Y at integration start : 290 Y at integration end: 290

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06. Target 3:5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Sample Name: VSTD004 Lab Sample ID: VSTD004

Compound Number : 95

Compound Name : 2-Hexanone

Scan Number : 1473
Retention Time (minutes): 10.548
Quant Ion : 43.00
Area (flag) : 61041M
On-Column Amount (ng) : 6.1769

On-Column Amount (ng) : 6.1/69
Integration start scan : 1464 Integration stop scan: 1513
Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Analyst responsible for change: on 08/15/2012 at 19:06.
Target 3:5 esignature user ID: sag03174

GC/MS audit/management approval: // S/14/12

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 14:11 Automation

Lab Sample ID: VSTD004 Sample Name: VSTD004

Compound Number

: 2-Hexanone Compound Name

: 1473 Scan Number Retention Time (minutes): 10.548 : 43.00 Quant Ion : 36234 Area

: 4.2158 On-column Amount (ng)

Integration stop scan: 1491 : 1464 Integration start scan Y at integration end: Y at integration start

Digitally signed by Sarah A. Guill on 08/15/2012 Target 3.5 esignature user ID (sag03174)

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:11 Date, time and analyst ID of latest file update: 15-Aug-2012 18:10 sag03174

Lab Sample ID: VSTD004 Sample Name: VSTD004

: 133 Compound Number

: Benzyl Chloride Compound Name

1902 Scan Number Retention Time (minutes): 13.158 Quant Ion 91.00 45660M Area (flag)

2.1710 On-Column Amount (ng)

Integration stop scan: 1906 : 1895 Integration start scan Y at integration end: 595 Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/15/2012 at 19:06.

Target 3.5 esignature user ID:

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i06.d Injection date and time: 15-AUG-2012 13:51

Instrument ID: HP07159.i Analyst ID: ads01731

Sublist used: 8260WI Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Calibration date and time: 15-AUG-2012 14:11

Date, time and analyst ID of latest file update: 15-Aug-2012 14:11 Automation

Lab Sample ID: VSTD004 Sample Name: VSTD004

: 133 Compound Number

Compound Name Benzyl Chloride

Scan Number 1902 Retention Time (minutes): 13.158 91.00 Quant Ion 76542 Area 3.5153 On-column Amount (ng)

: 1895 Integration stop scan: 1915 Integration start scan 595 Y at integration end: Y at integration start

Digitally signed by Sarah A. Guill on 08/15/2012 at 19:06 Target 3:5 esignature user ID: sag03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05 Target 3.5 esignature user ID: sag

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05. Target 3.5 esignature user ID: sag03174

page 2 of 2

A CONTROL OF THE PROPERTY OF T

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Instrum Injection date and time: 15-AUG-2012 14:15 Analyst

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
	Ref.				
49) Tetrahydrofuran 52)\$Dibromofluoromethane(mz111) 51)\$Dibromofluoromethane	(4) (1) (1)	6.540 6.741 6.741	71 111 113	2424 339187 331145	1.401 49.697 49.560

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05. Target 3.5 esignature user ID: sag03174 page 1 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

and the second of the second second of the s

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 14:15 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

The second of th

seems of the second

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
53) 1,1,1-Trichloroethane	(1)	6.771	97	9236	0.891
56) Cyclohexane	(1)	6.850	56	10223	0.788
55) Cyclohexane (mz 69)	(1)	6.862	69	4234	1.042
54) Cyclohexane (mz 84)	(1)	6.862	84	8866	0.821
59) Carbon Tetrachloride	(1)	7.021	117	5498	0.723
58) 1,1-Dichloropropene	(1)	7.033	75	11849	1.110
62)\$1,2-Dichloroethane-d4	(1)	7.197	102	88807	49.692
64) \$1, 2-Dichloroethane-d4 (mz104		7.203	104	56710	49.974
63) \$1,2-Dichloroethane-d4(mz65)	(1)	7.203	65	392506	49.997
61) Isobutyl Alcohol	(4)	7.252	41	25838	45.819
65) Benzene	(1)	7.313	78	27277	0.888
66) 1,2-Dichloroethane	(1)	7.319	62	8425	0.866
68) t-Amyl Methyl Ether	(1)	7.471	73	20962	0.889
70) *Fluorobenzene	(1)	7.665.	. 96	1494775	50.000
67) 1,2-Dichloroethane (mz 98)	(1)	7.665	98	2305	2.297
69) n-Heptane	(1)	7.690	43	11496	1.289
74) Trichloroethene	(1)	8.183	95	6606	0.870
71) n-Butanol	(4)	8.249	56	24323	27.308
75) Methylcyclohexane	(1)	8.414	83	9644	0.765
76) 1,2-Dichloropropane	(1)	8.468	63	7303	0.860
78) Dibromomethane	(1)	8.608	93	4232	0.823
80) 1,4-Dioxane	(4)	8.694	88	7234	52.800
77) Methyl Methacrylate	(1)	8.815	69	9049	1.055
81) Bromodichloromethane	(1)	8.821	83	6104	0.713
82) 2-Nitropropane	(4)	9.156	41 63	7722M	3.135
83) 2-Chloroethyl Vinyl Ether	(1)	9.326 9.424	75	2395 9949	0.414
84) cis-1,3-Dichloropropene 87)\$Toluene-d8(mz100)	(1) (2)	9.424	100	954711	0.804 47.940
85) 4-Methyl-2-Pentanone	(1)	9.691	43	14882A	1.167
86) \$Toluene-d8	(2)	9.691	98	1439904	48.355
88) Toluene	(2)	9.789	92	17908	0.888
89) trans-1,3-Dichloropropene	(2)	10.081	75	9179	0.768
91) 1,1,2-Trichloroethane	(2)	10.233	97	7043	0.7884
90) Ethyl Methacrylate	(2)	10.257	69	10692	0.732
95) 2-Hexanone	(2)	10.348	43	386	0.040
93) Tetrachloroethene	(2)	10.373	166	6199	0.805
94) 1,3-Dichloropropane	(2)	10.421	76	1.1883	0.858
96) Dibromochloromethane	(2)	10.616	129	4076	0.699
·	. ,				-

M = Compound was manually integrated.

Digitally signed by Sarah A. Gurll on 08/16/2012 at 20:05. Target 3.5 esignature user ID: sag03174

page 2 of 4

A = User selected an alternate hit.

^{* =} Compound is an internal standard.
\$ = Compound is a surrogate standard.

Misself of the second of the s

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 14:15 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
<u>-</u>			_		=======================================
97) 1,2-Dibromoethane	(2)	10.774	107	6175	0.746
98) *Chlorobenzene-d5	(2)	11.139	117	1064322	50.000
100) Chlorobenzene	(2)	11.170	112	18660	0.837
101) 1,1,1,2-Tetrachloroethane	(2)	11.236	131	5077	0.734
102) Ethylbenzene	(2)	11.340	91	30477	0.826
103) m+p-Xylene	(2)	11.449	106	26215	1.749
104) Xylene (Total)	(2)		106	38777	2.602
106) o-Xylene	(2)	11.760	106	12562	0.853
109) Styrene	(2)	11.796	104	18267	0.742
110) Bromoform	(2)	11.912	173	2250	2.197
111) Isopropylbenzene	(2)	12.021	105	31412	0.863
115) \$4-Bromofluorobenzene (mz174)	(2)	12.143	174	410499	48.414
112) Cyclohexanone	(4)	12.143	55	27988	50.492
114)\$4-Bromofluorobenzene	(2)	12.143	95	533363	49.265
116) 1,1,2,2-Tetrachloroethane	(3)	12.258	83	11864	0.903
117) Bromobenzene	(3)	12.307	156	7777	0.845
119) 1,2,3-Trichloropropane	(3)	12.313	110	2754	0.749
118) trans-1, 4-Dichloro-2-Butene		12.338	53	17298	5.305
120) n-Propylbenzene	(3)	12.392	91	32880A	0.809
121) 2-Chlorotoluene	(3)	12.465	126	7495	0.867
122) 1,3,5-Trimethylbenzene	(3)	12.508	105	27194	0.902
123) 4-Chlorotoluene	(3)	12.569	126	8149	0.862
124) tert-Butylbenzene	(3)	12.727	134	5175	0.786
125) Pentachloroethane	(3)	12.739	167	3300	0.626
126) 1,2,4-Trimethylbenzene	(3)	12.776	105	23294	0.762
127) sec-Butylbenzene	(3)	12.885	105	36190	1.019
129) 1,3-Dichlorobenzene	(3)	12.995	146	4719	0.304
130) *1, 4-Dichlorobenzene-d4	(3)	13.025	152	572672	50.000
128) p-Isopropyltoluene	(3)	13.037	119	30313	1.003
131) 1,4-Dichlorobenzene	(3)	13.043	146	28330	1.442
133) Benzyl Chloride	(3)	13.116	91	2451	1.335
132) 1,2,3-Trimethylbenzene		13.122	105	28760	0.878
134) 1,3-Diethylbenzene	(3)	13.262	105	15044	0.806
135) 1,4-Diethylbenzene	(3)	13.341	105	12137A	0.681
137) 1,2-Dichlorobenzene	(3)	13.384 13.396	146 105	17015 26130M	0.955
138) 1,2-Diethylbenzene	(3)		92	14226	0.000
136) n-Butylbenzene	(3) (3)	13.408 13.938	75	2423	0.893 0.805
139) 1,2-Dibromo-3-Chloropropane	(3)	13.330	75	2423	0.603

M = Compound was manually integrated.

A = User selected an alternate hit.

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05. Target 3.5 esignature user ID: sag03174

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 14:15 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI Calibration date and time: 15-AUG-2012 14:45
Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

	Compounds	I.S. Ref.	RT	QIon	Area ========	On-Column Amount (ng)
141)	Hexachlorobutadiene	(3)	14.515	225	4166	0.984
140)	1,2,4-Trichlorobenzene	(3)	14.515	180	13190	1.082
142)	Naphthalene	(3)	14.716	128	50435	1.107
144)	1,2,3-Trichlorobenzene	(3)	14.807	180	14178	1.158
145)	2-Methylnaphthalene	(3)	15.477	142	49771	1.863

page 4 of 4

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05. Target 3:5 esignature user ID: sag0317.4

Sample Spectrum (Background Subtracted)

and the first of the control of the control of the properties of the control of t

Manually Integrated Quant Ion HP MS ng15107.d, Ion 50.00 3,9... 3.6-3.3 032 3.0-2.7-2.4-2.1-1.8-1.5 1.2 0.9-0.6 0.3 0.0 2.00 2,02 2.04 2.06 2,08 2.10 2.18 2.20

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 3

Compound Name : Chloromethane

Scan Number : 73 Retention Time (minutes): 2.032 Quant Ion 50.00 7804M Area (flag) On-Column Amount (ng) 0.8918

Integration start scan 67 : Integration stop scan: 89 Y at integration start 0 Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A: Guill Analyst responsible for change: on 08/16/2012 at 20.05 $^{\circ}$ Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval:

Target 3.5 esignature user ID: sag03174

المتدومين والمتصابين والمتداع والمتداع والمتعادي والمتعادي والمتعادي والمتعادية

Manually Integrated Quant Ion HP MS ng15107.d, Ion 53.00 520 480-440 400 360-320-280-240-200 160-120-80-40 4.41 4.44 4.47 4.50 4.53 4.56 4.59 4.62 4.65 4.68 4.71 4.74 4.77 4.80 4.83 4.86 4.89 4.92 4.95 4.98 5.01 5.04 5.07 5.10

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45
Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 28

Compound Name : Acrylonitrile

Scan Number : 514
Retention Time (minutes): 4.715
Quant Ion : 53.00
Area (flag) : 1568M
On-Column Amount (ng) : 0.3436

Integration start scan : 478 Integration stop scan: 563 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: missed peak

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/16/2012 at 20:05

Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval: | Suffice 687 8/17//2

Company of the company of the control of the contro

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:34

Date, time and analyst ID of latest file update: 15-Aug-2012 14:35 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 28

The state of the s

Compound Name : Acrylonitrile

Expected RT (minutes) : 4.715 Quant Ion : 53.00

Digitally signed by Sarah A. | Guill on 08/16/2012 at 20:05. Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion HP MS ng15i07.d, Ion 83.00 4.8 4.4 4.0-3.6-3.2 2.8 2.4 2.0 1.2-0.8-0.4 6.54 6.56 Time (Min) 6.58 6.60 6.50 6.52 6.72 6,62 6,64 6.66 6.68 6.70 6.46 6.48

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst TD of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 50

Compound Name : Chloroform

Scan Number : 810
Retention Time (minutes): 6.516
Quant Ion : 83.00
Area (flag) : 12541M
On-Column Amount (ng) : 0.9949

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/16/2012 at 20:05.

Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval: [auditom: 68 8/17/12

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i
Analyst ID: ads01731

The state of the s

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:34

Date, time and analyst ID of latest file update: 15-Aug-2012 14:35 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 50

The production of the control of the

Compound Name : Chloroform

Scan Number : 810
Retention Time (minutes): 6.516
Quant Ion : 83.00
Area : 10524
On-column Amount (ng) : 0.9143

Integration start scan : 802 Integration stop scan: 816 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05.
Target 3.5 esignature user ID: sag03174

The first of the control of the cont

Manually Integrated Quant Ion

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 82

Compound Name : 2-Nitropropane

Scan Number : 1244
Retention Time (minutes): 9.156
Quant Ion : 41.00
Area (flag) : 7722M
On-Column Amount (ng) : 3.1353

Integration start scan : 1230 Integration stop scan: 1266 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Analyst responsible for change: On 08/16/2012 at 20:05.

GC/MS audit/management approval: Cullin 68 8/17/12

Commence of Angelow and the con-

Transparence of the second of

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:34

Date, time and analyst ID of latest file update: 15-Aug-2012 14:35 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 82

Compound Name : 2-Nitropropane

Scan Number : 1240
Retention Time (minutes): 9.132
Ouant Ton : 41 00

Quant Ion : 41.00
Area : 3045
On-column Amount (ng) : 1.3065

Integration start scan : 1235 Integration stop scan: 1245 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05. Target 3.5 esignature user ID: sag03174

entertaine for an exemple of the control of the control of the following of the control of the c

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 85

Compound Name : 4-Methyl-2-Pentanone

Scan Number : 1332
Retention Time (minutes): 9.691
Quant Ion : 43.00
Area (flag) : 14882A
On-Column Amount (ng) : 1.1671

Integration start scan : 1320 Integration stop scan: 1343 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/16/2012 at 20 05. Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval:

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:34

Date, time and analyst ID of latest file update: 15-Aug-2012 14:35 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 85

Compound Name : 4-Methyl-2-Pentanone

Scan Number : 1315
Retention Time (minutes): 9.588
Quant Ion : 43.00
Area : 119
On-column Amount (ng) : 0.0097

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05. Target 3.5 esignature user ID: sag03174:

American programme and the control of the control o

Manually Integrated Quant Ion

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 120

Compound Name : n-Propylbenzene

Scan Number : 1776
Retention Time (minutes): 12.392
Quant Ion : 91.00
Area (flag) : 32880A
On-Column Amount (ng) : 0.8095

Integration start scan : 1769 Integration stop scan: 1783 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A Guili

Analyst responsible for change: on 08/16/2012 at 20:05:

Target 3.5 esignature user ID sag03174

GC/MS audit/management approval: Jankhon 68 8/17/12

120

150

150

The state of the s

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

80

100

Instrument ID: HP07159.i Analyst ID: ads01731

received the same and the contract

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:34

Date, time and analyst ID of latest file update: 15-Aug-2012 14:35 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 120

0.2-

Compound Name : n-Propylbenzene

: 1766 Scan Number Retention Time (minutes): 12.331 Quant Ion 91.00 Area 2534 On-column Amount (ng) 0.0691

Integration start scan 1761 Integration stop scan: 1769 0 Y at integration end: Y at integration start

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05. Target 3.5 esignature user TD: sag03174

Market and Market A. Market and M

Manually Integrated Quant Ion

HP MS ng15107.d. Ion 105.00

5.6:
5.2:
4.8:
4.4:
4.0:
3.6:
60 2.8:
X 2.4:
> 2.0:
1.6:
1.2:
0.8:
0.8:
0.4:

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

13.28

Instrument ID: HP07159.i Analyst ID: ads01731

13.46

Address and a series of the se

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

13.38

13,40

Calibration date and time: 15-AUG-2012 14:45

13.26

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

13.32 Time 13.34

13.36

Sample Name: VSTD001 Lab Sample ID: VSTD001

13.30

Compound Number : 135

13.24

0.0

13.22

Compound Name : 1,4-Diethylbenzene

Scan Number : 1932
Retention Time (minutes): 13.341
Quant Ion : 105.00
Area (flag) : 12137A
On-Column Amount (ng) : 0.6807

Integration start scan : 1925 Integration stop scan: 1935 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A Guill Analyst responsible for change: on 08/16/2012 at 20:05 Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval: | landlon is 8/11/12

and probably and commencements are selected to the comment of the

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:34

Date, time and analyst ID of latest file update: 15-Aug-2012 14:35 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 135

Account of Elifonetic control of the

Compound Name : 1,4-Diethylbenzene

Scan Number : 1919
Retention Time (minutes): 13.262
Quant Ion : 105.00
Area : 15044
On-column Amount (ng) : 0.9451

Integration start scan : 1911 Integration stop scan: 1925 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:05. Target 3.5 esignature user ID: sag03174

Manually Integrated Quant Ion

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:45

Date, time and analyst ID of latest file update: 16-Aug-2012 19:23 sag03174

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 138

Compound Name : 1,2-Diethylbenzene

Scan Number : 1941
Retention Time (minutes): 13.396
Quant Ion : 105.00
Area (flag) : 26130M
On-Column Amount (ng) : 0.0000

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/16/2012 at 20:05:

Target 3.5 esignature wser ID: sag03174

GC/MS audit/management approval:

Janton 688 8/17/12

The state of the s

Data File: /chem/HP07159.i/12aug15a.b/ng15i07.d Injection date and time: 15-AUG-2012 14:15

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12auq15a.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 15-AUG-2012 14:34

Date, time and analyst ID of latest file update: 15-Aug-2012 14:35 Automation

Sample Name: VSTD001 Lab Sample ID: VSTD001

Compound Number : 138

Compound Name : 1,2-Diethylbenzene

Scan Number : 1932 Retention Time (minutes): 13.341 Quant Ion : 105.00

Area : 31093

On-column Amount (ng) : 1.5816 Integration start scan : 1925 Integration stop scan: 1953 Y at integration start 424 Y at integration end:

Digitally signed by Sarah A. Guill on 08/16/2012 at Target 3.5 esignature user ID: sag03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15m01.d Injection date and time: 15-AUG-2012 14:38

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 15-AUG-2012 18:28

Date, time and analyst ID of latest file update: 16-Aug-2012 20:09 sag03174

Sample Name: 0.5PPB Lab Sample ID: 0.5PPB

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:11. Target 3.5 esignature user ID: sag

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15m01.d Injection date and time: 15-AUG-2012 14:38

Instrument ID: HP07159.i
Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 15-AUG-2012 18:28

Date, time and analyst ID of latest file update: 16-Aug-2012 20:09 sag03174

Sample Name: 0.5PPB Lab Sample ID: 0.5PPB

Digitally sigmed by Sarah A. Guill on 08/16/2012 at 20:11.
Target::3:5 esignature user ID: sag03174

page 2 of 2

and the second s

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15m01.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 14:38 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260W

Calibration date and time: 15-AUG-2012 18:28

Date, time and analyst ID of latest file update: 16-Aug-2012 20:09 sag03174

Sample Name: 0.5PPB Lab Sample ID: 0.5PPB

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
 Dichlorodifluoromethane Chloromethane 	(1)	1.922	85 50	4229 8399	0.440 0.982
4) Vinyl Chloride	(1)	2.178	62	7839	0.906
5) Bromomethane	(1)	2.512	94	5294	1.011
7) Chloroethane	(1)	2.616	64	4505	1.017
8) Trichlorofluoromethane	(1)	2.950	101	5071	0.527
12) Ethanol	(4)	3.163	45	5971	59.176
13) Acrolein	(4)	3.449	56	10666	4.512
16) 1,1-Dichloroethene	(1)	3.534	96	4869	0.820
18) Freon 113	(1)	3.534	101	2241	0.371
20) Methyl Iodide	(1)	3.729	142	8436	0.803
21) 2-Propanol	(4)	3.838	45	9905	9.789
22) Carbon Disulfide	(1)	3.838	76	17432	0.868
23) Allyl Chloride	(1)	3.997	41	11986	0.956
24) Methyl Acetate	(1)	4.143	43	6370	0.712
25) Methylene Chloride	(1)	4.161	84	5888	0.778
26) *t-Butyl Alcohol-d10	(4)	4.191	65	349138	250.000
27) t-Butyl Alcohol	(4)	4.319	59 73	17149	10.198
30) Methyl Tertiary Butyl Ether 29) trans-1,2-Dichloroethene	(1)	4.593 4.605	96	11116 6360	0.463 0.930
34) n-Hexane	(1)	5.043	57	3954	0.432
36) 1,1-Dichloroethane	(1)	5.226	63	10277	0.787
33) 1,2-Dichloroethene (total)	(1)	3.220	96	11999	1.650
37) di-Isopropyl Ether	(1)	5.365	45	14182	0.581
38) 2-Chloro-1,3-Butadiene	(1)	5.426	53	8047	0.769
39) Ethyl t-Butyl Ether	(1)	5.883	59	13822	0.579
44) 2,2-Dichloropropane	(1)	6.083	77	7708	0.817
40) cis-1,2-Dichloroethene	(1)	6.108	96	5639	0.721
42) 2-Butanone	(1)	6.302	43	3189	0.551
45) Propionitrile	(4)	6.327	54	15090	8.490
48) Bromochloromethane	(1)	6.430	128	1737	0.433
47) Methacrylonitrile	(1)	6.491	67	17240	3.471
49) Tetrahydrofuran	(4)	6.509	71	507	0.309
50) Chloroform	(1)	6.527	83	11048	0.897
51) \$Dibromofluoromethane	(1)	6.740	113	326065	49.954
53) 1,1,1-Trichloroethane	(1)	6.783 6.868	97 56	8186 6238	0.808
56) Cyclohexane 59) Carbon Tetrachloride	(1) (1)	7.020	117	4570	0. 4 92 0.616
Jaj Carbon letrachioride	(+)	1.020	11/	4370	0.016

^{* =} Compound is an internal standard.

page 1 of 3

Digitally signed by Sarah A. Guill on 08/16/2012 at 20:11 Target 3.5 esignature user ID: sag03174

^{\$ =} Compound is a surrogate standard.

Assessment of the control of the con

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15m01.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 14:38 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260W

Calibration date and time: 15-AUG-2012 18:28

Date, time and analyst ID of latest file update: 16-Aug-2012 20:09 sag03174

Sample Name: 0.5PPB Lab Sample ID: 0.5PPB

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
-		RT 7.044 7.203 7.288 7.318 7.324 7.464 7.665 8.176 8.419 8.425 8.474 8.620 8.717 8.827 8.863 9.399 9.423 9.691 9.776 10.104 10.238 10.305 10.311 10.378 10.433 10.628 10.774 11.145 11.175 11.248 11.352 11.461 11.765 11.802			
110) Bromoform 111) Isopropylbenzene 114)\$4-Bromofluorobenzene	(2) (2) (2)	11.917 12.027 12.142	173 105 95	798 30394 524114	1.955 0.851 49.346

^{* =} Compound is an internal standard.

page 2 of 3

^{\$ =} Compound is a surrogate standard.

Substitute and the first of the second of th

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15m01.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 14:38 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260W

Calibration date and time: 15-AUG-2012 18:28

Date, time and analyst ID of latest file update: 16-Aug-2012 20:09 sag03174

Sample Name: 0.5PPB Lab Sample ID: 0.5PPB

Compounds	I.S. Ref.	RT ======	QIon	Area	On-Column Amount (ng)
112) Cyclohexanone	(4)	12.179	55	12120	23.081
116) 1,1,2,2-Tetrachloroethane	(3)	12.270	83	5732	0.443
119) 1,2,3-Trichloropropane	(3)	12.325	110	1361	0.376
117) Bromobenzene	(3)	12.325	156	4959	0.547
118) trans-1, 4-Dichloro-2-Butene		12.349	53	8037	2.503
120) n-Propylbenzene	(3)	12.398	91	30801	0.770
121) 2-Chlorotoluene	(3)	12.465	126	6130	0.721
122) 1,3,5-Trimethylbenzene	(3)	12.507	105	25020	0.843
123) 4-Chlorotoluene	,	12.574	126	6479	0.696
124) tert-Butylbenzene	(3)	12.726	134	4922	0.759
125) Pentachloroethane	(3)	12.745	167	1801	0.347
126) 1,2,4-Trimethylbenzene	(3)	12.775	105	19604	0.651
127) sec-Butylbenzene	(3)	12.885	105	35487	1.015
130) *1,4-Dichlorobenzene-d4	(3)	13.025	152	563812	50.000
128) p-Isopropyltoluene	(3)	13.043	119	29907	1.005
131) 1,4-Dichlorobenzene	(3)	13.043	146	20749	1.072
132) 1,2,3-Trimethylbenzene	(3)	13.128	105	21582	0.669
134) 1,3 Diethylbenzene	(3)	13.268	105	14271	0.776
135) 1,4-Diethylbenzene	(3)	13.347	105	11474	0.654
137) 1,2-Dichlorobenzene	(3)	13.402	146	10561	0.602
136) n-Butylbenzene	(3)	13.420	92	14525	0.926
139) 1,2-Dibromo-3-Chloropropane	(3)	13.961	75	850	0.287
141) Hexachlorobutadiene	(3)	14.521	225	4919	1.180
140) 1,2,4-Trichlorobenzene	(3)	14.533	180	9238	0.769
142) Naphthalene	(3)	14.740	128	27859	0.621
144) 1,2,3-Trichlorobenzene	(3)	14.819	180	9629	0.799
145) 2-Methylnaphthalene	(3)	15.513	142	28823	1.096

^{* =} Compound is an internal standard.

page 3 of 3

and the second s

Digitally signed by Sarah A. Guill on 08/16/2012 at 20 11.
Target 3.5 esignature user ID: sag03174

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Calibration date and time: 17-AUG-2012 15:11

Sublist used: 8260W

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Lab Sample ID: LCSNICV Sample Name: LCSNICV

Digitally signed by Sarah A. Guill on 08/17/2012 at 15:19 Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Calibration date and time: 17-AUG-2012 15:11

Sublist used: 8260W

The state of the s

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Digitally signed by Sarah A: Guill on 08/17/2012 at 15:19 Target 3 5 esignature user ID: sag03174

page 2 of 2

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV

Lab Sample ID: LCSNICV

		ı.s.	•			On-Column Amount
		Ref.	RT	QIon	Area .	(ng) ========
_	1) Dichlorodifluoromethane	(1)	1.916	85	141317	14.624
	3) Chloromethane	(1)	2.056	50 ·	139608	16.225
	4) Vinyl Chloride	(1)	2.190	. 62	147866	16.975
	5) Bromomethane	(1)	2.518	94	59627M	11.313
	7) Chloroethane	(1)	2.615	64	53672	12.037
	8) Trichlorofluoromethane	(1)	2.938	101	176956	18.273
	12) Ethanol	(4)	3.169	. 45	97786M	627.531
	13) Acrolein	(4)	3.376	56	354528	132.000
	16) 1,1-Dichloroethene	(1)	3.522	96	128496	21.492
	18) Freon 113	(1)	3.528	101	118754	19.541
	19) Acetone	(1)	3.558	58	211819M	171.736
	20) Methyl Iodide	(1)	3.717	142	219728	20.793
	21) 2-Propanol	(4)	3.741	45	161880M	140.806
	22) Carbon Disulfide	(1)	3.820	76	399240	19.747
	23) Allyl Chloride	(1)	3.978	41	237028	18.774
	24) Methyl Acetate	(1)	4.009	. 43	149645	16.610
	25) Methylene Chloride	(1)	4.155	84	155306	20.398
	26) *t-Butyl Alcohol-d10	(4)	4.179	65	396684	250.000
	27) t-Butyl Alcohol	(4)	4.295		348209M	182.249
	28) Acrylonitrile	(1)	4.520	53	448034M	99.840
	30) Methyl Tertiary Dutyl Ether	(1)·	4.562	73	490301	20.285
	29) trans-1,2-Dichloroethene	(1)	4.568	96	145673	21.154
	34) n-Hexane	(1)	4.988	57	175475	19.035
	36) 1,1-Dichloroethane	(1)	5.201	63	275376	20.957
	37) di-Isopropyl Ether	(1)	5.317	45	497405	20.255
	<pre>33) 1,2-Dichloroethene (total)</pre>	(1)		96	310609	42.096
	38) 2-Chloro-1,3-Butadiene	(1)	5.347	53	209480	19.883
	39) Ethyl t-Butyl Ether	(1)	5.858	59 -		20.395
	40) cis-1,2-Dichloroethene	(1)		96	164936	20.942
	44) 2,2-Dichloropropane	(1)	6.065	77	195643	20.593
	42) 2-Butanone	(1)	6.077	43	923475	158.654
	45) Propionitrile		6.162	54	258152M	127.828
	47) Methacrylonitrile	(1)	6.369	67	742211	148.464
	48) Bromochloromethane	(1)	6.387	128	77527	19.186
,	49) Tetrahydrofuran	(4)	6.454	71	175656	94.341
	50) Chloroform	(1)	6.503	83	241014	19.445
	51) \$Dibromofluoromethane	(1)	6.728	113	327506	49.851
	53) 1,1,1-Trichloroethane	(1)	6.770	97	210746	20.668

M = Compound was manually integrated.

Digitally signed by Sarah A. Guill on 08/17/2012 at 15:19. Target 3.5 esignature user ID: sag03174

page 1 of 3

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

THE TOUR STORY OF SOME THE SEC

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34 Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260W Calibration date and time: 17-AUG-2012 15:11 Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compounds	I.S. Ref.	RT	OTen	ħ m o n	On-Column Amount
	Ker.		QIon	Area	(ng)
56) Cyclohexane	(1)	6.856	56	248790	19.501
58) 1,1-Dichloropropene	(1)	7.002	75	198966	18.953
59) Carbon Tetrachloride	(1)	7.002	117	150153	20.092
61) Isobutyl Alcohol	(4)	7.166	41	00000	449.325
62)\$1,2-Dichloroethane-d4	(1)	7.190	102	89678	51.035
65) Benzene	(1)	7:275	78	624917	20.699
66) 1,2-Dichloroethane	(1)	7.294	62	197596	20.663
68) t-Amyl Methyl Ether	(1)	7.440	73	465400	20.069
69) n-Heptane	(1)	7.653	43	155260	17.704.
70) *Fluorobenzene	(1)	7.653		1469728	50.000
71) n-Butanol	(4)	8.078	56	477393	908.289
74) Trichloroethene	(1)	8.145	95	154834	20.732
75) Methylcyclohexane	(1)	8.395	83	233267	18.812
76) 1,2-Dichloropropane	(1)	8.431	63	171036	20.483
78) Dibromomethane	(1)	8.583	93	102600	20.300
77) Methyl Methacrylate	(1)	8.620	69	157524	18.682
80) 1,4-Dioxane	(4)	8.626	88	79347	538.064
81) Bromodichloromethane	(1)	8.790	83	169973	20.185
82) 2-Nitropropane	(4)	9.094	41	41878	15.797
83) 2-Chloroethyl Vinyl Ether	(1)	9.216	63	106141M	18.642
84) cis-1,3-Dichloropropene	(1)	9.374	75	263499	21.648
85) 4-Methyl-2-Pentanone	(1)	9.551	43	1264425	100.852
86) \$Toluene-d8	(2)	9.678 9.757	98 92	1428751 395015	50.811 20.741
88) Toluene	(2)		92 75	231651	20.741
89) trans-1,3-Dichloropropene	(2) (2)	10.007 10.116	69	269993	19.575
90) Ethyl Methacrylate 91) 1,1,2-Trichloroethane	(2)	10.110.	97	152421	20.254
93) Tetrachloroethane	(2)	10.169	166	152421	20.234
94) 1,3-Dichloropropane	(2)	10.341	76	270315	20.576
95) 2-Hexanone	(2)	10.350	43	970118	107.018
96) Dibromochloromethane	(2)	10.585	129	134994	18.571
97) 1,2-Dibromoethane	(2)	10.700	107	162261	20.762
98) *Chlorobenzene-d5	(2)	11.132	117	1005036	50.000
100) Chlorobenzene	(2)	11.163	112	430671	20.458
101) 1,1,1,2-Tetrachloroethane	(2)	11.224	131	131964	20.202
102) Ethylbenzene	(2)	11.260	91	705659	20.244
103) m+p-Xylene	(2)	11.363	106	576452	40.730
104) Xylene (Total)	(2)		106	856816	60.892
_				·	

M = Compound was manually integrated.
* = Compound is an internal standard.

Digitally signed by Sarah A. Guill on 08/17/2012 at 15:19 Target 3.5 esignature user ID: sag03174

page 2 of 3

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Instrument ID: HP07159.i Injection date and time: 15-AUG-2012 16:34 Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
-			106 104 173 105 55 95 83 156	Area ====================================	
142) Naphthalene 144) 1,2,3-Trichlorobenzene 145) 2-Methylnaphthalene	(3) (3) (3)	14.588 14.734 15.385	128 180 142	847046 234342 468678	18.732 19.297 17.677

M = Compound was manually integrated.

page 3 of 3

Digitally signed by Sarah A: Guill on 08/17/2012 at 15:19 Target 3.5 esignature user ID: sag03174

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number

Compound Name : Bromomethane

: 153 Scan Number Retention Time (minutes): 2.518 : 94.00 Quant Ion Area (flag) : 59627M : 11.3133 On-Column Amount (ng)

Integration start scan 141 Integration stop scan: 173 : Y at integration start Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/17/2012 at 15:19

Target 3:5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Lab Sample ID: LCSNICV

Compound Number Compound Name : Ethanol : 260 Scan Number Retention Time (minutes): 3.169 : 45.00 Quant Ion : 97786M Area (flag)

Sample Name: LCSNICV

: 627.5308 On-Column Amount (ng)

: Integration stop scan: Integration start scan 231 Y at integration end: Y at integration start 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/17/2012 at 15:19. Target 3 5 esignature user ID: sag03174

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260W

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 17:00 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number : 12
Compound Name : Ethanol
Scan Number : 245
Retention Time (minutes): 3.078
Quant Ion : 45.00
Area : 22571
On-column Amount (ng) : 135.2933

Integration start scan : 231 Integration stop scan: 250 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/17/2012 at 15:19. Target 3.5 esignature user TD: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

: 19 Compound Number Compound Name : Acetone Retention Time (minutes): 3.558
Quant Ion

: 58.00 Area (flag) : 211819M On-Column Amount (ng) : 171.7358

Integration start scan Integration stop scan: 405 315 : Y at integration end: Y at integration start

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/17/2012 at 15:19

Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260W

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 17:00 sag03174

Lab Sample ID: LCSNICV Sample Name: LCSNICV

: 19 Compound Number : Acetone Compound Name Scan Number 324 Retention Time (minutes): 3.558 58.00 Quant Ion Area 212142 : 171.9978

On-column Amount (ng) Integration stop scan: 315 Integration start scan Y at integration end: Y at integration start

Digitally signed by Sarah A: Guill on 08/17/2012 at 15:19 Target 3:5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11 Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Compound Number

Sample Name: LCSNICV

Compound Name : 2-Propanol

: 354 Scan Number Retention Time (minutes): 3.741 Quant Ion : 45.00 Area (flag) : 161880M : 140.8058 On-Column Amount (ng)

Integration start scan 340 Integration stop scan: 411 : Y at integration start Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/17/2012 at 15:19.

Target 3.5 esignature user ID: sag03174

Lab Sample ID: LCSNICV

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m Sublist used: 8260W

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 17:00 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number : 21

Compound Name : 2-Propanol

Scan Number : 354
Retention Time (minutes): 3.741
Quant Ion : 45.00
Area : 172314
On-column Amount (ng) : 149.8814

Integration start scan : 340 Integration stop scan: 447 Y at integration start : 400 Y at integration end: 333

Digitally signed by Sarah A. Guill on 08/17/2012 at 15:19. Target 3.5 esignature user ID: sag03174.

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Compound Number

Sample Name: LCSNICV

Compound Name : t-Butyl Alcohol

Scan Number : 445 Retention Time (minutes): 4.295 : 59.00 Quant Ion : 348209M Area (flag) : 182.2492 On-Column Amount (ng)

428 Integration stop scan: Integration start scan : Y at integration start Y at integration end:

Reason for manual integration: improper integration

Digitally signed by Sarah A: Guill Analyst responsible for change: on 08/17/2012 at 15:19

Target 3.5 esignature user ID: sag03174

Lab Sample ID: LCSNICV

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34 Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 17:00 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number : 27

Compound Name : t-Butyl Alcohol

Scan Number : 445
Retention Time (minutes): 4.295
Quant Ion : 59.00
Area : 376129
On-column Amount (ng) : 196.8618

Integration start scan : 428 Integration stop scan: 521 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08/17/2012 at 15:19 Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number : 28

Compound Name : Acrylonitrile

Scan Number : 482
Retention Time (minutes): 4.520
Quant Ion : 53.00
Area (flag) : 448034M
On-Column Amount (ng) : 99.8399

Integration start scan : 468 Integration stop scan: 544 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/17/2012 at 15:19.

Target 3.5 esignature user ID: sag03174

Spending of the formula service of

Manually Integrated Quant Ion HP MS ng15v01.d, Ion 54.00 7.0 6.5 6.0 5.5 5.0 4.0 3.5 3.0-2.5 2.0 1.5 1.0 0.5 6.14 6.16 6.18 6.20 6.22 6.24 6.26 6.28 6.30 6.32 6.34 6.36 6.38 6.12

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number : 45

Compound Name : Propionitrile

Scan Number : 752
Retention Time (minutes): 6.162
Quant Ion : 54.00
Area (flag) : 258152M
On-Column Amount (ng) : 127.8278

Integration start scan : 744 Integration stop scan: 774 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill
Analyst responsible for change: on 08/17/2012 at 15:19.
Target 3.5 esignature user; ID: sag03174

GC/MS audit/management approval: [auflian 18]

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 17:00 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number : 45

Compound Name : Propionitrile

Scan Number : 752
Retention Time (minutes): 6.162
Quant Ion : 54.00
Area : 293551
On-column Amount (ng) : 145.3562

Integration start scan : 744 Integration stop scan: 817 Y at integration start : 0 Y at integration end: 0

Digitally signed by Sarah A. Guill on 08%17/2012 at 15:19 Target 3.5 esignature user ID: sag03174

Contracting a series and the first of the first

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number : 83

Compound Name : 2-Chloroethyl Vinyl Ether

Scan Number : 1254
Retention Time (minutes): 9.216
Quant Ion : 63.00
Area (flag) : 106141M
On-Column Amount (ng) : 18.6417

Integration start scan : 1246 Integration stop scan: 1273 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill Analyst responsible for change: on 08/17/2012 at 15:19.

Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 17-AUG-2012 15:11

Date, time and analyst ID of latest file update: 17-Aug-2012 15:17 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number : 133

Compound Name : Benzyl Chloride

Scan Number : 1897
Retention Time (minutes): 13.128
Quant Ion : 91.00
Area (flag) : 374175M
On-Column Amount (ng) : 16.5371

Integration start scan : 1890 Integration stop scan: 1901 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Sarah A. Guill

Analyst responsible for change: on 08/17/2012 at 15:19.

Target 3.5 esignature user ID: sag03174

GC/MS audit/management approval: Jaullion 48 8/17/12

Sample Spectrum (Background Subtracted) HP ChemStation MS ngi5v01.d. Scan 1897: 13.128 min. (SUB) 2.0 1.9 1.8 1.6 1.4 1.2-1.1-1.0-0.8 0.6 126 0.4 0.3 0.2 160 190

Data File: /chem/HP07159.i/12aug15a.b/ng15v01.d Injection date and time: 15-AUG-2012 16:34

Instrument ID: HP07159.i Analyst ID: ads01731

Method used: /chem/HP07159.i/12aug15a.b/N826W.m

Sublist used: 8260W

Calibration date and time: 15-AUG-2012 16:31

Date, time and analyst ID of latest file update: 15-Aug-2012 17:00 sag03174

Sample Name: LCSNICV Lab Sample ID: LCSNICV

Compound Number : 133

Compound Name : Benzyl Chloride

Scan Number : 1897
Retention Time (minutes): 13.128
Quant Ion : 91.00
Area : 491790
On-column Amount (ng) : 23.6956

Integration start scan : 1890 Integration stop scan: 1910 Y at integration end: 822

Digitally signed by Sarah A. Guill on 08/17/2012 at 15:19. Target 3.5 esignature user ID: sag03174

Data File: /chem/HP07159.i/12sep05b.b/ns05t05.d

Date : 05-SEP-2012 12:02 Client ID: BFB MAR28-12

Instrument: HP07159,i

Page 1

Sample Info: BFB MAR28-12;50NG BFB;1;2;;

Operator: ERS02237

Column diameter: 0.25

Column phase: DB-624

Digitally signed by Emily R. Styer on 09/05/2012 at 12:10. Target 3.5 esignature user ID: ers02237

Date : 05-SEP-2012 12:02 Client ID: BFB MAR28-12

Instrument: HP07159.i

Sample Info: BFB MAR28-12;50NG BFB;1;2;;

Operator: ERS02237

Column phase: DB-624

Column diameter: 0.25

Digitally signed by Emily R. Styer on 09/05/2012 at 12:10. Target 3.5 esignature user ID: ers02237

Data File: /chem/HP07159.i/12sep05b.b/ns05t05.d

Date : 05-SEP-2012 12:02

Client ID: BFB MAR28-12

Instrument: HP07159.i

Sample Info: BFB MAR28-12;50NG BFB;1;2;;

Operator: ERS02237

Column phase: DB-624

Column diameter: 0.25

Data File: ns05t05.d Spectrum: Avg. Scans 111-113 (4.77), Background Scan 105 Location of Maximum: 95.00

Number of points: 56

	m/z				Y +					
+- I		579			1498		528			385
ı	37.00	3088	1	60,00	520 I	78.00	480	ı	119,00	349
ı	38,00	2627	ı	61.00	2783 I	79.00	1141	ı	128,00	93
ı	39.00	1151	1	62.00	2577	80.00	369	ı	130.00	178
ı	40.00	148	1	63,00	2032	81,00	1202	ı	141.00	529
+-			-+-		+			+-		
ı	44,00	7	Ļ	64.00	84 I	82.00	203	١	143,00	464
ı	45.00	579	1	67,00	105 I	87.00	3001	i	174.00	57080
ı	47.00	976	1	68,00	5909 I	88,00	2989	I	175.00	4206
ı	48.00	422	T	69.00	6224 I	91.00	292	I	176.00	55136
ı	49.00	2485	ı	70.00	514 l	92.00	1670	I	177.00	3720
+-			-+-		+			+-		
1	50.00	11831	i	72,00	361 I	93.00	2303	Ī	208.00	9
ı	51,00	3811	ï	73,00	2693 1	94.00	7195	I		
ı	52,00	85	ı	74.00	10124	95.00	68800	ı		
f	55,00	94	1	75.00	31552 I	96.00	4820	ı		
ı	56,00	885	ī	76.00	2563 I	106.00	93	ı		

Digitally signed by Emily R. Styer on 09/05/2012 at 12:10. Target 3.5 esignature user ID: ers02237

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42. Target 3.5 esignature user ID: ers02237

page 1 of 2

Total Ion Chromatogram (TIC)

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39 Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42. Target 3.5 esignature user ID: ers02237

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 12:39

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
1) Dichlorodifluoromethane	(1)	1.950	85	494793	49.780
3) Chloromethane	(1)	2.090	50	409045	46.218
4) Vinyl Chloride	(1)	2.230	62	426436	47.597
5) Bromomethane	(1)	2.564	94	272805	50.323
7) Chloroethane	(1)	2.656	64	231681	50.523
8) Trichlorofluoromethane	(1)	2.984	101	521187	52.325
12) Ethanol	(4)	3.136	45	172119M	1154.534
13) Acrolein	(4)	3.410	56	1308034	509.052
16) 1,1-Dichloroethene	(1)	3.574	96	332819	54.121
18) Freon 113	(1)	3.586	101	341033	54.560
19) Acetone	(1)	3.617	58	139549	110.000
20) Methyl Iodide	(1)	3.769	142	609113	56.040
21) 2-Propanol	(4)	3.793	45	259433M	235.870
22) Carbon Disulfide	(1)	3.878	76	1166010	56.070
23) Allyl Chloride	(1)	4.031	41	622702	47.951
24) Methyl Acetate	(1)	4.061	43	442086	47.707
25) Methylene Chloride	(1)	4.213	84	399217	50.979
26)*t-Butyl Alcohol-d10	(4)	4.237	65	379512	250.000
27) t-Butyl Alcohol	(4)	4.365	59	413371	226.144
28) Acrylonitrile	(1)	4.596	53	238035	51.571
29) trans-1,2-Dichloroethene	(1)	4.627	96	381167	53.815
30) Methyl Tertiary Butyl Ether	(1)	4.627	73	1273065	51.208
34) n-Hexane	(1)	5.046	57	537762	56.716
36) 1,1-Dichloroethane	(1)	5.253	63	713761	52.812
33) 1,2-Dichloroethene (total)	(1)		96	797012	105.149
37) di-Isopropyl Ether	(1)	5.375	45	1321817	52.333
38) 2-Chloro-1,3-Butadiene	(1)	5.405	53	544847	50.279
39) Ethyl t-Butyl Ether	(1)	5.910	59	1241965	50.269
40) cis-1,2-Dichloroethene	(1)	6.117	96	415845	51.334
44) 2,2-Dichloropropane	(1)	6.123	77	514196	52.620
42) 2-Butanone	(1)	6.141	43	634481	105.978
45) Propionitrile	(4)	6.221	54	433244M	224.234
47) Methacrylonitrile 48) Bromochloromethane	(1)	6.434	67	604541	117.568
49) Tetrahydrofuran	(1) (4)	6.440 6.513	128 71	213591 188260	51.392
50) Chloroform	(1)	6.561	83	645497	105.685 50.633
51) \$Dibromofluoromethane	(1)	6.786	113	348901	51.633
52) \$Dibromofluoromethane (mz111)	(1)	6.786	111	355558	51.512
or, aprocomorrantomornane (morrit)	(+)	0.700	* * * *	555550	21.212

M = Compound was manually integrated.

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42.

Target 3.5 esignature user ID: ers02237

page 1 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 12:18 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
53) 1,1,1-Trichloroethane	(1)	6.823	97	519107	49.495
54) Cyclohexane (mz 84)	(1)	6.908	84	563287	51.555
55) Cyclohexane (mz 69)	(1)	6.908	69	208676	50.789
56) Cyclohexane	(1)	6.908	56	685892	52.270
59) Carbon Tetrachloride	. (1)	7.054	117	439044	57.118
58) 1,1-Dichloropropene	(1)	7.054	75	528524	48.948
61) Isobutyl Alcohol	(4)	7.218	41	350061	602.835
64) \$1,2-Dichloroethane-d4 (mz104)		7.249	104	58878	51.303
63) \$1,2-Dichloroethane-d4 (mz65)	(1)	7.249	65	398564M	50.200
62)\$1,2-Dichloroethane-d4	(1)	7.249	102	90534	50.092
65) Benzene	(1)	7.328	78	1596463	51.412
67) 1,2-Dichloroethane (mz 98)	(1)	7.346	98	52720	51.941
66) 1,2-Dichloroethane	(1)	7.346	62	520251	52.893
68) t-Amyl Methyl Ether	(1)	7.486	73	1195346	50.115
69) n-Heptane	(1)	7.705	43	459042	50.891
70) *Fluorobenzene	(1)	7.711	96	1511702M	50.000
71) n-Butanol	(4)	8.125	56	588131	1157.528
74) Trichloroethene	(1)	8.198	95	393350	51.207
75) Methylcyclohexane	(1)	8.447	83	609781	47.810
76) 1,2-Dichloropropane	(1)	8.478	63	446807	52.024
78) Dibromomethane	(1)	8.636	93	270454	52.024
77) Methyl Methacrylate	(1)	8.654	69	411168	47.410
80) 1,4-Dioxane	(4)	8.666	88	98617	698.996
81) Bromodichloromethane	(1)	8.836	83	485110	56.008
82) 2-Nitropropane	(4)	9.128	41	332477	131.092
83) 2-Chloroethyl Vinyl Ether	(1)	9.244	63	299982	51.223
84) cis-1,3-Dichloropropene	(1)	9.408	75	649021	51.841
85) 4-Methyl-2-Pentanone	(1)	9.591	43	1393275	108.044
86) \$Toluene-d8	(2)	9.725	98	1501401	50.547
87) \$Toluene-d8 (mz100)	(2)	9.725	100	1003146	50.499
88) Toluene	(2)	9.798	92	1013690	50.388
89) trans-1,3-Dichloropropene	(2)	10.035	75	620688	52.088
90) Ethyl Methacrylate	(2)	10.138	69	674228	46.277
91) 1,1,2-Trichloroethane	(2)	10.223	97	400808	50.421
93) Tetrachloroethene	(2)	10.376	166	427679	55.712
94) 1,3-Dichloropropane	(2)	10.394	76	702434	50.864
95) 2-Hexanone	(2)	10.485	43	1046499	109.289
96) Dibromochloromethane	(2)	10.619	129	412363	53.374
	. – ,				

M = Compound was manually integrated.

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42.
Target 3.5 esignature user ID: ers02237

page 2 of 4

^{* =} Compound is an internal standard.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 12:18 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
97) 1,2-Dibromoethane 98)*Chlorobenzene-d5	(2) (2)	10.735	107 117	428090 1061639	51.856 50.000
100) Chlorobenzene	(2)	11.191	112	1142575	51.382
101) 1,1,1,2-Tetrachloroethane 102) Ethylbenzene	(2)	11.258	131	375451	54.413
102) Ethylbenzene 103) m+p-Xylene	(2) (2)	11.282 11.385	91 106	1863916 1516696	50.620 101.452
103) M+p-xylene 104) Xylene (Total)	(2)	11.303	106	2253945	151.643
104) Aylene (10tal)	(2)	11.726	106	737249	50.191
109) Styrene	(2)	11.720	104	1242011	50.568
110) Bromoform	(2)	11.896	173	317729	55.408
111) Isopropylbenzene	(2)	12.024	105	1842718	50.732
112) Cyclohexanone	(4)	12.109	55	269504	472.152
115) \$4-Bromofluorobenzene (mz174)	(2)	12.158	174	466170	55.119
114)\$4-Bromofluorobenzene	(2)	12.158	95	544739	50.443
116) 1,1,2,2-Tetrachloroethane	(3)	12.249	83	650512	44.987
117) Bromobenzene	(3)	12.286	156	496535	49.043
118) trans-1,4-Dichloro-2-Butene		12.292	53	413731	115.344
119) 1,2,3-Trichloropropane	(3)	12.292	110	183996	45.479
120) n-Propylbenzene	(3)	12.347	91	2142894	47.961
121) 2-Chlorotoluene	(3)	12.426	126	446378	46.967
122) 1,3,5-Trimethylbenzene	(3)	12.480	105	1557068	46.940
123) 4-Chlorotoluene	(3)	12.511	126	489208	47.063
124) tert-Butylbenzene	(3)	12.724	134	352409	48.633
125) Pentachloroethane	(3)	12.748	167	300453	51.790
126) 1,2,4-Trimethylbenzene	(3)	12.766	105	1625749	48.336
127) sec-Butylbenzene	(3)	12.888 12.985	105 119	1863590 1650469	47.709 49.663
128) p-Isopropyltoluene 129) 1,3-Dichlorobenzene	(3) (3)	12.985	146	880860	51.577
130) *1,4-Dichlorobenzene-d4	(3)	13.028	152	629939	50.000
131) 1,4-Dichlorobenzene	(3)	13.026	146	996068	46.076
132) 1,2,3-Trimethylbenzene	(3)	13.077	105	1692750	46.963
133) Benzyl Chloride	(3)	13.144	91	1149412	43.635
134) 1,3-Diethylbenzene	(3)	13.198	105	975848	47.519
135) 1,4-Diethylbenzene	(3)	13.259	105	917445	46.779
136) n-Butylbenzene	(3)	13.283	92	829717	47.336
137) 1,2-Dichlorobenzene	(3)	13.320	146	920809	46.977
138) 1,2-Diethylbenzene	(3)	13.350	105	992357	45.314
139) 1,2-Dibromo-3-Chloropropane	(3)	13.867	75	143208	43.261

^{* =} Compound is an internal standard.

page 3 of 4

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42.

^{\$ =} Compound is a surrogate standard.

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Calibration date and time: 05-SEP-2012 12:39

Sublist used: 8260WI

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050

Lab Sample ID: VSTD050

Compounds	I.S. Ref.	RT =====	QIon	Area =======	On-Column Amount (ng)
140) 1,2,4-Trichlorobenzene	(3)	14.421	180	628825	46.879
141) Hexachlorobutadiene	(3)	14.506	225	235980	50.663
142) Naphthalene	(3)	14.598	128	2225624	44.396
144) 1,2,3-Trichlorobenzene	(3)	14.750	180	631991	46.944
145) 2-Methylnaphthalene	(3)	15.376	142	1187308	40.394

page 4 of 4

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42. Target 3.5 esignature user ID: ers02237

Sample Spectrum (Background Subtracted)

Manually Integrated Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 12

Compound Name : Ethanol Scan Number : 254 Retention Time (minutes): 3.136 Quant Ion : 45.00 Area (flag) : 172119M On-Column Amount (ng) : 1154.5340

Integration start scan : 240 Integration stop scan: 289 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Emily R. Styer

Analyst responsible for change: on 09/05/2012 at 12:42.

Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:39 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 12
Compound Name : Ethanol : Scan Number : 254
Retention Time (minutes): 3.136
Quant Ion : 45.00
Area : 183897
On-column Amount (ng) : 1233.5382

Integration start scan : 240 Integration stop scan: 304 Y at integration start : 0 Y at integration end: 0

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42. Target 3.5 esignature user ID: ers02237

Manually Integrated Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 12:18 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 21

Compound Name : 2-Propanol

Scan Number : 362
Retention Time (minutes): 3.793
Quant Ion : 45.00
Area (flag) : 259433M
On-Column Amount (ng) : 235.8700

Reason for manual integration: improper integration

Digitally signed by Emily R. Styer

Analyst responsible for change: on 09/05/2012 at 12:42.

Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:39 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 21

Compound Name 2-Propanol

Scan Number 362 Retention Time (minutes): 3.793 Quant Ion 45.00 Area 282055 On-column Amount (ng) 256.4373

Integration start scan 353 Integration stop scan: 451 Y at integration start 550 Y at integration end: 525

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42. Target 3.5 esignature user ID: ers02237

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 45

Compound Name : Propionitrile

Scan Number : 761
Retention Time (minutes): 6.221
Quant Ion : 54.00
Area (flag) : 433244M
On-Column Amount (ng) : 224.2343

Integration start scan : 751 Integration stop scan: 784 Y at integration start : 0 Y at integration end: 0

Reason for manual integration: improper integration

Digitally signed by Emily R. Styer

Analyst responsible for change: on 09/05/2012 at 12:42.

Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

120

100

110

140

130

150

190

200

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 12:18 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:39 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 45

Compound Name : Propionitrile

Scan Number : 761
Retention Time (minutes): 6.221
Quant Ion : 54.00
Area : 486795
On-column Amount (ng) : 251.9505

On-column Amount (ng) : 251.9505Integration start scan : 751 Integration stop scan: 831Y at integration start : 0 Y at integration end: 0

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42. Target 3.5 esignature user ID: ers02237

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Lab Sample ID: VSTD050 Sample Name: VSTD050

Compound Number : 63

: 1,2-Dichloroethane-d4(mz65) Compound Name

: 930 Scan Number Retention Time (minutes): Quant Ion 65.00 Area (flag) 398564M 50.2004 On-Column Amount (ng)

942 Integration start scan : 921 Integration stop scan: Y at integration end: 164 Y at integration start

improper integration Reason for manual integration:

Digitally signed by Emily R. Styer

Analyst responsible for change: on 09/05/2012 at 12:42.

Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

2sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:39 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 63

Compound Name : 1,2-Dichloroethane-d4(mz65)

Scan Number : 930
Retention Time (minutes): 7.249
Quant Ion : 65.00
Area : 427552

On-column Amount (ng) : 52.4523

Integration start scan : 921 Integration stop scan: 962 Y at integration start : 0 Y at integration end: 322

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42. Target 3.5 esignature user ID: ers02237

Sample Spectrum (Background Subtracted)

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 12:18 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:41 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 70

Compound Name : Fluorobenzene

Scan Number : 1006
Retention Time (minutes): 7.711
Quant Ion : 96.00
Area (flag) : 1511702M
On-Column Amount (ng) : 50.0000

Reason for manual integration: improper integration

Digitally signed by Emily R. Styer

Analyst responsible for change: on 09/05/2012 at 12:42.

Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Sample Spectrum (Background Subtracted)

Original Integration of Quant Ion

Data File: /chem/HP07159.i/12sep05b.b/ns05c01.d Injection date and time: 05-SEP-2012 12:18

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8260WI

Calibration date and time: 05-SEP-2012 12:39

Date, time and analyst ID of latest file update: 05-Sep-2012 12:39 ers02237

Sample Name: VSTD050 Lab Sample ID: VSTD050

Compound Number : 70

Compound Name : Fluorobenzene

Scan Number : 1006
Retention Time (minutes): 7.711
Quant Ion : 96.00
Area : 1552027
On-column Amount (ng) : 50.0000

On-column Amount (ng) : 50.0000 Integration start scan : 996 Integration stop scan: 1095 Y at integration start : 0 Y at integration end: 0

Digitally signed by Emily R. Styer on 09/05/2012 at 12:42. Target 3.5 esignature user ID: ers02237

Raw QC Data

VBLKN08

Lancaster Laboratories Analysis Summary for GC/MS Volatiles VBLKN08

Data file: /chem/HP07159.i/12sep05b.b/ns05b05.d Injection date and time: 05-SEP-2012 12:41
Data file Sample Info. Line: VBLKN08;VBLKN08;1;3;;;PLM;;; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 ers02237

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 873

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code:

Matrix: WATER

Level: Low

'On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.261(-0.023)	439	65	362023 (-5)	250.00	
70) Fluorobenzene	7.716(-0.005)	1007	96	1488774 (-2)	50.00	
98) Chlorobenzene-d5	11.177(-0.011)	1576	117	1071249 (1)	50.00	
130) 1,4-Dichlorobenzene-d4	13.057(-0.029)	1885	152	606855 (-4)	50.00	

Surrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51) Dibromofluoromethane	(1)	6.797 (-0.001)	113	336073	50.500	101%		80 - 116
62) 1,2-Dichloroethane-d4	(1)	7.254 (0.000)	102	86586	48.645	97%		77 - 113
86) Toluene-d8	(2)	9.730(0.000)	98	1437581	47.965	96%		80 - 113
114) 4-Bromofluorobenzene	(2)	12.181(-0.001)	95	527355	48.395	97%		78 - 113

		I.S. Ref.		(, (DDm)	07	.	Conc.	Conc.	Blank	0	Reporting Limit	roo
	get Compounds		RT	(+/-RRT)	Qlon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	•
1)	Dichlorodifluoromethane	(1)				Not Detected					1	5
3)	Chloromethane	(1)				Not Detected					1	5
4)	Vinyl Chloride	(1)				Not Detected					1	5
5)	Bromomethane	(1)	•			Not Detected					1	5
7)	Chloroethane	(1)				Not Detected					1	5
8)	Trichlorofluoromethane	(1)				Not Detected					1	5
16)	1,1-Dichloroethene	(1)				Not Detected					0.8	5
19)	Acetone	(1)				Not Detected					6	20
25)	Methylene Chloride	(1)				Not Detected					2	5
29)	trans-1,2-Dichloroethene	(1)				Not Detected					0.8	5
30)	Methyl Tertiary Butyl Ether	(1)				Not Detected					0.5	5
36)	1,1-Dichloroethane	(1)				Not Detected					1	5
40)	cis-1,2-Dichloroethene	(1)				Not Detected					0.8	5
42)	2-Butanone	(1)				Not Detected					3	10
44)	2,2-Dichloropropane	(1)				Not Detected					1	5
48)	Bromochloromethane	(1)				Not Detected					1	5
50)	Chloroform	(1)				Not Detected					0.8	5
53)	1,1,1-Trichloroethane	(1)				Not Detected					0.8	5
58)	1,1-Dichloropropene	(1)				Not Detected					1	5
59)	Carbon Tetrachloride	(1)				Not Detected					1	5
65)	Benzene	(1)				Not Detected					0.5	5
66)	1,2-Dichloroethane	(1)				Not Detected					1	5
74)	Trichloroethene	(1)				Not Detected					1	5
76)	1,2-Dichloropropane	(1)				Not Detected					1	5
78)	Dibromomethane	(1)				Not Detected					1	5
81)	Bromodichloromethane	(1)				Not Detected					1	5
84)	cis-1,3-Dichloropropene	(1)				Not Detected					1	5
	4-Methyl-2-Pentanone	(1)				Not Detected					3	10
88)	Toluene	(2)				Not Detected					0.7	5
89)	trans-1,3-Dichloropropene	(2)				Not Detected					1	5
91)	1,1,2-Trichloroethane	(2)				Not Detected					0.8	5

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28. Target 3.5 esignature user ID: ers02237

VBLKN08 Lancaster Laboratories Analysis Summary for GC/MS Volatiles

VBLKN08

Data file: /chem/HP07159.i/12sep05b.b/ns05b05.d

Data file Sample Info. Line: VBLKN08;VBLKN08;1;3;;;PLM;;;

Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 ers02237

Injection date and time: 05-SEP-2012 12:41

Instrument ID: HP07159.i

Batch: N122492AA

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sa	LOQ
93)	Tetrachloroethene	(2)				Not Detected					0.8	5
94)	1,3-Dichloropropane	(2)				Not Detected			•		1	5
96)	Dibromochloromethane	(2)				Not Detected					1	5
97)	1,2-Dibromoethane	(2)				Not Detected					1	5
	Chlorobenzene	(2)				Not Detected					0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)				Not Detected					1	5
102)	Ethylbenzene	(2)				Not Detected					0.8	5
103)	m+p-Xylene	(2)				Not Detected					0.8	5
106)	o-Xylene	(2)				Not Detected					0.8	5
109)	Styrene	(2)				Not Detected					1	5
110)	Bromoform	(2)				Not Detected					1	5
111)	Isopropylbenzene	(2)				Not Detected					1	5
116)	1,1,2,2-Tetrachloroethane	(3)				Not Detected					1	5
117)	Bromobenzene	(3)				Not Detected					1	5
119)	1,2,3-Trichloropropane	(3)				Not Detected					1	5
120)	n-Propylbenzene	(3)				Not Detected					1	5
121)	2-Chlorotoluene	(3)				Not Detected					1	5
122)	1,3,5-Trimethylbenzene	(3)				Not Detected					1	5
123)	4 Chlorotoluene	(3)				Not Detected					1	5
124)	tert-Butylbenzene	(3)				Not Detected					1	5
126)	1,2,4-Trimethylbenzene	(3)				Not Detected					1	5
127)	sec-Butylbenzene	(3)				Not Detected					1	5
128)	p-Isopropyltoluene	(3)				Not Detected					1	5
129)	1,3-Dichlorobenzene	(3)				Not Detected					1	5
131)	1,4-Dichlorobenzene	(3)				Not Detected					1	5
136)	n-Butylbenzene	(3)				Not Detected					1	5
137)	1,2-Dichlorobenzene	(3)				Not Detected					1	5
139)	1,2-Dibromo-3-Chloropropane	(3)				Not Detected					2	5
	1,2,4-Trichlorobenzene	(3)				Not Detected					1	5
	Hexachlorobutadiene	(3)				Not Detected					2	5
	Naphthalene	(3)				Not Detected					1	5
	1,2,3-Trichlorobenzene	(3)				Not Detected					1	5

Total number of targets = 63

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28. Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

page 2 of 2

Total Ion Chromatogram (TIC)

Data File: /chem/HP07159.i/12sep05b.b/ns05b05.d Injection date and time: 05-SEP-2012 12:41

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 ers02237

Sample Name: VBLKN08 Lab Sample ID: VBLKN08

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28.
Target 3.5 esignature user ID: ers02237

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem/HP07159.i/12sep05b.b/ns05b05.d Injection date and time: 05-SEP-2012 12:41

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732 Calibration date and time: 05-SEP-2012 13:23 Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 ers02237

Sample Name: VBLKN08 Lab Sample ID: VBLKN08

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28.

Target 3.5 esignature user ID: ers02237

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05b05.d Injection date and time: 05-SEP-2012 12:41

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 ers02237

Sample Name: VBLKN08 Lab Sample ID: VBLKN08

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
26) *t-Butyl Alcohol-d10	(4)	4.261	65	362023	250.000
51) \$Dibromofluoromethane	(1)	6.797	113	336073	50.500
62)\$1,2-Dichloroethane-d4	(1)	7.254	102	86586	48.645
70)*Fluorobenzene	(1)	7.716	96	1488774	50.000
86)\$Toluene-d8	(2)	9.730	98	1437581	47.965
98)*Chlorobenzene-d5	(2)	11.177	117	1071249	50.000
114)\$4-Bromofluorobenzene	(2)	12.181	95	527355	48.395
130) *1,4-Dichlorobenzene-d4	(3)	13.057	152	606855	50.000

^{* =} Compound is an internal standard.

page 1 of 1

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28. Target 3.5 esignature user ID: ers02237

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

PAT16MS

Lab Code: LANCAS Case No.: SDG No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6769196

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s45.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L Q

(g,	
75-71-8Dichlorodifluoromethane	17
74-87-3Chloromethane	15
75-01-4Vinyl Chloride	16
74-83-9Bromomethane	12
75-00-3Chloroethane	15
75-69-4Trichlorofluoromethane	21
75-35-41,1-Dichloroethene	25
67-64-1Acetone	160
75-09-2Methylene Chloride	22
156-60-5trans-1,2-Dichloroethene	23
1634-04-4Methyl Tertiary Butyl Ether	20
75-34-31,1-Dichloroethane	23
156-59-2cis-1,2-Dichloroethene	22
78-93-32-Butanone	160
594-20-72,2-Dichloropropane	23
74-97-5Bromochloromethane	21
67-66-3Chloroform	21
71-55-61,1,1-Trichloroethane	23
563-58-61,1-Dichloropropene	21
56-23-5Carbon Tetrachloride	25
71-43-2Benzene	22
107-06-21,2-Dichloroethane	22
79-01-6Trichloroethene	22
78-87-51,2-Dichloropropane	21
74-95-3Dibromomethane	21
75-27-4Bromodichloromethane	22
10061-01-5cis-1,3-Dichloropropene	21
108-10-14-Methyl-2-Pentanone	96
108-88-3Toluene	21
10061-02-6trans-1,3-Dichloropropene	20

page 1 of 3

FORM I VOA

EPA	SAMPLE	NO.

Lab Name: Lancaster Laboratories Contract:____

Lab Code: LANCAS Case No.:____ SAS No.:___ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769196

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s45.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

		CONCENT	TRATION	UNITS:		
CAS NO.	COMPOUND	(ug/L or	ug/Kg)	ug/L		Q
79-00-5	1,1,2-Trichloro	ethane		2	0	
127-18-4	Tetrachloroethe	ne	j	2	4	
142-28-9	1,3-Dichloropro	pane		2	0	
124-48-1	Dibromochlorome	thane	1	2	1	
106-93-4	1,2-Dibromoetha	ne	1	2	1	
108-90-7	Chlorobenzene			2:	2	
630-20-6	1,1,1,2-Tetrach	loroethar	ne	2:	2	
100-41-4	Ethylbenzene			2	1	
179601-23-1	m+p-Xylene			4:	3	
95-47-6	o-Xylene			2	1	
100-42-5	Styrene			2	0	
75-25-2	Bromoform			2:	1	
98-82-8	Isopropylbenzen	e		2:	2	
79-34-5	1,1,2,2-Tetrach	loroethar	ıe	18	8	
108-86-1	Bromobenzene		1	20	0	
96-18-4	1,2,3-Trichloro	propane		1:	9	
103-65-1	n-Propylbenzene		1	20	0	
95-49-8	2-Chlorotoluene		1	20	0	
108-67-8	1,3,5-Trimethyl	benzene		2	0	
106-43-4	4-Chlorotoluene			20	0	
98-06-6	tert-Butylbenze	ne		20	0	
95-63-6	1,2,4-Trimethyl	benzene		20	0	
135-98-8	sec-Butylbenzen	e		20	0	
99-87-6	p-Isopropyltolu	ene		20	0	
541-73-1	1,3-Dichloroben	zene		2	1	
106-46-7	1,4-Dichloroben	zene		20	0	
104-51-8	n-Butylbenzene			20	0	
95-50-1	1,2-Dichloroben	zene	1	20	0	
96-12-8	1,2-Dibromo-3-C	hloroprop	oanė	16	6	
120-82-1	1,2,4-Trichloro	benzene		19	9	

EPA SAMPLE NO.

PAT16MS

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769196

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s45.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L 87-68-3-----Hexachlorobutadiene 21 91-20-3-----Naphthalene 16 87-61-6-----1,2,3-Trichlorobenzene 19

PAT16MS

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769196MS

Data file: /chem/HP07159.i/12sep05b.b/ns05s45.d Injection date and time: 05-SEP-2012 18:52
Data file Sample Info. Line: PAT16MS;6769196MS;1;3;MS;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 05-Sep-2012 19:12 Automation

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.236(0.002)	435	65	332915 (-12)	250.00	
70) Fluorobenzene	7.709(0.002)	1006	96	1346092 (-11)	50.00	
98) Chlorobenzene-d5	11.165(0.002)	1574	117	933556 (-12)	50.00	
130) 1,4-Dichlorobenzene-d4	13.032(-0.004)	1881	152	555973 (-12)	50.00	

	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.79	1 (-0.001)	113	313734	52.140	104%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.24	7(0.000)	102	84135	52.279	105%		77 - 113
86)	Toluene-d8	(2)	9.72	3(0.000)	98	1338110	51.231	102%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.15	6(0.000)	95	474312	49.947	100%		78 - 113

Target Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	(in sa	LOQ ample)
1) Dichlorodifluoromethane	(1)	1.954(-0.000)	85	147864	16.706	16.71	======	======	1	5
3) Chloromethane	(1)	2.094(-0.000)	50	115477	14.653	14.65			ī	5
4) Vinyl Chloride	(1)	2.234(-0.000)	62	128357	16.089	16.09			1	5
5) Bromomethane	(1)	2.550(0.001)	94	58855	12.193	12.19			1	5
7) Chloroethane	(1)	2.654(0.000)	64	59815	14.647	14.65			1	5
8) Trichlorofluoromethane	(1)	2.982(0.000)	101	183931	20.738	20.74			1	5
16) 1,1-Dichloroethene	(1)	3.572(0.000)	96	- 135222	24.694	24.69			0.8	5
19) Acetone	(1)	3.609(0.000)	58	175107	155.011	155.01			6	20
25) Methylene Chloride	(1)	4.211(0.000)	84	151691	21.754	21.75			2	5
29) trans-1,2-Dichloroethene	(1)	4.631(-0.000)	96	146146	23.172	23.17			0.8	5
30) Methyl Tertiary Butyl Ether	(1)	4.619(0.000)	73	445291	20.115	20.12			0.5	5
36) 1,1-Dichloroethane	(1)	5.258 (-0.000)	63	278524	23.144	23.14			1	5
40) cis-1,2-Dichloroethene	(1)	6.122(-0.000)	96	158968	22.038	22.04			0.8	5
42) 2-Butanone	(1)	6.140(0.000)	43	863898	162.050	162.05			3	10
44) 2,2-Dichloropropane	(1)	6.122(0.000)	77	197659	22.716	22.72			1	5
48) Bromochloromethane	(1)	6.444 (-0.000)	128	76679	20.720	20.72			1	5
50) Chloroform	(1)	6.560(0.000)	83	236772	20.857	20.86			0.8	5
53) 1,1,1-Trichloroethane	(1)	6.827(-0.000)	97	217515	23.291	23.29			0.8	5
58) 1,1-Dichloropropene	(1)	7.058(-0.000)	75	198972	20.694	20.69			1	5
59) Carbon Tetrachloride	(1)	7.058(-0.000)	117	173652	25.371	25.37			1	5
65) Benzene	(1)	7.332 (-0.000)	78	611949	22.132	22.13			0.5	5
66) 1,2-Dichloroethane	(1)	7.350(-0.000)	62	196759	22.465	22.47			1	5
74) Trichloroethene	(1)	8.202 (-0.000)	95	151992	22.221	22.22			1	5
76) 1,2~Dichloropropane	(1)	8.482 (-0.000)	63	163846	21.425	21.42			1	5
78) Dibromomethane	(1)	8.640 (-0.000)	93	96206	20.783	20.78			1	5
81) Bromodichloromethane	(1)	8.841 (-0.000)	83	172895	22.417	22.42			1	5
84) cis-1,3-Dichloropropene	(1)	9.419(-0.001)	75	236989	21.259	21.26			1	5
85) 4-Methyl-2-Pentanone	(1)	9.589(-0.000)	43	1105417	96.268	96.27			3	10
88) Toluene	(2)	9.802(-0.000)	92	379106	21.430	21.43			0.7	5
89) trans-1,3-Dichloropropene	(2)	10.045(-0.001)	75	206300	19.688	19.69			1	5
91) 1,1,2-Trichloroethane	(2)	10.228 (-0.000)	97	143179	20.483	20.48			0.8	5

PAT16MS Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769196MS

Data file: /chem/HP07159.i/12sep05b.b/ns05s45.d Injection date and time: 05-SEP-2012 18:52
Data file Sample Info. Line: PAT16MS;6769196MS;1;3;MS;PTL09;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 05-Sep-2012 19:12 Automation

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

Sample Concentration Formula: On-Column Amount * (Vt/Vo) VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sam	LOQ
93)	Tetrachloroethene	(2)	10.380(-0.000)	166	163181	24.173	24.17			0.8	5
94)	1,3-Dichloropropane	(2)	10.398 (-0.000)	76	247291	20.364	20.36			1	5
96)	Dibromochloromethane	(2)	10.617(0.000)	129	144154	21.323	21.32			1	5
97)	1,2-Dibromoethane	(2)	10.739(-0.000)	107	149875	20.646	20.65			1	5
100)	Chlorobenzene	(2)	11.195(-0.000)	112	423757	21.671	21.67			0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)	11.256(-0.000)	131	134788	22.214	22.21			1	5
102)	Ethylbenzene	(2)	11.292 (-0.001)	91	685111	21.159	21.16			0.8	5
103)	m+p-Xylene	(2)	11.396(-0.001)	106	566432	43.087	43.09			0.8	5
106)	o-Xylene	(2)	11.730(-0.000)	106	271694	21.034	21.03			0.8	5
109)	Styrene	(2)	11.761(-0.001)	104	437721	20.267	20.27			1	5
110)	Bromoform	(2)	11.901(-0.000)	173	99032	20.813	20.81			1	5
111)	Isopropylbenzene	(2)	12.028(-0.000)	105	693509	21.713	21.71			1	5
116)	1,1,2,2-Tetrachloroethane	(3)	12.254(-0.000)	83	231971	18.176	18.18			1	5
117)	Bromobenzene	(3)	12.290(-0.000)	156	182342	20.406	20.41			1	5
119)	1,2,3-Trichloropropane	(3)	12.290(0.000)	110	66453	18.611	18.61			1	5
120)	n-Propylbenzene	(3)	12.351(-0.000)	91	798406	20.247	20.25			1	5
121)	2-Chlorotoluene	(3)	12.430(-0.000)	126	165260	19.702	19.70			1	5
122)	1,3,5-Trimethylbenzene	(3)	12.485(-0.000)	105	575969	19.673	19.67			1	5
123)	4-Chlorotoluene	(3)	12.515(0.000)	126	180502	19.675	19.67			1	5
124)	tert-Butylbenzene	(3)	12.728 (-0.000)	134	129032	20.175	20.18			1	5
126)	1,2,4-Trimethylbenzene	(3)	12.771 (-0.000)	105	584939	19.705	19.70			1	5
127)	sec-Butylbenzene	(3)	12.892 (-0.000)	105	691169	20.048	20.05			1	5
128)	p-Isopropyltoluene	(3)	12.990(-0.000)	119	598395	20.401	20.40			1	5
129)	1,3-Dichlorobenzene	(3)	12.996(-0.000)	116	309520	20.534	20.53			1	5
131)	1,4-Dichlorobenzene	(3)	13.051(0.000)	146	380946	19.966	19.97			1	5
136)	n-Butylbenzene	(3)	13.294 (-0.000)	92	306177	19.791	19.79			1	5
137)	1,2-Dichlorobenzene	(3)	13.330(-0.000)	146	338528	19.569	19.57			1	5
139)	1,2-Dibromo-3-Chloropropane	(3)	13.884(-0.000)	75	46715	15.990	15.99			2	5
140)	1,2,4-Trichlorobenzene	(3)	14.444(-0.001)	180	229164	19.357	19.36			1	5
141)	Hexachlorobutadiene	(3)	14.511 (0.000)	225	86402	21.018	21.02			2	5
142)	Naphthalene	(3)	14.620(-0.001)	128	724078	16.365	16.37			1	5
144)	1,2,3-Trichlorobenzene	(3)	14.766 (-0.000)	180	230122	19.367	19.37			1	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Data File: /chem/HP07159.i/12sep05b.b/ns05s45.d Injection date and time: 05-SEP-2012 18:52

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sub-Calibration date and time: 05-SEP-2012 13:23

Sublist used: 8732

Date, time and analyst ID of latest file update: 05-Sep-2012 19:12 Automation

Sample Name: PAT16MS Lab Sample ID: 6769196MS

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43.

Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem/HP07159.i/12sep05b.b/ns05s45.d Injection date and time: 05-SEP-2012 18:52

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732 Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:12 Automation

Lab Sample ID: 6769196MS Sample Name: PAT16MS

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43. Target 3.5 esignature user ID: sag03174

page 2 of 2

Instrument ID: HP07159.i

Analyst ID: ERS02237

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s45.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 18:52 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:12 Automation

Sample Name: PAT16MS Lab Sample ID: 6769196MS

Compounds	I.S. Ref.	RT = =====	QIon	Area	On-Column Amount (ng)
1) Dichlorodifluoromethane	(1)	1.954	85	147864	16.706
3) Chloromethane	(1)	2.094	50	115477	14.653
4) Vinyl Chloride	(1)	2.234	62	128357	16.089
5) Bromomethane	(1)	2.551	94	58855	12.193
7) Chloroethane	(1)	2.654	64	59815	14.647
8) Trichlorofluoromethane	(1)	2.982	101	183931	20.738
16) 1,1-Dichloroethene	\cdot (1)	3.573	96	135222	24.694
19) Acetone	(1)	3.609	58	175107	155.011
25) Methylene Chloride	(1)	4.211	84	151691	21.754
26) *t-Butyl Alcohol-d10	(4)	4.236	65	332915	250.000
30) Methyl Tertiary Butyl Ether	(1)	4.619	73	445291	20.115
29) trans-1,2-Dichloroethene	(1)	4.631	96	146146	23.172
36) 1,1-Dichloroethane	(1)	5.258	63	278524	23.144
40) cis-1,2-Dichloroethene	(1)	6.122	96	158968	22.038
44) 2,2-Dichloropropane	(1)	6.122	77	197659	22.716
42) 2-Butanone	$(\tilde{1})$	6.140	43	863898	162.050
48) Bromochloromethane	(1)	6.444	128	76679	20.720
50) Chloroform	$(\widetilde{1})$	6.560	83	236772	20.857
51) \$Dibromofluoromethane	(1)	6.791	113	313734	52.140
53) 1,1,1-Trichloroethane	(1)	6.827	97	217515	23.291
58) 1,1-Dichloropropene	(1)	7.058	75	198972	20.694
59) Carbon Tetrachloride	(1)	7.058	117	173652	25.371
62) \$1,2-Dichloroethane-d4	(1)	7.247	102	84135	52.279
65) Benzene	(1)	7.332	78	611949	22.132
66) 1,2-Dichloroethane	(1)	7.350	62	196759	22.465
70) *Fluorobenzene	(1)	7.709	96	1346092	50.000
74) Trichloroethene	(1)	8.202	95	151992	22.221
76) 1,2-Dichloropropane	(1)	8.482	63	163846	21.425
78) Dibromomethane	(1)	8.640	93	96206	20.783
81) Bromodichloromethane	(1)	8.841	83	172895	22.417
84) cis-1,3-Dichloropropene	(1)	9.419	75	236989	21.259
85) 4-Methyl-2-Pentanone	(1)	9.589	43	1105417	96.268
86) \$Toluene-d8	(2)	9.723	98	1338110	51.231
88) Toluene	(2)	9.802	92	379106	21.430
89) trans-1,3-Dichloropropene	(2)	10.045	75	206300	19.688
91) 1,1,2-Trichloroethane	(2)	10.228	97	143179	20.483
93) Tetrachloroethene	(2)	10.380	166	163181	24.173
94) 1,3-Dichloropropane	(2)	10.398	76	247291	20.364

^{* =} Compound is an internal standard.

page 1 of 2

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43.

^{\$ =} Compound is a surrogate standard.

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s45.d Injection date and time: 05-SEP-2012 18:52

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:12 Automation

Sample Name: PAT16MS Lab Sample ID: 6769196MS

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
96) Dibromochloromethane	(2)	10.617	129	144154	21.323
97) 1,2-Dibromoethane	(2)	10.739	107	149875	20.646
98) *Chlorobenzene-d5	(2)	11.165	117	933556	50.000
100) Chlorobenzene	(2)	11.195	112	423757	21.671
101) 1,1,1,2-Tetrachloroethane	(2.)	11.256	131	134788	22.214
102) Ethylbenzene	(2)	11.293	91	685111	21.159
103) m+p-Xylene	(2)	11.396	106	566432	43.087
106) o-Xylene	(2)	11.730	106	271694	21.034
109) Styrene	(2)	11.761	104	437721	20.267
110) Bromoform	(2)	11.901	173	99032	20.813
111) Isopropylbenzene	(2)	12.029	105	693509	21.713
114)\$4-Bromofluorobenzene	(2)	12.156	95	474312	49.947
116) 1,1,2,2-Tetrachloroethane	(3)	12.254	83	231971	18.176
119) 1,2,3-Trichloropropane	(3)	12.290	110	66453	18.611
117) Bromobenzene	(3)	12.290	156	182342	20.406
120) n-Propylbenzene	(3)	12.351	91	798406	20.247
121) 2-Chlorotoluene	(3)	12.430	126	165260	19.702
122) 1,3,5-Trimethylbenzene	(3)	12.485	105	575969	19.673
123) 4-Chlorotoluene	(3)	12.515	126	180502	19.675
124) tert-Butylbenzene	(3)	12.728	134	129032	20.175
126) 1,2,4-Trimethylbenzene	(3)	12.771	105	584939	19.705
127) sec-Butylbenzene	(3)	12.892	105	691169	20.048
128) p-Isopropyltoluene	(3)	12.990	119	598395	20.401
129) 1,3-Dichlorobenzene	(3)	12.996	146	309520	20.534
130) *1,4-Dichlorobenzene-d4	(3)	13.032	152	555973	50.000
131) 1,4-Dichlorobenzene	(3)	13.051	146	380946	19.966
136) n-Butylbenzene	(3)	13.294	92	306177	19.791
137) 1,2-Dichlorobenzene	(3)	13.330	146	338528	19.569
139) 1,2-Dibromo-3-Chloropropane		13.884	75	46715	15.990
140) 1,2,4-Trichlorobenzene	(3)	14.444	180	229164	19.357
141) Hexachlorobutadiene	(3)	14.511	225	86402	21.018
142) Naphthalene	(3)	14.620	128	724078	16.365
144) 1,2,3-Trichlorobenzene	(3)	14.766	180	230122	19.367

^{* =} Compound is an internal standard.

page 2 of 2

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43. Target 3.5 esignature user ID: sag03174

^{\$ =} Compound is a surrogate standard.

EPA SAMPLE NO.

PAT16MSD

Lab Name: Lancaster Laboratories Contract:

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: 6769197

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s46.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) ug/L CAS NO. COMPOUND

(45, 2 02 45, 15	<i>5,</i> -5, –
75-71-8Dichlorodifluoromethane	20
74-87-3Chloromethane	18
75-01-4Vinyl Chloride	19
74-83-9Bromomethane	15
75-00-3Chloroethane	18
75-69-4Trichlorofluoromethane	24
75-35-41,1-Dichloroethene	24
67-64-1Acetone	160
75-09-2Methylene Chloride	21
156-60-5trans-1,2-Dichloroethene	23
1634-04-4Methyl Tertiary Butyl Ether	20
75-34-31,1-Dichloroethane	23
156-59-2cis-1,2-Dichloroethene	22
78-93-32-Butanone	160
594-20-72,2-Dichloropropane	23
74-97-5Bromochloromethane	21
67-66-3Chloroform	20
71-55-61,1,1-Trichloroethane	23
563-58-61,1-Dichloropropene	21
56-23-5Carbon Tetrachloride	25
71-43-2Benzene	21
107-06-21,2-Dichloroethane	22
79-01-6Trichloroethene	22
78-87-51,2-Dichloropropane	j 21 j
74-95-3Dibromomethane	20
75-27-4Bromodichloromethane	22
10061-01-5cis-1,3-Dichloropropene	21
108-10-14-Methyl-2-Pentanone	95
108-88-3Toluene	21
10061-02-6trans-1,3-Dichloropropene	19
	İİ

EPA SAMPLE NO.

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: 6769197

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s46.d

Level: (low/med) LOW Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

	·	CONCENTRALION ON.	
CAS NO.	COMPOUND (u	g/L or ug/Kg) ug,	/L Q
79-00-5	1,1,2-Trichloroet	nane	20
	Tetrachloroethene	1	24
142-28-9	1,3-Dichloropropa	ne	20
124-48-1	Dibromochlorometh	ane	21
106-93-4	1,2-Dibromoethane		20
108-90-7	Chlorobenzene		22
630-20-6	1,1,1,2-Tetrachlo	roethane	22
100-41-4	Ethylbenzene	İ	21
179601-23-	lm+p-Xylene		43
95-47-6	o-Xylene		21
100-42-5	Styrene	j	20
75-25-2	Bromoform		20
98-82-8	Isopropylbenzene		22
79-34-5	1,1,2,2-Tetrachlo	roethane	18
108-86-1	Bromobenzene		20
96-18-4	1,2,3-Trichloropro	pane	18
103-65-1	n-Propylbenzene	i	20
95-49-8	2-Chlorotoluene	İ	19
108-67-8	1,3,5-Trimethylber	nzene	19
106-43-4	4-Chlorotoluene	j	19
98-06-6	tert-Butylbenzene	j	20
95-63-6	1,2,4-Trimethylbe	nzene	19
135-98-8	sec-Butylbenzene	j	20
99-87-6	p-Isopropyltoluene	·	20
541-73-1	1,3-Dichlorobenzer	ne	20
106-46-7	1,4-Dichlorobenzer	ne	20
104-51-8	n-Butylbenzene	j	20
95-50-1	1,2-Dichlorobenzer	ne İ	19
96-12-8	1,2-Dibromo-3-Chlo	propropane	16
120-82-1	1,2,4-Trichlorober	nzene	19

1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER Lab Sample ID: 6769197

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s46.d

Level: (low/med) LOW

Date Received: 08/28/12

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

87-68-3Hexachlorobutadiene	2:	1
91-20-3Naphthalene	10	6
87-61-61,2,3-Trichlorobenzene	1:	9
	1	l

PAT16MSD

Lancaster Laboratories Analysis Summary for GC/MS Volatiles

6769197MSD

Data file: /chem/HP07159.i/12sep05b.b/ns05s46.d Injection date and time: 05-SEP-2012 19:16
Data file Sample Info. Line: PAT16MSD;6769197MSD;1;3;MSD;;PLM;;ns05b05 Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 05-Sep-2012 19:36 Automation

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

Internal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26) t-Butyl Alcohol-d10	4.241 (-0.003)	436	65	331321 (-13)	250.00	
70) Fluorobenzene	7.708(0.003)	1006	96	1374043 (-9)	50.00	
98) Chlorobenzene-d5	11.170(-0.003)	1575	117	946971 (-11)	50.00	
130) 1,4-Dichlorobenzene-d4	13.037(-0.009)	1882	152	566539 (-10)	50.00	

	rrogate Standards	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.790 (-0.001)	113	316506	51.531	103%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.246(0.000)	102	85827	52.245	104%		77 - 113
86)	Toluene-d8	(2)	9.722(0.001)	98	1350080	50.957	102%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.161(0.000)	95	482472	50.087	100%		78 - 113

		I.S.				Conc.	Conc.	Blank		Reporti: Limit	
Target Compounds		Ref.	RT (+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.		ample)
	Dichlorodifluoromethane	(1)	1.947(0.000)	85	179565	19.875	19.88			1	5
3)	Chloromethane	(1)	2.087(0.000)	50	144501	17.963	17.96			1	5
4)	Vinyl Chloride	(1)	2.233(-0.000)	62	157624	19.356	19.36			1	5
5)	Bromomethane	(1)	2.549(0.001)	94	74206	15.060	15.06			1	5
7)	Chloroethane	(1)	2.647(0.001)	64	74517	17.876	17.88			1	5
8)	Trichlorofluoromethane	(1)	2.981(0.000)	101	219618	24.258	24.26			1	5
16)	1,1-Dichloroethene	(1)	3.571(0.000)	96	136791	24.473	24.47			0.8	5
19)	Acetone	(1)	3.602(0.001)	58	183540	159.171	159.17			6	20
25)	Methylene Chloride	(1)	4.210(0.000)	84	151341	21.262	21.26			2	5
29)	trans-1,2-Dichloroethene	(1)	4.624(0.000)	96	145397	22.585	22.58			0.8	5
30)	Methyl Tertiary Butyl Ether	(1)	4.624(0.000)	73	449691	19.901	19.90			0.5	5
36)	1,1-Dichloroethane	(1)	5.256(-0.000)	63	281087	22.882	22.88			1	5
40)	cis-1,2-Dichloroethene	(1)	6.120(-0.000)	96	160150	21.750	21.75			0.8	5
42)	2-Butanone	(1)	6.139(0.000)	43	866289	159.193	159.19			3	10
44)	2,2-Dichloropropane	(1)	6.120(0.000)	77	200194	22.539	22.54			1	5
48)	Bromochloromethane	(1)	6.443 (-0.000)	128	78711	20.836	20.84			1	5
50)	Chloroform	(1)	6.564 (-0.000)	83	237169	20.467	20.47			0.8	5
53)	1,1,1-Trichloroethane	(1)	6.826(-0.000)	97	216643	22.726	22.73			0.8	5
58)	1,1-Dichloropropene	(1)	7.057(-0.000)	75	201401	20.521	20.52			1	5
59)	Carbon Tetrachloride	(1)	7.057(-0.000)	117	175463	25.114	25.11			1	5
65)	Benzene	(1)	7.331(-0.000)	78	600029	21.259	21.26			0.5	5
66)	1,2-Dichloroethane	(1)	7.349(-0.000)	62	194204	21.723	21.72			1	5
74)	Trichloroethene	(1)	8.201(-0.000)	95	154561	22.137	22.14			1	5
76)	1,2-Dichloropropane	(1)	8.481 (-0.000)	63	163624	20.960	20.96			1	5
78)	Dibromomethane	(1)	8.639(-0.000)	93	96659	20.456	20.46			1	5
81)	Bromodichloromethane	(1)	8.840(-0.000)	83	173749	22.070	22.07			1	5
84)	cis-1,3-Dichloropropene	(1)	9.418(-0.001)	75	237832	20.900	20.90			1	5
85)	4-Methyl-2-Pentanone	(1)	9.588 (-0.000)	43	1115500	95.170	95.17			3	10
88)	Toluene	(2)	9.801 (-0.000)	92	382436	21.312	21.31			0.7	5
89)	trans-1,3-Dichloropropene	(2)	10.050(-0.001)	75	203418	19.138	19.14			1	5
91)	1,1,2-Trichloroethane	(2)	10.227(-0.000)	97	140663	19.838	19.84			0.8	5

PAT16MSD

Lancaster Laboratories Analysis Summary for GC/MS Volatiles 6769197MSD

Data file: /chem/HP07159.i/12sep05b.b/ns05s46.d Injection date and time: 05-SEP-2012 19:16
Data file Sample Info. Line: PAT16MSD;6769197MSD;1;3;MSD;;PLM;;ns05b05 Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 05-Sep-2012 19:36 Automation

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732
Calibration date and time (Last Method Edit): 05-SEP-2012 13:23
Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code: 038A Matrix: WATER Level: Low

On-Column Amount units: ng In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc. (on-column)	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in sam	LOQ mple)
93)	Tetrachloroethene	(2)	10.379(-0.000)	166	167072	24.399	24.40			0.8	5
	1,3-Dichloropropane	(2)	10.397(-0.000)	76	251503	20.417	20.42			1	5
•	Dibromochloromethane	(2)	10.622(-0.000)	129	144846	21.124	21.12			1	5
97)	1,2-Dibromoethane	(2)	10.738(-0.000)	107	149984	20.368	20.37			1	5
100)	Chlorobenzene	(2)	11.194(0.000)	112	429873	21.672	21.67			0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)	11.261(0.000)	131	135685	22.046	22.05			1	5
102)	Ethylbenzene	(2)	11.291(-0.000)	91	683836	20.820	20.82			0.8	5
103)	m+p-Xylene	(2)	11.395(-0.000)	106	571646	42.868	42.87			0.8	5
106)	o-Xylene	(2) ,	11.735(-0.000)	106	272598	20.805	20.81			0.8	5
109)	Styrene	(2)	11.760(-0.001)	104	435891	19.896	19.90			1	5
110)	Bromoform	(2)	11.900(0.000)	173	97933	20.337	20.34			1	5
111)	Isopropylbenzene	(2)	12.027(0.000)	105	699025	21.575	21.58			1	5
116)	1,1,2,2-Tetrachloroethane	(3)	12.252(0.000)	83	233343	17.943	17.94			1	5
117)	Bromobenzene	(3)	12.289(0.000)	156	182330	20.024	20.02			1	5
119)	1,2,3-Trichloropropane	(3)	12.295(0.000)	110	66749	18.345	18.35			1	5
120)	n-Propylbenzene	(3)	12.350(0.000)	91	800197	19.914	19.91			1	5
121)	2-Chlorotoluene	(3)	12.429(0.000)	126	165868	19.405	19.41			1	5
122)	1,3,5-Trimethylbenzene	(3)	12.484(0.000)	105	580300	19.452	19.45			1	5
123)	4-Chlorotoluene	(3)	12.520(-0.000)	126	181452	19.409	19.41			1	5
124)	tert-Butylbenzene	(3)	12.727(0.000)	134	129772	19.913	19.91			1	5
126)	1,2,4-Trimethylbenzene	(3)	12.770(0.000)	105	586996	19.405	19.41			1	5
127)	sec-Butylbenzene	(3)	12.891(0.000)	105	700911	19.952	19.95			1	5
128)	p-Isopropyltoluene	(3)	12.995(-0.000)	119	607037	20.310	20.31			1	5
129)	1,3-Dichlorobenzene	(3)	12.995 (-0.000)	146	311017	20.249	20.25			1	5
131)	1,4-Dichlorobenzene	(3)	13.056(0.000)	146	381777	19.637	19.64			1	5
136)	n-Butylbenzene	(3)	13.293(0.000)	92	309113	19.609	19.61			1	5
137)	1,2-Dichlorobenzene	(3)	13.329(0.000)	146	338952	19.228	19.23			1	5
139)	1,2-Dibromo-3-Chloropropane	(3)	13.883(~0.000)	75	47566	15.977	15.98			2	5
140)	1,2,4-Trichlorobenzene	(3)	14.442(-0.000)	180	229826	19.051	19.05			1	5
141)	Hexachlorobutadiene	(3)	14.516(0.000)	225	87326	20.847	20.85			2	5
142)	Naphthalene	(3)	14.619(-0.000)	128	741570	16.448	16.45			ī	5
144)	1,2,3-Trichlorobenzene	(3)	14.765(-0.000)	180	230135	19.007	19.01			ī	5

Total number of targets = 63

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43. Target 3.5 esignature user ID: sag03174

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

Total Ion Chromatogram (TIC)

Data File: /chem/HP07159.i/12sep05b.b/ns05s46.d Injection date and time: 05-SEP-2012 19:16

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:36 Automation

Sample Name: PAT16MSD Lab Sample ID: 6769197MSD

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43.
Target 3.5 esignature user ID: sag03174

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem/HP07159.i/12sep05b.b/ns05s46.d Injection date and time: 05-SEP-2012 19:16

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:36 Automation

Sample Name: PAT16MSD Lab Sample ID: 6769197MSD

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43.

page 2 of 2 Target 3.5 esignature user ID: sag03174

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s46.d Injection date and time: 05-SEP-2012 19:16

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:36 Automation

Sample Name: PAT16MSD Lab Sample ID: 6769197MSD

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
1) Dichlorodifluoromethane	===== (1)	1.947	85	179565	19.875
3) Chloromethane	(1)	2.087	50	144501	17.963
4) Vinyl Chloride	(1)	2.233	62	157624	19.356
5) Bromomethane	(1)	2.549	94	74206	15.060
7) Chloroethane	(1)	2.647	64	74517	17.876
8) Trichlorofluoromethane	(1)	2.981	101	219618	24.258
<pre>16) 1,1-Dichloroethene</pre>	(1)	3.571	96	136791	24.473
19) Acetone	(1)	3.602	58	183540	159.171
25) Methylene Chloride	(1)	4.210	84	151341	21.262
26)*t-Butyl Alcohol-d10	(4)	4.241	65	331321	250.000
29) trans-1,2-Dichloroethene	(1)	4.624	96	145397	22.585
30) Methyl Tertiary Butyl Ether		4.624	73	449691	19.901
36) 1,1-Dichloroethane	(1)	5.257	63	281087	22.882
40) cis-1,2-Dichloroethene	(1)	6.120	96	160150	21.750
44) 2,2-Dichloropropane	(1)	6.120	77	200194	22.539
42) 2-Butanone	(1)	6.139	43	866289	159.193
48) Bromochloromethane	(1)	6.443	128	78711	20.836
50) Chloroform	(1)	6.564	83	237169	20.467
51) \$Dibromofluoromethane	(1)	6.790	113	316506	51.531
53) 1,1,1-Trichloroethane	(1)	6.826	97	216643	22.726
58) 1,1-Dichloropropene	(1)	7.057	75	201401	20.521
59) Carbon Tetrachloride	(1)	7.057	117	175463	25.114
62) \$1,2-Dichloroethane-d4	(1)	7.246	102	85827	52.245
65) Benzene	(1)	7.331	78	600029	21.259
66) 1,2-Dichloroethane	(1)	7.349	62	194204	21.723
70) *Fluorobenzene	(1)	7.708	96	1374043	50.000
74) Trichloroethene	(1)	8.201	95	154561	22.137
76) 1,2-Dichloropropane	(1)	8.481	63	163624	20.960
78) Dibromomethane	(1)	8.639	93	96659	20.456
81) Bromodichloromethane	(1)	8.840	83	173749	22.070
84) cis-1,3-Dichloropropene	(1)	9.418	75 43	237832	20.900
85) 4-Methyl-2-Pentanone	(1)	9.588	43	1115500	95.170
86) \$Toluene-d8	(2)	9.722	98	1350080	50.957
88) Toluene	(2)	9.801	92 75	382436	21.312
<pre>89) trans-1,3-Dichloropropene 91) 1,1,2-Trichloroethane</pre>	(2) (2)	10.050 10.227	75 97	203418 140663	19.138 19.838
93) Tetrachloroethene	(2)	10.227	166	167072	24.399
94) 1,3-Dichloropropane	(2)	10.379	76	251503	20.417
)4) 1,3-prolitorobrobane	(2)	10.397	, 0	231303	20.417

^{* =} Compound is an internal standard.

page 1 of 2

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43.

^{\$ =} Compound is a surrogate standard.

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s46.d Injection date and time: 05-SEP-2012 19:16

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 19:36 Automation

Sample Name: PAT16MSD Lab Sample ID: 6769197MSD

Compounds	I.S. Ref.	RT	QIon	Area	On-Column Amount (ng)
=	Ref. (2) (2) (2) (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3		~	 -	(ng) ====================================
139) 1,2-Dibromo-3-Chloropropane 140) 1,2,4-Trichlorobenzene 141) Hexachlorobutadiene 142) Naphthalene 144) 1,2,3-Trichlorobenzene		13.329 13.883 14.443 14.516 14.619 14.765	75 180 225 128 180	47566 229826 87326 741570 230135	19.228 15.977 19.051 20.847 16.448 19.007

^{* =} Compound is an internal standard.

page 2 of 2

Digitally signed by Sarah A. Guill on 09/05/2012 at 20:43.

Target 3.5 esignature user ID: sag03174

^{\$ =} Compound is a surrogate standard.

EPA	SAMPLE	NO.
-----	--------	-----

	LCSN08

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.: SAS No.: SDG No.:

Matrix: (soil/water) WATER Lab Sample ID: LCSN08

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s31.d

Level: (low/med) LOW

Date Received:

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L

	<u> </u>
75-71-8Dichlorodifluoromethane	15
74-87-3Chloromethane	16
75-01-4Vinyl Chloride	16
74-83-9Bromomethane	13
75-00-3Chloroethane	14
75-69-4Trichlorofluoromethane	20
75-35-41,1-Dichloroethene	21
67-64-1Acetone	150
75-09-2Methylene Chloride	20
156-60-5trans-1,2-Dichloroethene	21
1634-04-4Methyl Tertiary Butyl Ether	20
75-34-31,1-Dichloroethane	21
156-59-2cis-1,2-Dichloroethene	20
78-93-32-Butanone	150
594-20-72,2-Dichloropropane	20
74-97-5Bromochloromethane	20
67-66-3Chloroform	19
71-55-61,1,1-Trichloroethane	20
563-58-61,1-Dichloropropene	18
56-23-5Carbon Tetrachloride	22
71-43-2Benzene	20
107-06-21,2-Dichloroethane	21
79-01-6Trichloroethene	20
78-87-51,2-Dichloropropane	20
74-95-3Dibromomethane	20
75-27-4Bromodichloromethane	21
10061-01-5cis-1,3-Dichloropropene	21
108-10-14-Methyl-2-Pentanone	100
108-88-3Toluene	20
10061-02-6trans-1,3-Dichloropropene	20
	ll

EPA	SAMPLE	NO.	

L	70	: NT	٥	Я
Ju	_0	ìΤΛ	v	О

Lab Name: Lancaster Laboratories Contract:____

Matrix: (soil/water) WATER

Lab Sample ID: LCSN08

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s31.d

Level: (low/med) LOW Date Received:

Moisture: not dec. ____

Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

		CONCENT	CALLON ONLY		
CAS NO.	COMPOUND	(ug/L or u	ıg/Kg) ug/I	_	Q.
	1,1,2-Trichloro			20	<u> </u>
	Tetrachloroethe			22	
142-28-9	1,3-Dichloropro	pane		20	
124-48-1	Dibromochlorome	thane		21	
106-93-4	1,2-Dibromoetha	ne	1	20	1
108-90-7	Chlorobenzene		1	21	
630-20-6	1,1,1,2-Tetrach	loroethane	;	21	
100-41-4	Ethylbenzene		Ì	20	
179601-23-1	m+p-Xylene		1	40	
95-47-6	o-Xylene		İ	20	ĺ
100-42-5	Styrene		İ	19	ĺ
75-25-2	Bromoform		İ	21	İ
98-82-8	Isopropylbenzen	е	İ	20	İ
	1,1,2,2-Tetrach		:	18	j
108-86-1	Bromobenzene		Ì	20	į ·
96-18-4	1,2,3-Trichloro	propane	j	18	į
	n-Propylbenzene	· -	i	19	[
	2-Chlorotoluene		Ì	18	Ì
108-67-8	1,3,5-Trimethyl	benzene	į	18	İ
	4-Chlorotoluene		i	19	j
98-06-6	tert-Butylbenze	ne	İ	19	İ
	1,2,4-Trimethyl		i	19	İ
	sec-Butylbenzen		i	19	İ
	p-Isopropyltolu		į	19	İ
	1,3-Dichloroben		i	20	İ
	1,4-Dichloroben		i	19	İ
	n-Butylbenzene		i	18	İ
	1,2-Dichloroben	zene	i	19	j
	1,2-Dibromo-3-C		ine	16	İ
	1,2,4-Trichloro		i	19	ĺ
	_, .		į		İ
					· ——

EPA SAMPLE NO.

LCSN08

Lab Name: Lancaster Laboratories Contract:_____

Lab Code: LANCAS Case No.:_____ SAS No.:____ SDG No.:____

Matrix: (soil/water) WATER

Lab Sample ID: LCSN08

Sample wt/vol: 5.00 (g/mL) mL Lab File ID: HP07159.i/12sep05b.b/ns05s31.d

Level: (low/med) LOW

Date Received:

Moisture: not dec. ____ Date Analyzed: 09/05/12

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) ug/L 87-68-3-----Hexachlorobutadiene 18 91-20-3-----Naphthalene 17 87-61-6-----1,2,3-Trichlorobenzene 19

LCSN08

Lancaster Laboratories Analysis Summary for GC/MS Volatiles LCSN08

Data file: /chem/HP07159.i/12sep05b.b/ns05s31.d Injection date and time: 05-SEP-2012 13:05
Data file Sample Info. Line: LCSN08;LCSN08;1;3;LCS;;PLM;;ns05b05; Instrument ID: HP07159.i Batch: N122492AA
Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 Automation

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23

Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

Analysis Comments:

	ternal Standards	RT (+/-RT)	Scan	QIon	Area(+/- %Change)	Conc. (on-column)	QC Flag
26)	t-Butyl Alcohol-d10	4.247 (-0.009)	437	65	372042 (-2)	250.00	
70)	Fluorobenzene	7.708(0.003)	1006	96	1472353 (-3)	50.00	
98)	Chlorobenzene-d5	11.164(0.003)	1574	117	1021474 (-4)	50.00	
130)	1,4-Dichlorobenzene-d4	13.037(-0.009)	1882	152	603754 (-4)	50.00	

	rrogate Standards	I.S. Ref.	RT	(+/-RRT)	QIon	Area	Conc. (on-column)	%Rec.	QC flags	QC Limits
51)	Dibromofluoromethane	(1)	6.79	0(-0.001)	113	336949	51.197	102%		80 - 116
62)	1,2-Dichloroethane-d4	(1)	7.24	6(0.000)	102	91378	51.910	104%		77 - 113
86)	Toluene-d8	(2)	9.72	2(0.000)	98	1456280	50.956	102%		80 - 113
114)	4-Bromofluorobenzene	(2)	12.15	5(0.000)	95	519785	50.025	100%		78 - 113

	I.S.				Conc.	Conc.	Blank		Reportin Limit	-
Target Compounds	Ref.	RT (+/-RRT)	QIon	Area	(on-column)	(in sample)	Conc.	Qual.	(in sa	ample)
1) Dichlorodifluoromethane	(1)	1.953(-0.000)	85	149274	15.419	15.42			1	=====: 5
Chloromethane	(1)	2.081(0.001)	50	138827	16.106	16.11			1	5
4) Vinyl Chloride	(1)	2.221(0.001)	62	143877	16.488	16.49			1	5
5) Bromomethane	(1)	2.550(0.001)	94	69958	13.250	13.25			1	5
7) Chloroethane	(1)	2.647(0.001)	64	62212	13.928	13.93			1	5
Trichlorofluoromethane	(1)	2.975(0.001)	101	189483	19.532	19.53			1	5
16) 1,1-Dichloroethene	(1)	3.572(0.000)	96	126349	21.095	21.10			0.8	5
19) Acetone	(1)	3.608(0.000)	58	185012	149.735	149.73			6	20
25) Methylene Chloride	(1)	4.210(0.000)	84	155907	20.441	20.44			2	5
29) trans-1,2-Dichloroethene	(1)	4.630(-0.000)	96	144395	20.931	20.93			0.8	5
30) Methyl Tertiary Butyl Ether	(1)	4.624(0.000)	73	481387	19.881	19.88			0.5	5
36) 1,1-Dichloroethane	(1)	5.257(-0.000)	63	272326	20.688	20.69			1	5
40) cis-1,2-Dichloroethene	(1)	6.120(-0.000)	96	160403	20.330	20.33			0.8	5
42) 2-Butanone	(1)	6.139(0.000)	43	866406	148.584	148.58			3	10
44) 2,2-Dichloropropane	(1)	6.120(0.000)	77	192164	20.190	20.19			1	5
48) Bromochloromethane	(1)	6.443 (-0.000)	128	79330	19.598	19.60			1	5
50) Chloroform	(1)	6.558(0.000)	83	237681	19.142	19.14			0.8	5
53) 1,1,1-Trichloroethane	(1)	6.826(-0.000)	97	208363	20.398	20.40			0.8	5
58) 1,1-Dichloropropene	(1)	7.057(-0.000)	75	194532	18.498	18.50			1	5
59) Carbon Tetrachloride	(1)	7.051(0.000)	117	162547	21.712	21.71			1	5
65) Benzene	(1)	7.331(-0.000)	78	611957	20.234	20.23			0.5	5
66) 1,2-Dichloroethane	(1)	7.349 (-0.000)	62	197142	20.579	20.58			1	5
74) Trichloroethene	(1)	8.201(-0.000)	95	150756	20.150	20.15			1	5
76) 1,2-Dichloropropane	(1)	8.481(-0.000)	63	170889	20.429	20.43			1	5
78) Dibromomethane	(1)	8.639(-0.000)	93	101958	20.137	20.14			1	5
81) Bromodichloromethane	(1)	8.840(-0.000)	83	180944	21.449	21.45			1	5
84) cis-1,3-Dichloropropene	(1)	9.418(-0.001)	75	258959	21.237	21.24			1	5
85) 4-Methyl-2-Pentanone	(1)	9.588(-0.000)	43	1253920	99.836	99.84			3	10
88) Toluene	(2)	9.801(-0.000)	92	388270	20.059	20.06			0.7	5
89) trans-1,3-Dichloropropene	(2)	10.044(-0.001)	75	226137	19.724	19.72			1	5
91) 1,1,2-Trichloroethane	(2)	10.227(-0.000)	97	149681	19.570	19.57			0.8	5

Lancaster Laboratories Analysis Summary for GC/MS Volatiles LCSN08 LCSN08

Injection date and time: 05-SEP-2012 13:05
Instrument ID: HP07159.i Batch: N122492AA Data file: /chem/HP07159.i/12sep05b.b/ns05s31.d Inject Data file Sample Info. Line: LCSN08;LCSN08;1;3;LCS;;PLM;;ns05b05; Instruction, time and analyst ID of latest file update: 05-Sep-2012 13:25 Automation

Blank Data file reference: /chem/HP07159.i/12sep05b.b/ns05b05.d

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time (Last Method Edit): 05-SEP-2012 13:23
Mid Level Daily Calibration Standard Reference: /chem/HP07159.i/12sep05b.b/ns05c01.d

Bottle Code:

Matrix: WATER

Level: Low

On-Column Amount units: ng

In Sample Concentration units: ug/L

Sample Concentration Formula: On-Column Amount * (Vt/Vo)

VOA Prep Factor: 1.00

Volume Purged (Vt): 5 ml

Sample Volume (Vo): 5 ml

	get Compounds	I.S. Ref.	RT (+/-RRT)	QIon	Area	Conc.	Conc. (in sample)	Blank Conc.	Qual.	Reporting Limit (in same	LOQ mple)
931	Tetrachloroethene	(2)	10.379(-0.000)	166	162042	21.939	21.94			0.8	5
	1,3-Dichloropropane	(2)	10.397(-0.000)	76	265389	19.973	19.97			1	5
	Dibromochloromethane	(2)	10.622(-0.000)	129	152659	20.644	20.64			1	5
97)	1,2-Dibromoethane	(2)	10.738(-0.000)	107	159677	20.103	20.10			1	5
100)	Chlorobenzene	(2)	11.194(-0.000)	112	438938	20.515	20.52			0.8	5
101)	1,1,1,2-Tetrachloroethane	(2)	11.255(-0.000)	131	138827	20.911	20.91			1	5
102)	Ethylbenzene	(2)	11.292(-0.001)	91	694293	19.597	19.60			0.8	5
103)	m+p-Xylene	(2)	11.395(-0.001)	106	580138	40.331	40.33			0.8	5
106)	o-Xylene	(2)	11.736(-0.001)	106	282970	20.022	20.02			0.8	5
109)	Styrene	(2)	11.760(-0.001)	104	458574	19.405	19.40			1	5
110)	Bromoform	(2)	11.900(-0.000)	173	107532	20.669	20.67			1	5
111)	Isopropylbenzene	(2)	12.028(-0.000)	105	704148	20.148	20.15			1	5
116)	1,1,2,2-Tetrachloroethane	(3)	12.253(0.000)	83	254010	18.328	18.33			1	5
117)	Bromobenzene	(3)	12.289(0.000)	156	189907	19.571	19.57			1	5
119)	1,2,3-Trichloropropane	(3)	12.295(0.000)	110	71517	18.444	18.44			1	5
120)	n-Propylbenzene	(3)	12.350(0.000)	91	802008	18.729	18.73			1	5
121)	2-Chlorotoluene	(3)	12.429(0.000)	126	168044	18.448	18.45			1	5
122)	1,3,5-Trimethylbenzene	(3)	12.484(0.000)	105	584492	18.384	18.38			1	5
123)	4-Chlorotoluene	(3)	12.520(-0.000)	126	18/86/	18.857	18.86			1	5
124)	tert-Butylbenzene	(3)	12.733(-0.000)	134	129033	18.579	18.58			1	5
126)	1,2,4-Trimethylbenzene	(3)	12.770(0.000)	105	596661	18.509	18.51			1	5
127)	sec-Butylbenzene	(3)	12.891(0.000)	105	692758	18.504	18.50			1	5
128)	p-Isopropyltoluene	(3)	12.995(-0.000)	119	604512	18.979	18.98			1	5
129)	1,3-Dichlorobenzene	(3)	12.995(-0.000)	146	319875	19.542	19.54			1	5
131)	1,4-Dichlorobenzene	(3)	13.056(0.000)	146	396111	19.118	19.12			1	5
136)	n-Butylbenzene	(3)	13.293(0.000)	92	306522	18.246	18.25			1	5
137)	1,2-Dichlorobenzene	(3)	13.329(0.000)	146	354203	18.854	18.85			1	5
139)	1,2-Dibromo-3-Chloropropane	(3)	13.883(-0.000)	75	51854	16.344	16.34			2	5
	1,2,4-Trichlorobenzene	(3)	14.443(-0.000)	180	239529	18.632	18.63			1	5
141)	Hexachlorobutadiene	(3)	14.516(0.000)	225	82428	18.464	18.46			2	5
142)	Naphthalene	(3)	14.619(-0.000)	128	807075	16.798	16.80			1	5
144)	1,2,3-Trichlorobenzene	(3)	14.765(-0.000)	180	240560	18.644	18.64			1	5

Total number of targets = 63

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28. Target 3.5 esignature user ID: ers02237

Secondary review performed and digitally signed by Sara E. Johnson on 09/06/2012 at 16:24. Parallax ID: sej02002

page 2 of 2

Total Ion Chromatogram (TIC)

Data File: /chem/HP07159.i/12sep05b.b/ns05s31.d Injection date and time: 05-SEP-2012 13:05

Instrument ID: HP07159.i Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23 Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 Automation

Sample Name: LCSN08 Lab Sample ID: LCSN08

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28. Target 3.5 esignature user ID: ers02237

page 1 of 2

Total Ion Chromatogram (TIC)

Data File: /chem/HP07159.i/12sep05b.b/ns05s31.d Injection date and time: 05-SEP-2012 13:05

Instrument ID: HP07159.i
Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 Automation

Sample Name: LCSN08 Lab Sample ID: LCSN08

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28.

Target 3.5 esignature user ID: ers02237

page 2 of 2

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s31.d Instrument ID: HP07159.i Injection date and time: 05-SEP-2012 13:05 Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 Automation

Sample Name: LCSN08 Lab Sample ID: LCSN08

Compounds	I.S. Ref.	RT	QIon	Area =======	On-Column Amount (ng)
1) Dichlorodifluoromethane	(1)	1.953	85	149274	15.419
Chloromethane	(1)	2.081	50	138827	16.106
4) Vinyl Chloride	(1)	2.221	62	143877	16.488
5) Bromomethane	(1)	2.550	94	69958	13.250
7) Chloroethane	(1)	2.647	64	62212	13.928
8) Trichlorofluoromethane	(1)	2.975	101	189483	19.532
16) 1,1-Dichloroethene	(1)	3.572	96	126349	21.095
19) Acetone	(1)	3.608	58	185012	149.735
25) Methylene Chloride	(1)	4.210	84	155907	20.441
26)*t-Butyl Alcohol-d10	(4)	4.247	65	372042	250.000
30) Methyl Tertiary Butyl Ether	(1)	4.624	73	481387	19.881
29) trans-1,2-Dichloroethene	(1)	4.630	96	144395	20.931
36) 1,1-Dichloroethane	(1)	5.257	63	272326	20.688
40) cis-1,2-Dichloroethene	(1)	6.121	96	160403	20.330
44) 2,2-Dichloropropane	(1)	6.121	77	192164	20.190
42) 2-Butanone	(1)	6.139	43	866406	148.584
48) Bromochloromethane	(1)	6.443	128	79330	19.598
50) Chloroform	(1)	6.559	83	237681	19.142
51) \$Dibromofluoromethane	(1)	6.790	113	336949	51.197
53) 1,1,1-Trichloroethane	(1)	6.826	97	208363	20.398
59) Carbon Tetrachloride	(1)	7.051	117	162547	21.712
58) 1,1-Dichloropropene	(1)	7.057	75	194532	18.498
62)\$1,2-Dichloroethane-d4	(1)	7.246	102	91378	51.910
65) Benzene	(1)	7.331	78	611957	20.234
66) 1,2-Dichloroethane	(1)	7.349	62	197142	20.579
70)*Fluorobenzene	(1)	7.708	96	1472353	50.000
74) Trichloroethene	(1)	8.201	95	150756	20.150
76) 1,2-Dichloropropane	(1)	8.481	63	170889	20.429
78) Dibromomethane	(1)	8.639	93	101958	20.137
81) Bromodichloromethane	(1)	8.840	83	180944	21.449
84) cis-1,3-Dichloropropene	(1)	9.418	75	258959	21.237
85) 4-Methyl-2-Pentanone	(1)	9.588	43	1253920	99.836
86)\$Toluene-d8	(2)	9.722	98	1456280	50.956
88) Toluene	(2)	9.801	92	388270	20.059
89) trans-1,3-Dichloropropene	(2)	10.044	75	226137	19.724
91) 1,1,2-Trichloroethane	(2)	10.227	97	149681	19.570
93) Tetrachloroethene	(2)	10.379	166	162042	21.939
94) 1,3-Dichloropropane	(2)	10.397	76	265389	19.973

^{* =} Compound is an internal standard.

page 1 of 2

On-Column

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28.

Target 3.5 esignature user ID: ers02237

^{\$ =} Compound is a surrogate standard.

Quant Report

Target Revision 3.5

Data File: /chem/HP07159.i/12sep05b.b/ns05s31.d Injection date and time: 05-SEP-2012 13:05

Instrument ID: HP07159.i

Analyst ID: ERS02237

Method used: /chem/HP07159.i/12sep05b.b/N826W.m

Sublist used: 8732

Calibration date and time: 05-SEP-2012 13:23

Date, time and analyst ID of latest file update: 05-Sep-2012 13:25 Automation

Sample Name: LCSN08 Lab Sample ID: LCSN08

Compounds	I.S. Ref.	RT	QIon	Area =======	On-Column Amount (ng)
96) Dibromochloromethane 97) 1,2-Dibromoethane	(2) (2)	10.622 10.738	129 107	152659 159677	20.644 20.103
98) *Chlorobenzene-d5	(2)	11.164	117	1021474	50.000
100) Chlorobenzene	(2)	11.194	112	438938	20.515
101) 1,1,1,2-Tetrachloroethane	(2)	11.255 11.291	131 91	138827 694293	20.911 19.597
102) Ethylbenzene 103) m+p-Xylene	(2) (2)	11.395	106	580138	40.331
106) o-Xylene	(2)	11.736	106	282970	20.022
109) Styrene	(2)	11.760	104	458574	19.405
110) Bromoform	(2)	11.900	173	107532	20.669
111) Isopropylbenzene	(2)	12.028	105	704148	20.148
114) \$4-Bromofluorobenzene	(2)	12.155	95	519785	50.025
116) 1,1,2,2-Tetrachloroethane	(3)	12.253	83	254010	18.328
117) Bromobenzene	(3)	12.289	156	189907	19.571
119) 1,2,3-Trichloropropane	(3)	12.295	110	71517	18.444
120) n-Propylbenzene	(3)	12.350	91	802008	18.729
121) 2-Chlorotoluene	(3)	12.429	126	168044	18.448
122) 1,3,5-Trimethylbenzene	(3)	12.484	105	584492	18.384
123) 4-Chlorotoluene	(3)	12.520	126	187867	18.857
124) tert-Butylbenzene	(3)	12.733	134	129033	18.579
126) 1,2,4-Trimethylbenzene	(3)	12.770	105	596661	18.509
127) sec-Butylbenzene	(3)	12.891	105	692758	18.504
129) 1,3-Dichlorobenzene	(3)	12.995	146	319875	19.542
128) p-Isopropyltoluene	(3)	12.995	119	604512	18.979
130) *1,4-Dichlorobenzene-d4	(3)	13.037	152	603754	50.000
131) 1,4-Dichlorobenzene	(3)	13.056	146	396111	19.118
136) n-Butylbenzene	(3) (3)	13.293 13.329	92 146	306522 354203	18.246 18.854
137) 1,2-Dichlorobenzene 139) 1,2-Dibromo-3-Chloropropan		13.883	75	51854	16.344
140) 1,2,4-Trichlorobenzene	(3)	14.443	180	239529	18.632
141) Hexachlorobutadiene	(3)	14.516	225	82428	18.464
142) Naphthalene	(3)	14.619	128	807075	16.798
144) 1,2,3-Trichlorobenzene	(3)	14.765	180	240560	18.644

^{* =} Compound is an internal standard.

page 2 of 2

Digitally signed by Emily R. Styer on 09/05/2012 at 13:28.

Target 3.5 esignature user ID: ers02237

^{\$ =} Compound is a surrogate standard.

To Whom It May Concern:

I, Daliz M. Estades Santaliz, in my capacity as Puerto Rico Certified Chemist, hereby certify the attached Analytical Results from Project Number PTL-09, Project Name GE Patillas, Puerto Rico, and Laboratory ID Numbers:

6769183	6769194
6769184	6769195
6769185	6769196
6769186	6769197
6769187	6769198
6769188	6769199
6769189	6769200
6769190	6769201
6769191	6769202
6769192	6769203
6769193	6769204

Lcda. Daliz M. Estades Santaliz

A 1392913

Page 1 of 12

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL09 Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25

		6769183		6769184		6769185	
Analysis Name	Units	TB-082712	MDL	P-23	MDL	P-11	MDL
	8.7	Result		Result		Result	0.0
Acetone	ug/l	N.D.	6	28	6	9 J	6
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromoform	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Butanone	ug/l	N.D.	3	13	3	6 J	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	
Carbon Tetrachloride	ug/l	N.D.	1	N.D.	. 1	N.D.	1
Chlorobenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloromethane	ug/l	· N.D.	1	N.D.	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropropane	ug/l	N.D.	2	N.D.	2	N.D.	2
Dibromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	- 1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,4-Dichlorobenzene	ug/I	N.D.	1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/I	N.D.	1	N.D.	1.	N.D.	1
1,1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	্ৰ
1,2-Dichloroethane	ug/l	. N.D.	1	N.D.	1	N.D.	- 1
1,1-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	8.0	N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/I	N.D.	1	N.D.	1	N.D.	1
2.2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
rans-1,3-Dichloropropene	ug/l	N.D.	- 1	N.D.	1	N.D.	- 1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
sopropylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D.	- 1	N.D.	. 1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax. 717-656-2681 Obtides Suchly

Page 2 of 12

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL09			Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25				
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Styrene	ug/l	N.D.	1	N.D.	-1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/I	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	8.0	N.D.	0.8	N.D.	0.8
		6769186		6769187		6769188	
Analysis Name	Units	P-4	MDL	P-9	MDL	P-10A	MDL
		Result		Result		Result	
Acetone	ug/l	10 J	6	N.D.	6	10 J	6
Benzene	ug/i	N.D.	0.5	N.D.	0.5	N.D.	0.5
Bromobenzene	A						
-10110-0110	ug/l	N.D.	1	N.D.	1	N.D.	- 1
Bromochloromethane	ug/l ug/l	N.D. N.D.	1	N.D.	1	N.D.	1
			1		1	N.D. N.D.	
Bromochloromethane	ug/l	N.D. N.D. N.D.	1 1	N.D. N.D. N.D.	1 1	N.D. N.D. N.D.	1 1
Bromochloromethane Bromodichloromethane	ug/l ug/l ug/l ug/l	N.D. N.D.	1 1 1	N.D. N.D. N.D. N.D.	1 1 1	N.D. N.D. N.D. N.D.	1 1
Bromochloromethane Bromodichloromethane Bromoform	ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. 8 J	1 1	N.D. N.D. N.D. N.D.	1 1 1 1 3	N.D. N.D. N.D. N.D. 8 J	1
Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. 8 J	1 1 1 3 1	N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3	N.D. N.D. N.D. N.D. 8 J N.D.	1 1
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone	ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. 8 J	1 1 1 1 3	N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1	N.D. N.D. N.D. 8 J N.D. N.D.	1 1 1 3 1 1 1 1
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene	ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. 8 J N.D. N.D. N.D.	1 1 1 3 1	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1	N.D. N.D. N.D. N.D. 8 J N.D. N.D. N.D.	1 1 1 1 3 1 1 1 1
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene	ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. 8 J N.D. N.D.	1 1 1 3 1	N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1	N.D. N.D. N.D. 8 J N.D. N.D. N.D.	1 1 1 3 1 1 1
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. 8 J N.D. N.D. N.D.	1 1 1 3 1 1 1 1	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1	N.D. N.D. N.D. 8 J N.D. N.D. N.D. N.D.	1 1 1 1 3 1 1 1 1
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. 8 J N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 1 0.8	N.D. N.D. N.D. 8 J N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 1 0.8
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. 8 J N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8	N.D. N.D. N.D. 8 J N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 1 0.8 1 0.8
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroethane	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. 8 J N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 1 0.8 1 0.8	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorotethane Chloroform	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorotethane Chloroform Chloromethane	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8 1	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8 1
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 2-Chlorotoluene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8 1 1 2	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8 1	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 1 3 1 1 0.8 1 0.8 1
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon Tetrachloride Chlorobenzene Chlorotethane Chloromethane 2-Chlorotoluene 4-Chlorotoluene	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 3 1 1 1 0.8 1 0.8 1	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	1 1 1 1 3 1 1 1 0.8 1 0.8 1

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-856-2681 Westedis Intily

Page 3 of 12

Analysis Name	Units	P-8	MDL	P-15DD	MDL	P-7	MDL
	1	6769189		6769190		6769191	
o-Aylone	ugn	N.U.	0.8	N.D.	0.6	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	ug/l	N.D. N.D.	1	N.D. N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	_ 1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	- 1
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1.1
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1,1-Trichloroethane	ug/l	N.D.	8.0	N.D.	0.8	N.D.	0.8
1,2,4-Trichlorobenzene	ug/I	N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichlorobenzene	ug/I	N.D.	1	N.D.	1	N.D.	1
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1,2,2-Tetrachloroethar		N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethan		N.D.	1	N.D.	1	N.D.	1
Styrene	ug/l	N.D.	- 1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methyl Tertiary Butyl Eth		N.D.	0.5	N.D.	0.5	N.D.	0.5
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Isopropylbenzene	ug/l .	N.D.	1	N.D.	1	N.D.	1
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	3.0
trans-1,3-Dichloroprope		N.D.	1	N.D.	1 :	N.D.	1
cis-1,3-Dichloropropene	-	N.D.	1	N.D.	1	N.D.	. 1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
2,2-Dichloropropane	ug/l	· N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	. 1
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	
trans-1,2-Dichloroethen	e ug/l	N.D.	0.8	N.D.	8.0	N.D.	3.0
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1-Dichloroethene	ug/l	N.D.	0.8	1 J	0.8	120	0.8
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1 1
1,1-Dichloroethane	ug/l	N.D.	- 1	N.D.	1	5 J	
Dichlorodifluoromethane	e ug/l	N.D.	1	N.D.	1	N.D.	
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	
1,2-Dichlorobenzene	ug/I	N.D.	1	N.D.	1	N.D.	
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	
	000.1						
	SDG: PT			Subiliti Da	16. 0/20/20 12	3.20	
	Project: GE Patillas	Puerto Rico		Submit Da	le: 8/28/2012	0.25	
	MWH Americ	and tribe		, topoit ou	te: 9/7/2012		

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 Alstedio Sally

Page 4 of 12

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL09 Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25

Acetone	ug/l	N.D.	6	12 J	6	11 J	6
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromoform	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Butanone	ug/l	N.D.	3	7 J	3	6 J	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
lert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Carbon Tetrachloride	ug/l	N.D.	. 1	N.D.	1	N.D.	1
Chlorobenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropropane	ug/l	N.D.	2	N.D.	2	N.D.	2
Dibromochloromethane	ug/l	N.D.	î	N.D.	1	N.D.	1
1,2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	3
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	9
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	- 9
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	- 3
Dichlorodifluoromethane	ug/l	N.D.	4	N.D.	1	N.D.	1
1.1-Dichloroethane	ug/l	11	4	2 J	1	N.D.	4
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	4
1,1-Dichloroethene	ug/l	170	0.8	59	0.8	N.D.	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	8.0	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
그 그 가는 경에 가는 사람들이 가장 되는 것들이 전혀 가장하다.		N.D.	4	N.D.	1	N.D.	4
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	4
2,2-Dichloropropane	ug/l ug/l	N.D.	1	N.D.	1	N.D.	4
1,1-Dichloropropene		N.D.	1	N.D.	9	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	. 1	N.D.	4	N.D.	1
trans-1,3-Dichloropropene	ug/l		0.8	N.D.	0.8	N.D.	0.8
Ethylbenzene	ug/l	N.D.	2	N.D.		N.D.	
Hexachlorobutadiene	ug/l	N.D.			2	N.D.	2
Isopropylbenzene	ug/l	N.D.	1	N.D.			
p-Isopropylloluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
4-Methyl-2-pentanone	ug/I	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	- 1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 5 of 12

P	MWH America roject: GE Patillas SDG: PTL	Puerto Rico	1	13:41 2 9:25			
Styrene	ug/l	N.D.	1	N.D.	1	N.D.	4
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/I	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	52	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	. 1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	4
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
		6769192		6769193 Water for	Ŷ.	6769194	
Analysis Name	Units	P-7A	MDL	Valerior	MDL	Duplicate	MDL
Allarysis Ivaille	Office	Result	IVIDE	Result	IVIDE	Result	IVIDE
Acetone	ug/I	7 J	6	14 J	6	10 J	6
Benzene	ug/I	N.D.	0.5	3 J	0.5	N.D.	0.5
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	4
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	4
Bromoform	ug/l	N.D.	1	N.D.	1	N.D.	Ŷ.
Bromomethane	ug/l	N.D.	1	N.D.	4	N.D.	1
2-Butanone	ug/l	7 J	3	N.D.	3	8 J	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Carbon Tetrachloride	ug/l	N.D.	1	N.D.	1	N.D.	1
Chlorobenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropropar		N.D.	2	N.D.	. 2	N.D.	2
Dibromochloromethane	ug/i						
	und	ND	4	ND	1	ND	1
	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
	~			CTT			

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 Alstided Sutily

Page 6 of 12

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL09			Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25					
1,4-Dichlorobenzene	· ug/l	N.D.	1	N.D.	1	N.D.	1	
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,1-Dichloroethane	ug/l	N.D.	1	47	1	5 J	1	
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,1-Dichloroethene	ug/l	2 J	0.8	9	0.8	120	0.8	
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	26	0.8	N.D.	0.8	
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8	
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	4	
2,2-Dichloropropane	ug/l	N.D.	i	N.D.	1	N.D.	1	
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1	
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	4	
trans-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1	
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8	
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2	
Isopropylbenzene	ug/l	N.D.	. 1	N.D.	1	N.D.	1	
p-Isopropyltoluene	· ug/l	N.D.	1	N.D.	1	N.D.	i	
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5	
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3	
Methylene Chloride	ug/i	N.D.	2	3 J	2	N.D.	2	
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1	
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
Styrene	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	.1	N.D.	1	
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8	
Toluene	ug/l	N.D.	0.7	1 J	0.7	N.D.	0.7	
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,1,1-Trichloroethane	ug/l	N.D.	0.8	95	0.8	N.D.	0.8	
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8	
Trichloroethene	ug/l	N.D.	1	41	1	N.D.	1	
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	i	
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,3,5-Trimethylbenzene	ug/l	N.D.	9	N.D.	1	N.D.	1	
Vinyl Chloride	ug/l	N.D.	1	2 J	1	N.D.	1	
m+p-Xylene	ug/I	N.D.	0.8	N.D.	0.8	N.D.	0.8	
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8	
		6769195		6769196		6769197		
Analysis Name	Units	P-16S	MDL	P-16SMS	MDL	P-16SMSD	MDL	
	7-4	Result		Result		Result		
Acetone	ug/I	9 J	6	160	6	160	6	
Benzene	ug/l	N.D.	0.5	22	0.5	21	0.5	
Bromobenzene	ug/l	N.D.	1	20	1	20	. 1	

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 Alstided Suchly

Page 7 of 12

MWH Americas, Inc. Project: GE Patillas Puerto Rico - SDG: PTL09			Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25						
Bromochloromethane	ug/I	1	N.D.	1	21	1	21		1
Bromodichloromethane	ug/I		N.D.	1	22	1	22		1
Bromoform	ug/I		N.D.	1	21	1	20		1
Bromomethane	ug/I		N.D.	1	12	1	15		1
2-Butanone	ug/I		7 J	3	160	3	160		3
n-Butylbenzene	ug/l		N.D.	1	20	1	20		1
sec-Butylbenzene	ug/I		N.D.	1	20	1	20		1
tert-Butylbenzene	ug/l		N.D.	1	20	1	20		1
Carbon Tetrachloride	ug/l		N.D.	4	25	1	25		1
Chlorobenzene	ug/l		N.D.	0.8	22	0.8	-22		0.8
Chloroethane	ug/l		N.D.	1	15	1	18		1
Chloroform	ug/l		N.D.	0.8	21	0.8	20		0.8
Chloromethane	ug/l		N.D.	1	15	1	18		1
2-Chlorotoluene	ug/l		N.D.	1	20	1	19		1
4-Chlorotoluene	ug/l		N.D.	1	20	. 1	19		1
1,2-Dibromo-3-chloropropane	ug/I		N.D.	2	16	2	16		2
Dibromochloromethane	ug/l		N.D.	1	21	1	21		1
1,2-Dibromoethane	ug/l		N.D.	1	21		20		1
Dibromomethane	ug/I		N.D.	1	21	1	20		1
1,2-Dichlorobenzene	ug/I		N.D.	1	20	. 1	19		1
1,3-Dichlorobenzene	ug/l		N.D.	1	21	1	-20		1
1,4-Dichlorobenzene	ug/l		N.D.	1	20	1	20		1
Dichlorodifluoromethane	ug/l		N.D.	1	17	1	20		1
1,1-Dichloroethane	ug/l		N.D.	1	23	1	23		1
1.2-Dichloroethane	ug/l		N.D.	1	22	- 1	22		1
1,1-Dichloroethene	ug/I		N.D.	0.8	25	0.8	24		0.8
cis-1,2-Dichloroethene	ug/l		N.D.	0.8	22	0.8	22	1	0.8
trans-1,2-Dichloroethene	ug/l		N.D.	0.8	23	0.8	23		0.8
1,2-Dichloropropane	ug/l		N.D.	1	21	1	21		1
1,3-Dichloropropane	ug/l		N.D.	1	20	1	20		1
2,2-Dichloropropane	ug/I		N.D.	1	23	1	23		1
1,1-Dichloropropene	ug/I		N.D.	1	21	1	21		1
cis-1,3-Dichloropropene	ug/I		N.D.	1	21	1	21		5.1
trans-1,3-Dichloropropene	ug/l		N.D.	1	20	1	19		- 1
Ethylbenzene	ug/l		N.D.	0.8	21	0.8	21		0.8
Hexachlorobutadiene	ug/l		N.D.	2	21	2	21		2
Isopropylbenzene	ug/l		N.D.	1	22	1	22		1
p-Isopropyltoluene	ug/l		N.D.	1	20	1	20		1
Methyl Tertiary Butyl Ether	ug/l		N.D.	0.5	20	0.5	20		0.5
4-Methyl-2-pentanone	ug/l		N.D.	3	96	3	95		3
Methylene Chloride	ug/l		N.D.	2	22	2	21		2
Naphthalene	ug/l		N.D.	1	16	ã	16		1
n-Propylbenzene	ug/l		N.D.	1	20	1	20		1
Styrene	ug/l		N.D.	1	20	1	20		1
1,1,1,2-Tetrachloroethane	ug/l		N.D.	1	22	4	22		1
1,1,2,2-Tetrachloroethane	ug/l		N.D.	1	18	. 1	18	9	1

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 Olstide Suhl

Page 8 of 12

P	MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL09			Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25				
Tetrachloroethene	ug/l	N.D.	0.8	24	0.8	24	0.8	
Toluene	ug/l	N.D.	0.7	21	0.7	21	0.7	
1,2,3-Trichlorobenzene	ug/l	N.D.	1	19	1	19	1	
1,2,4-Trichlorobenzene	ug/l	N.D.	1	19	1	19	9	
1,1,1-Trichloroethane	ug/l	N.D.	0.8	23	0.8	23	0.8	
1,1,2-Trichloroethane	ug/l	N.D.	0.8	20	0.8	20	0.8	
Trichloroethene	ug/l	N.D.	1	22	1	22	1	
Trichlorofluoromethane	ug/l	N.D.	1	21	1	24	1	
1,2,3-Trichloropropane	ug/l	N.D.	1	19	1	18	1	
1,2,4-Trimethylbenzene	ug/l	N.D.	1	20	1	19	4	
1,3,5-Trimethylbenzene	ug/I	N.D.	1	20	1	19	3	
Vinyl Chloride	ug/l	N.D.	1	16	1	19	1	
m+p-Xylene	ug/l	N.D.	0.8	43	0.8	43	0.8	
o-Xylene	ug/l	N.D.	0.8	21	0.8	21	0.8	
o-xylene	Light.	1110	0.0	(7)	0,0		10.10	
		6769198		6769199		6769200		
Analysis Name	Units	P-19D	MDL	P-19S	MDL	P-17D	MDL	
Analysis Humo	- Unito	Result	111000	Result		Result		
Acetone	ug/l	12 J	6	14 J	6	6 J	6	
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	.0.5	
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
Bromochloromethane	ug/l	N.D.	* 1	N.D.	1	N.D.	1	
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	3	
Bromoform	ug/l	N.D.	1	N.D.	1	N.D.	1	
Bromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
2-Butanone	ug/l	9 J	3	9 J	3	6 J	3	
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
sec-Butylbenzene	ug/l	N.D.	1	N.D.	. 1	N.D.	1	
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
Carbon Tetrachloride	ug/l	N.D.		N.D.	. 1	N.D.	1	
Chlorobenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8	
Chloroethane	ug/l	N.D.	. 1	N.D.	1	N.D.	1	
Chloroform	ug/l	3 J	8.0	2 J	0.8	N.D.	0.8	
Chloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
2-Chlorotoluene	ug/I	N.D.	1	N.D.	1	N.D.	1	
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,2-Dibromo-3-chloropropa	ane ug/l	N.D.	2	N.D.	2	N.D.	2	
Dibromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1	
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1	
1,1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	- 1	
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1	

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 Destides Sithly

2216.01

Page 9 of 12

	MWH Americ	as, Inc.		Report Dat	e: 9/7/2012	13:41	
F	Project: GE Patillas	Puerto Rico		Submit Dat	e: 8/28/2012	9:25	
	SDG: PTI	.09					
1.1-Dichloroethene	ug/l	2 J	0.8	N.D.	0.8	1 1	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	- 1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	4	N.D.	1	N.D.	1
trans-1,3-Dichloropropene		N.D.	1	N.D.	1	N.D.	4
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ether		N.D.	0.5	N.D.	0.5	N.D.	0.5
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Styrene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	- 4
1,1,1-Trichloroethane	ug/l	N.D.	0.8	. N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	. 1
1,2,3-Trichloropropane	ug/l	N.D.	4	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	i	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
0-Aylene	ugn	14.0.	0.0		0.0		74.0
		6769201		6769202		6769203	
Analysis Name	Units	P-18S	MDL	P-18D	MDL	P-20S	MDL
A		Result 12 J	6	Result 11 J	6	Result 14 J	6
Acetone	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
Bromobenzene	ug/l	18.71	7	0.109	1	N.D.	1
Bromochloromethane	ug/l	N.D.	1	N.D. N.D.	- 1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	1.77	- 1	N.D.	1
Bromoform '	ug/l	N.D.	. 1	N.D.	1		1
Bromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 Alstided Suchly

Page 10 of 12

MWH Americas, Inc.
Project: GE Patillas Puerto Ricc
SDG: PTL09

Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25

2-Butanone	ug/l	8 J	3	9 J	3	9 J	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/I	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Carbon Tetrachloride	ug/l	N.D.	1	N.D.	1	N.D.	1
Chlorobenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	3 J	8.0	2 J	0.8	N.D.	0.8
Chloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropropane	ug/l	N.D.	2	N.D.	2	N.D.	2
Dibromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1.2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Dibromomethane	ug/I	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichlorobenzene	ug/l	N.D.	4	N.D.	1	N.D.	1
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	9
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethene	ug/l	14	0.8	21	0.8	N.D.	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	9
trans-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	 N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Styrene	ug/l	N.D.	1	N.D.	í	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	- 1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	- 1

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681 Obstacled Southly

Page 11 of 12

	MWH America at: GE Patillas SDG: PTI	Puerto Rico			e: 9/7/2012 1: te: 8/28/2012		
1,1,1-Trichloroethane	ug/l	1 J	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1.1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
		6769204					
Analysis Name	Units	P-20D					
	UL T	Result	MDL				
Acetone	ug/l	6 J	6	*1			
Benzene	ug/l	N.D.	0.5				
Bromobenzene	ug/l	N.D.	1				
Bromochloromethane	ug/l	N.D.	1				
Bromodichloromethane	ug/l	N.D.	1				
Bromoform	ug/l	N.D.	1				
Bromomethane	ug/l	N.D.	1				
2-Butanone	ug/l	6 J	3				
n-Butylbenzene	ug/l	N.D.	1				
sec-Butylbenzene	ug/l	N.D.	1			Ġ.	
tert-Butylbenzene	ug/l	N.D.	1				
Carbon Tetrachloride	ug/l	N.D.	1				
Chlorobenzene	ug/l	N.D.	0.8				
Chloroethane	ug/l	N.D.	1				
Chloroform	ug/l	N.D.	8.0				
Chloromethane	ug/l	N.D.	1				
2-Chlorotoluene	ug/l	N.D.	1				
4-Chlorotoluene	ug/l	N.D.	1				
1,2-Dibromo-3-chloropropane	ug/l	N.D.	2				
Dibromochloromethane	ug/I	N.D.	1:				
1,2-Dibromoethane	ug/l	N.D.	1				
Dibromomethane	ug/l	N.D.	1				
1,2-Dichlorobenzene	ug/l	N.D.	1				
1,3-Dichlorobenzene	ug/l	N.D.	: 1				
1,4-Dichlorobenzene	ug/l	N.D.	1				
Dichlorodifluoromethane	ug/l	N.D.	1				
1,1-Dichloroethane	ug/l	- N.D.	1				
1,2-Dichloroethane	ug/l	N.D.	1				
1,1-Dichloroethene	ug/l	7	0.8				
cis-1,2-Dichloroethene	ug/I	N.D.	0.8				
trans-1,2-Dichloroethene	ug/l	N.D.	8.0		//		- W
1,2-Dichloropropane	ug/I	N.D.	1			V	X n
		- 1			MAG	tocked	to be
					Nes	una)	S ALIN
ncaster Laboratories, Inc.					10	1	13/

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

Page 12 of 12

MWH Americas, Inc.
Project: GE Patillas Puerto Rico
SDG: PTL09

Report Date: 9/7/2012 13:41 Submit Date: 8/28/2012 9:25

1,3-Dichloropropane	ug/l	N.D.	1	
2,2-Dichloropropane	ug/l	N.D.	1	
1,1-Dichloropropene	ug/l	N.D.	1	
cis-1,3-Dichloropropene	ug/l	N.D.	1	
trans-1,3-Dichloropropene	ug/l	N.D.	1	
Ethylbenzene	ug/l	N.D.	0.8	
Hexachlorobutadiene	ug/l	N.D.	2	
Isopropylbenzene	ug/l	N.D.	1	
p-Isopropyltoluene	ug/l	N.D.	1	
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	
4-Methyl-2-pentanone	ug/l	N.D.	3	
Methylene Chloride	ug/l	N.D.	2	
Naphthalene	ug/l	N.D.	. 1	
n-Propylbenzene	ug/l	N.D.	1	
Styrene	ug/l	N.D.	1	
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	
Tetrachloroethene	ug/l	N.D.	0.8	
Toluene	ug/l	N.D.	0.7	
1,2,3-Trichlorobenzene	ug/I	N.D.	1	
1,2,4-Trichlorobenzene	ug/l	N.D.	1	
1,1,1-Trichloroethane	ug/l	N.D.	0.8	
1,1,2-Trichloroethane	ug/l	N.D.	0.8	
Trichloroethene	ug/l	N.D.	1	
Trichlorofluoromethane	ug/l	N.D.	1	
1,2,3-Trichloropropane	. ug/l	N.D.	1	
1,2,4-Trimethylbenzene	ug/l	N.D.	1	
1,3,5-Trimethylbenzene	ug/l	N.D.	1	
Vinyl Chloride	ug/l	N.D.	5.1	
m+p-Xylene	ug/l	N.D.	8.0	
o-Xylene	ug/l	N.D.	0.8	
A. T. CLASSIC CO.				

Destroy States

SOP # HW-24 Revision # 2 October 2006 Page 1 of 30

USEPA

Hazardous Waste Support Branch
Validating Volatile Organic Compounds
By Gas Chromatography/Mass Spectrometry
SW-846 Method 8260B

Draw and hou	General Francisco	Date: 12/8/06
Prepared by: _	Juge garra	<u>1</u> Date: 17/0/06
	George Kanas, Chemist	
	Hazardous Waste Support Section	
	$(\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	- 1
Prepared by:	Lissell Hellone	Date: 12/8/00
AND ADDRESS MATHEMATICAL PRINCIPLE AND ADDRESS.	Russell Arnone, Chemist	
	Hazardous Waste Support Section	
	(/)	
	¥. \) Date:
Concurred by:	Judo m. Move	Date:
	Linde Mauel, Chief	
	Hazardous Waste Support Section	
Annance d by	Market of market	Date: 12 /11 /06
Approved by: _	May My June	Date: 12/1/00
	Robert Runyon, Chief	
	Hazardous Waste Support Branch	
	A 10	
	Annual Review	
Reviewed by: _		Data
INEVIEWED Dy		Date:
	Name	
Reviewed by:		Date:
	Name	

Scope and Applicability

This SOP offers detailed guidance in evaluating laboratory data generated according to the USEPA SW-846, Method 8260B December 1996. The validation methods and actions discussed in this document are based on the requirements set forth in USEPA SW-846, Method 8260B and Method 8000C, Rev 3, March 2003; and "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," January, 2005. This document covers technical as well as method specific problems; however situations may arise where data limitations must be assessed based on the reviewer's own professional judgement.

Summary

To ensure a thorough evaluation of each result in a data case, the reviewer must complete the checklist within this SOP, answering specific questions while performing the prescribed "ACTIONS" in each section. Qualifiers (or flags) are applied to questionable or unusable results as instructed. The data qualifiers discussed in this document are defined on page 4.

The reviewer must prepare a detailed data assessment to be submitted along with the complete SOP checklist. The Data Assessment must list all data qualifications, reasons for qualifications, instances of missing data, and contract non-compliance.

DEFINITIONS

Acronyms

BNA - base neutral acid(another name for Semi Volatiles) CLP - Contract Laboratory Program CROL - Contract Required Ouantitation Limit CF - calibration factor %D - percent difference DCB -decachlorobiphenyl DDD - dichlorodiphenyldichloroethane DDE - dichlorodiphenylethane DDT - dichlorodiphenyltrichloroethane DoC - Date of Collection GC - gas chromatography GC/ECD - gas chromatograph/electron capture detector GC/MS - gas chromatograph/mass spectrometer GPC - gel permeation chromatography IS - internal standard kg - kilogram ug - microgram MS - matrix spike MSD - matrix spike duplicate ℓ - liter mℓ - milliliter PCB - Polychlorinated biphenyl PE - performance evaluation PEM - Performance Evaluation Mixture QC - quality control RAS - Routine Analytical Services RIC - reconstructed ion chromatogram RPD - relative percent difference RRF - relative response factor RRF - average relative response factor (from initial calibration) RRT - relative retention time RSD - relative standard deviation RT - retention time RSCC - Regional Sample Control Center SDG - sample delivery group SMC - system monitoring compound SOP - standard operating procedure SOW - Statement of Work SVOA - semivolatile organic acid TCL - Target Compound List TCLP - Toxicity Characteristics Leachate Procedure TCX -tetrachloro-m-xylene TIC - tentatively identified compound

TOPO - Task Order Project Officer

TPO - Technical Project Officer

VOA - Volatile organic

VTSR - Validated Time of Sample Receipt

Data Qualifiers

U -The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

- J -The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N -The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- JN -The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ -The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R -The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

LAB QUALIFIERS:

- D The positive value is the result of an analysis at a secondary dilution factor.
- B The analyte is present in the associated method blank as well as in the sample. This qualifier has a different meaning when validating inorganic data.
- E The concentration of this analyte exceeds the calibration range of the instrument.
- A Indicates a Tentatively Identified Compound (TIC) is a suspected adol-condensation product.

- 4 VOA -

X,Y,Z- Laboratory defined flags. The data reviewer must change these qualifiers during validation so that the data user may understand their impact on the data.

YES NO N/A

Date: January 2006 SOP: HW-24, Rev. 2

T	DACKACE	COMPT BEENIEGE	7 3 TT	DELIVERABLES
⊥.	PACKAGE	COMPTETENESS	AND	DCTT A CKWDTC9

CASE	NUMBI	ER:	PTL - 09		LAB: Lancaster	<u>Laboratori</u> es
SITE	NAME	:GE	: Patillas - Puerto Ri	.co		
1.0	<u>Data</u>	Comp.	leteness and De	<u>eliverables</u>		
	1.1		all data been a at or CLP Forma		CLP deliverable	<u>[x]</u>
	ACTIO	ON:	If not, note the Data Asses		review of the daive.	ata in
2.0	Cove	r Let	ter, SDG Narra	<u>tive</u>		
	2.1		laboratory na: ed release pre:	·	or cover letter	[x]
	2.2		case number and he narrative of	•	•	[x]
	ACTI(ON:	If not, note the Data Asse		review of the daive.	ata in
II.				VOLATILE A	ANALYSES	
1.0	<u>Traf</u>	fic Re	eports and Labo	oratory Narra	<u>tive</u>	
	1.1	from		plers present	Chain of Custod: for all samples	ies <u>[x]</u>
	ACTI(ON:	If no, contactof missing or			m for replacement
	1.2	Is a	sampling trip	report prese	nt (if required)	? <u>[x]</u>
	1.3	Samp	le Conditions/	Problems		
				- 6 VOA -		

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

1.3.1 Do the Traffic Reports, Chain of Custodies, or Lab
Narrative indicate any problems with sample
receipt, condition of samples, analytical problems
or special notations affecting the quality of the
data?

x [_] ____

ACTION: If all the VOA vials for a sample have air bubbles or the VOA vial analyzed had air bubbles, flag all positive results "J" and all non-detects "R".

ACTION: If any sample analyzed as a soil, other than TCLP, contains 50%-90% water, all data should be flagged as estimated ("J"). If a soil sample, other than TCLP, contains more than 90% water, flag all positive results "J" and all non-detects "R".

ACTION: If samples were not iced or if the ice was melted upon receipt at the laboratory and the temperature of the cooler was elevated (>10°C), flag all positive results "J" and all non-detects non"UJ".

2.0 <u>Holding Times</u>

2.1 Have any volatile holding times, determined from date of collection to date of analysis, been exceeded?

____ [x]

The maximum holding time for aqueous samples is 14 days.

The maximum holding time for soils non aqueous samples is 14 days.

NOTE: If unpreserved, aqueous samples maintained at 4°C for aromatic hydrocarbons analysis must be analyzed within 7 days. If preserved with HCL acid to a pH<2 and stored at 4°C, then aqueous samples must be analyzed within 14 days from time of collection. For non-aqueous samples for volatile components that are frozen (less than 7°C) or are properly cooled (4°C ± 2°C) and perserved with NaHSO₄, the maximum holding time is 14 days from sample collection. If

3.0

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

uncertain about preservation, contact the laboratory /sampling team to determine whether or not samples were preserved.

ACTION: Qualify sample results according to Table 1:

Table 1. Holding Time Actions for Trace Volatile Analysis

Matrix	Preserved	Criteria	Action			
			Detected Associated Compounds	Non-Detected Associated Compounds		
Aqueous	No	≤7 days	No qualifications			
	No	> 7 days	J	R		
	Yes	≤14 days	No qualifications			
	Yes	≻ 14 days	J	R		
Non Aqueous	No	≤ 14 days	J	R		
	Yes ≤ 14 days No qualification		ualifications			
	Yes/No	≻ 14 days	J	R		

3.1 Have the volatile surrogate recoveries been listed on Surrogate Recovery forms for each of the following matrices: a. Water [x] _______

<u>Surrogate Recovery</u> (CLP Form II Equivalent)

b. Soil <u>[] x</u>

3.2 If so, are all the samples listed on the appropriate Surrogate Recovery forms for each matrix:

a. Water [x] ____

b. Soil [] <u>x</u>

ACTION: If large errors exist, deliverables are unavailable or information is missing, document the effect(s) in Data

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

Assessments and contact the laboratory/project officer/appropriate official for an explanation /resubmittal, make any necessary corrections and document effect in the Data Assessment.

3.3 Were the surrogate recovery limits followed per Table 2. If Table 2 criteria were not followed, the laboratory may use inhouse performance criteria (per SW-846, Method 8000C, sectiom 9.7). Other compounds may be used as surrogates, depending upon the analysis requirements.

Table 2. Surrogate Spike Recovery Limits for Water and Soil/Sediments

DMC	Recovery Limits (%)Water	Recovery Limits Soil/Sediment
4-Bromofluorobenzene	80-120 ⁷⁸⁻¹¹³	70-130
Dibromofluoromethane	80-120 80-116	70-130
Toluene-d ₈	80-120 80-113	70-130
Dichloroethane-d ₄	-80-120 77-113	70-130

If yes, were samples reanalyzed?

Were method blanks reanalyzed?

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

ACTION: If all surrogate recoveries are > 10% but 1 or more compounds do not meet method specifications:

- 1. Flag all positive results as estimated ("J").
- 2. Flag all non-detects as estimated detection limits ("UJ") when recoveries are less than the lower acceptance limit.
- 3. If recoveries are greater than the upper acceptance limit, do not qualify non-detects, but qualify positive results as estimated $^{\text{w}}J''$.

If any surrogate has a recovery of < 10%:

- 1. Positive results are qualified with ("J").
- 2. Non-detects for that should be qualified as unusable ("R").

NOTE: Professional judgement should be used to qualify data that have method blank surrogate recoveries out of specification in both original and reanalyses. The basic concern is whether the blank problems represent an isolated problem with the blank alone or whether there is a fundamental problem with the analytical process. If one or more samples in the batch show acceptable surrogate recoveries, the reviewer may choose the blank problem to be an isolated occurrence.

3.6 Are there any transcription/calculation errors between raw data and reported data?

[] x _____

ACTION: If large errors exist, take action as specified in section 3.2 above.

- 4.0 <u>Laboratory Control Sample (Form III/Equivalent)</u>
 - 4.1 Is the LCS prepared, extracted, analyzed, and reported once for every 20 field samples of a similar matrix, per SDG.

USEPA Region II Date: January 2006 SW846 Method 8260B VOA SOP: HW-24, Rev. 2 YES NO N/A Note: LCS consists of an aliquot of a clean (control) matrix similar to the sample matrix and of the same weight or volume. If any <u>Laboratory Control</u> <u>Sample</u> data are missing, ACTION: call the lab for explanation /resubmittals. Make note in the data assessment. 4.2 Were the Laboratory Control Samples analyzed at the required frequency for each of the following matrices: Α. Water [x]_____ B. Soil [] X C. Med Soil The LCS is spiked with the same analytes at the same Note: concentrations as the matrix spike (SW-846 8000C, Section 9.5). If different make note in data assessment. Matrix/LCS spiking standards should be prepared from volatile organic compounds which are representative of the compounds being investigating. At a minimum, the matrix spike should include 1,1-dichloroethene, trichloroethene, chlorobenzene, toluene, and benzene. If any MS/MD, MS/MSD or replicate data are ACTION: missing, take the action specified in 3.2 above. 4.3 Have in house LCS recovery limits been developed (Method 8000C, Sect 9.7). [X]

Sect 9.7).

- 4.4 If in house limits are not developed, are LCS acceptance recovery limits between 70 130% (Method 8000c Sect 9.5)? [] \underline{x}
- 4.5 Were one or more of the volatile LCS recoveries outside the in house laboratory recovery criteria for spiked analytes? If in house limits are not present use 70 130% recovery limits.

Γ	1		X		
_					

SOP: HW-24, Rev. 2

YES NO N/A

Date: January 2006

Table 3. LCS Actions for Volatile Analysis

Table 3. Heb Actions for Volatile Analysis					
Criteria	Action				
	Detected Spiked Compounds	Non-Detected Spiked Compounds			
%R > Upper Acceptance Limit	J	No Qualifiers			
%R < Lower Acceptance Limit	J	עט			
Lower Acceptance Limit ≤ %R	No Qual	ifications			

	5.0	Matrix	Spikes	Form	III	or	equivalent
--	-----	--------	--------	------	-----	----	------------

5.1	Are all data for matrix spike and matrix duplication	ate
	or matrix spike duplicate (MS/MD or MS/MSD)	
	present and complete for each matrix?	[X]

NOTE: The laboratory should use one matrix spike and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If the sample is not expected to contain target analytes, a MS/MSD should be analyzed (SW-846, Method 8260B, Sect 8.4.2).

5.2	Have MS/MD or	r MS/MSD	results	been	summarized	on		
	modified CLP	Form III	Ι?			Гх	x]	

ACTION: If any data are missing take action as specified in section 3.2 above.

5.3 Were matrix spikes analyzed at the required frequency for each of the following matrices? (One MS/MD, MS/MSD or laboratory replicate must be performed for every 20 samples

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

of similar matrix or concentration level. Laboratories analyzing one to ten samples per month are required to analyze at least one MS per month [page 8000C, section 9.5.])

a.	Water	[x]	
b.	Waste	<u> </u>	X
c.	Soil/Solid	<u>[]</u>	X

Note: The LCS is spiked with the same analytes at the same concentrations as the matrix spike (SW-846 8000C, Section 9.5). If different make note in data assessment.

Matrix/LCS spiking standards should be prepared from volatile organic compounds which are representative of the compounds being investigating. At a minimum, the matrix spike should include 1,1-dichloroethene, trichloroethene, chlorobenzene, toluene, and benzene. The concentration of the LCS should be determined as described SW-Method 8000C Section 9.5.

ACTION: If any MS/MD, MS/MSD or replicate data are missing, take the action specified in 3.2 above.

- 5.4 Have in house MS recovery limits been developed (Method 8000C, Sect 9.7) for each matrix. [x]
- 5.5 Were one or more of the volatile MS/MSD recoveries outside of the in-house laboratory recovery criteria for spiked analytes? If none are present, then use 70-130% recovery as per SW-846, 8000C, Sect. 9.5.4.

ACTION: Circle all outliers with a red pencil.

NOTE: If any individual % recovery in the MS (or MSD) falls outside the designated range for recovery the reviewer should determine if there is a matrix effect. A matrix effect is indicated if the LCS data are within limits but the MS data exceeds the limits.

YES NO N/A

Date: January 2006

SOP: HW-24, Rev. 2

NOTE:

No qualification of data is necessary on MS and MSD data alone. However, using informed professional judgement, the data reviewer may use MS and MSD resuts in conjunction with other QC criteria to determine the need for some qualificatios.

Note:

The data reviewer should first try to determine to what extent the results of the MS and MSD affect the associated data. This determination should be made with regard to he MS and MSD sample itself, as welll as specific analytes for all samples associated with the MS and MSD.

Note:

In those instances where it can be determned that the results of the MS and MSD affect only the sample spiked, limit qualification to this sample only. However, it may be determined through the MS and MSD results that a laboratory is having a systematic problem in the analysis of one or more analytes that affect all associated samples, and the reviewer must use professional judgement to qualify the data from all associated samples.

Note:

The reviewer must use professional judgement to determine the need for qualification of non-spiked compounds.

ACTION:

Follow criteria in Table 4 when professional judgement deems qualification of sample.

Table 4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Actions for Volatile Analysis

Criteria	Action			
	Detected Spiked Compounds	Non-Detected Spiked Compounds		
%R > Upper Acceptance Limit	J	No Qualifiers		
%R < Lower Acceptance Limit	J	UJ		
Lower Acceptance Limit < %R	No (Qualifications		

	USEPA Region II SW846 Method 8260B VOA			Date: January 2006 SOP: HW-24, Rev. 2				
					YES	NO	N/A	
6.0	Blank	k (CLP	P Form IV Equivalent)					
	6.1	Is th	e Method Blank Summary form present	:?	[X]			
	6.2	analy	ency of Analysis: Has a method blar yzed for every 20 (or less) samples ar matrix or concentration or each a?	of	ı <u>[x]</u>			
	6.3		method blank been analyzed for each used ?	ch GC/MS	[x]			
	ACTIO		If any blank data are missing, take specified above (section 3.2). If not available, reject (R) all associata. However, using professional data reviewer may substitute field missing method blank data.	blank data ciated posi judgement,	a is itive the			
6.4 Chromatography: review the blank raw data - chromatograms, quant reports or data system printouts.								
		stabi	ne chromatographic performance (base lity) for each instrument acceptable ile organic compounds?		[x]			
7.0	Conta	aminat	<u>cion</u>					
	NOTE:		"Water blanks", "drill blanks" and are validated like any other sample qualify the data. Do not confuse the blanks discussed below.	e and are \underline{r}	<u>not</u> u	sed	to	
	7.1 Do any method/instrument/reagent blanks have positi results for target analytes and/or TICs? When appli as described below, the contaminant concentration is these blanks are multiplied by the sample dilution and corrected for percent moisture where necessary.							

- 15 VOA -

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

7.2 Do any field/rinse blanks have positive volatile organic compound results? ____ [x] ___

ACTION: Prepare a list of the samples associated with each of the contaminated blanks. (Attach a separate sheet.)

NOTE: All field blank results associated to a particular group of samples (may exceed one per case or one per day) may be used to qualify data. Blanks may not be qualified because of contamination in another blank. Field blanks must be qualified forsurrogate, or calibration QC problems.

ACTION: Follow the directions in Table 5 below to qualify sample results due to contamination. Use the largest value from all the associated blanks.

Table 5. Volatile Organic Analysis Blank Contamination Criteria

	- Concentinación Circcita		
Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification
		< CRQL	Report CRQL value with a U
	< CRQL*	≥ CRQL	Use professional judgement
		< CRQL	Report CRQL value with a U
Method, Storage, Field,	> CRQL*	<pre></pre>	Report the concentration for the sample with a U, or quanity the data as unusable R
Trip, Instrument**		<pre></pre>	Use professional judgement
		< CRQL	Report CRQL value with a U
	= CRQL*	≥ CRQL	Use professional judgement
	Gross contam- ination	Detects	Qualify results as unusable R

^{* 2}x the CRQL for methylene chloride, 2-butanone, and acetone

NOTE:

If gross blank contamination exists(e.g., saturated peaks, "hump-o-grams," "junk" peaks), all affected positive compounds in the associated samples should be qualified as unusable "R", due to interference. Non-detected volatile organic target compounds do not require qualification unless the contamination is so high that it interferes with the analyses of non-detected compounds.

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

		_	ion II nod 8260B VOA	Date: Janu SOP: HW-2	_	J. 2	
	7.3		there field/rinse/equipment blanks every sample?	s associated		_X	
	ACTIO	ON:	For low level samples, note in dath there is no associated field blank. Exception: samples taken water tap do not have associated	d/rinse/equip from a drin	oment king		
8.0	GC/MS	S Appa	aratus and Materials				
	8.1	colur Check	the lab use the proper gas chromat mn(s) for analysis of volatiles by k raw data, instrument logs or cor etermine what type of column(s) wa	y Method 8260 ntact the lab)		
	NOTE:	:	For the analysis of volatiles, the requires the use of 60 m. x 0.75 column, coated with VOCOL(Supelco column. (see SW-846, page 8260B-75)	mm capillary o) or equival	y lent	5	
	ACTIO	ON:	If the specified column, or equivolent the effects in the Data professional judgement to determine data.	Assessment.	Use		of the
9.0	GC/MS	S Inst	trument Performance Check (CLP For	rm V Equivale	ent)		
	9.1	prese	the GC/MS Instrument Performance (ent for Bromofluorobenzene (BFB), s list the associated samples with yzed?	and do these	≘ <u>[x]</u>		
	9.2	mass	the enhanced bar graph spectrum ar /charge (m/z) listing for the BFB ided for each twelve hour shift?	nd	[x]		
	9.3	Has a	an instrument performance check so	olution (BFB))		

- 18 VOA -

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

			1ES	NO	N/A	
	analy	analyzed for every twelve hours of sample vsis per instrument?(see Table 4, SW-846, 8260B-36)	[x]			
ACTIC	ON:	List date, time, instrument ID, and sample analyses for which no associated GC/MS GC/MS available.	tuni	ng d	lata	ar
ACTIC	ON:	If the laboratory/project officer cannot providata, reject ("R") all data generated outside twelve hour calibration interval.			_	ole
ACTIC	N:	If mass assignment is in error, flag all assodata as unusable, "R".	ciat	ed s	amp.	le
9.4	Have	the ion abundances been normalized to m/z 953				
9.5		the ion abundance criteria been met for instrument used?	[x]		_	<u> </u>
ACTIC	N:	List all data which do not meet ion abundance criteria (attach a separate sheet).	;			
ACTIC	N:	If ion abundance criteria are not met, take a specified in section 3.2.	ıctio	n as		
9.6	betwe	there any transcription/calculation errors een mass lists and reported values? (Check at values but if errors are found, check more.)	leas	t <u>[x]</u>		
9.7		the appropriate number of significant es (two) been reported?	[x]			
		If large errors exist, take action as specifin 3.2.	.ed i	n		
9.8	Are t	the spectra of the mass calibration compounds	acce	ptab	le.	
ACTIC	N:	Use professional judgement to determine wheat data should be accepted, qualified, or reject	her	assc	ciat	— ted

Date: January 2006 SOP: HW-24, Rev. 2

	SW040 Method 0200B VOA		DOI . IIW Z	50f. IIW 24, Nev. 2					
					YES	NO N	I/A		
10.0	Targe	rget Analytes (CLP Form I Equivalent)							
	10.1	pres	the Organic Analysis reporting form ent with required header informatio, for each of the following:						
		a.	Samples and/or fractions as approp	riate	[X]				
		b.	Matrix spikes and matrix spike dup	licates	[X]				
		C.	Blanks		[X]				
		d.	Laboratory Control Samples		<u>[X]</u>				
	10.2	iden Repo	the reconstructed Ion Chromatograms tified compounds, and the data syst rts) included in the sample package owing?	em printou	ts (Qı	ant	ne		
		a.	Samples and/or fractions as approp	riate	[X]				
		b.	Matrix spikes and matrix spike dup (Mass spectra not required)	licates	[X]				
		С.	Blanks		<u>[X]</u>				
		d.	Laboratory Control Samples		[X]				
	ACTIO	ON:	If any data are missing, take acti specified in 3.2 above.	on					
	10.3		hromatographic performance acceptab ect to:	le with					
		Base	line stability?		[X]				

	egion II ethod 8260B VOA	Date: January 2006 SOP: HW-24, Rev. 2
		YES NO N/A
Re	solution?	<u>[X]</u>
Pe	ak shape?	<u>[X]</u>
Fu	ll-scale graph (attenuation)?	<u>[X]</u>
Ot:	her:	
ACTION:	Use professional judgement to dete	rmine the acceptability of
	e the lab-generated standard mass spe latile compounds present for each sam	
ACTION:	If any mass spectra are missing, t 3.2 above. If the lab does not gen spectra, make a note in the Data A missing, contact the lab.	erate their own standard
	the RRT of each reported compound wi andard RRT in the continuing calibrat	
re	e all ions present in the standard ma lative intensity greater than 10% (of so present in the sample mass spectru	the most abundant ion)
in	the relative intensities of the char the sample agree within ± 30% of the lative intensities in the reference s	corresponding
ACTION:	Use professional judgement to dete acceptability of data. If it is de incorrect identifications were mad should be rejected ("R"), flagged Presumptive evidence of the present compound) or changed to non detect calculated detection limit. In ord	termined that de, all such data ("N") - dece of the ded ("U") at the

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

positively identified, the data must comply with the criteria listed in 9.6, 9.7, and 9.8.

ACTION: When sample carry-over is a possibility, professional judgement should be used to determine if instrument cross-contamination has affected any positive compound identification.

11.0 Tentatively Identified Compounds (TIC) (CLP Form I/TIC Equivalent)

11.1 If Tentatively Identified Compound were required for this project, are all Tentatively Identified Compound reporting forms present; and do listed TICs include scan number or retention time, estimated concentration and a qualifier? [] x

NOTE: Add "N" qualifier to all TICs which have CAS number, if missing.

NOTE: Have the project officer/appropriate official check the project plan to determine if lab was required to identify non-target analytes (SW-846, page 8260B-23, Sect. 7.6.2).

- 11.2 Are the mass spectra for the tentatively identified compounds and associated "best match" spectra included in the sample package for each of the following:
 - a. Samples and/or fractions as appropriate $[\]$ \underline{X}
 - b. Blanks [] X

ACTION: If any TIC data are missing, take action specified in 3.2 above.

ACTION: Add "JN" qualifier only to analytes identified by a CAS#.

NOTE: If TICs are present in the associated blanks take action as specified in section 3.2 above.

USEPA Region II Date: January 2006 SW846 Method 8260B VOA SOP: HW-24, Rev. 2 YES NO N/A 11.3 Are any priority pollutants listed as TIC compounds (i.e., an BNA compound listed as a VOA TIC)? 1. Flag with "R" any target compound listed as a TIC. ACTION: 2. Make sure all rejected compounds are properly reported if they are target compounds. 11.4 Are all ions present in the reference mass spectrum with a relative intensity greater than 10% (of the most abundant ion) _____ also present in the sample mass spectrum? 11.5 Do TIC and "best match" standard relative ion intensities agree within ± 20%? [] X ACTION: Use professional judgement to determine acceptability of TIC identifications. If it is determined that an incorrect identification was made, change the identification to "unknown" or to some less specific identification (example: "C3 substituted benzene") as appropriate. Also, when a compound is not found in any blank, but is a suspected artifact of a common laboratory contaminant, the result should be qualified as unusable, "R". (Common lab contaminants: CO₂(M/E 44), Siloxanes (M/E 73), Hexane, Aldol Condensation Products, Solvent Preservatives, and related byproducts). 12.0 Compound Quantitation and Reported Detection Limits 12.1 Are there any transcription/calculation errors in organic analysis reporting form results? Check at least two positive values. Verify that the correct internal standard, quantitation ion, and average initial RRF/CF were used to calculate organic analysis reporting form result. Were any errors found?

NOTE: Structural isomers with similar mass spectra, but insufficient GC resolution (i.e. percent valley between the two peaks > 25%) should be

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

reported as isomeric pairs. The reviewer should check the raw data to ensure that all such isomers were included in the quantitation (i.e., add the areas of the two coeluting peaks to calculate the total concentration).

12.2 Are the method CRQL's adjusted to reflect sample dilutions and, for soils, sample moisture? [X] ____

ACTION: If errors are large, take action as specified in section 3.2 above.

ACTION: When a sample is analyzed at more than one dilution, the lowest detection limits are used (unless a QC exceedance dictates the use of the higher detection limit from the diluted sample data). Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and it's associated value on the original reporting form (if present) and substituting the data from the analysis of the diluted sample. Specify which organic analysis reporting form is to be used, then draw a red "X" across the entire page of all reporting forms that should not be used, including any in the summary package.

13.0 Standards Data (GC/MS)

13.1 Are the Reconstructed Ion Chromatograms, and data system printouts (Quant Reports) present for initial and continuing calibration?

[X]

ACTION: If any calibration standard data are missing, take action specified in section 3.2 above.

14.0 GC/MS Initial Calibration (CLP Form VI Equivalent)

USEPA Reg SW846 Met	ion II hod 8260B VOA	Date: January 2006 SOP: HW-24, Rev. 2 YES NO N/A
	the Initial Calibration reportir lete for the volatile fraction?	ng forms present and [X]
ACTION:	If any calibration forms or state take action specified in section	-
ACTION:	If the percent relative standar $(8000C-39)$ qualify positive result when % RSD > 90%,. Qualify all analyte "J" and all non-detects "R".	alts for that analyte "J". positive results for that
14.2 Are	all average RRFs > 0.050?	_[X]
NOTE:	(Method Requirement) For SPCC of values must be ≥ the values in individual RRF values reported document in the Data Assessment	the following list. If are below the listed values
	1,1-Dichloroethane Bromoform Chlorobenzene	0.10 0.10 0.10 0.30 0.30
ACTION:	Circle all outliers with red pe	encil.
ACTION:	For any target analyte with average requirements for the 5 compound positive results for that analyte "R".	ds in 14.2 above, qualify all
14.3 Are	response factors stable over the	e concentration

NOTE: (Method Requirement) For the following CCC compounds, the %RSD values must be \leq 30.0%. If %RSD values reported are > 30.0% document in the Data Assessment.

[X]

range of the calibration.

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

1,1-Dichloroethene

Chloroform

1,2-Dichloropropane

Toluene

Ethylbenzene Vinyl chloride

ACTION: Circle all outliers with a red pencil.

ACTION: If the % RSD is > 20.0%, or > 30% for the 6 compounds in 14.3 above, qualify positive results for that analyte "J" and non-detects using professional judgement. When RSD > 90%, qualify all positive results for that analyte "J" and all non-detect results for that analyte "R".

NOTE: The above data qualification action applies regardless of method requirements.

NOTE: Analytes previously qualified "U" due to blank contamination are still considered as "hits" when qualifying for calibration criteria.

14.4 Was the % RSD determined using RRF or CF? X

If no, what method was used to determine the linearity of the initial calibration? Document any effects to the case in the Data Assessment.

14.5 Are there any transcription/calculation errors in the reporting of RRF or % RSD? (Check at least two values but if errors are found, check more.)

[] X _____

ACTION: Circle errors with a red pencil.

ACTION: If errors are large, take action as specified in section 3.2 above.

15.0 GC/MS Calibration Verification (CLP Form VII Equivalent)

		YES NO	N/A
	Are the Calibration Verification reporting forms p complete for all compounds of interest?	resent an	.d
	Has a calibration verification standard been analy twelve hours of sample analysis per instrument?	zed for e	very
ACTIO	N: List below all sample analyses that were not hours of a calibration verification analysis instrument used.		relve
ACTION	N: If any forms are missing or no calibration verification standard has been analyzed twelv hours prior to sample analysis, take action a specified in section 3.2 above. If calibratio verification data are not available, flag al associated sample data as unusable ("R").	s n	
	Was the % D determined from the calibration verifidetermined using RRF or CF?	cation [X]	
,	If no, what method was used to determine the calib verification? Document any effects to the case in Assessment.		
]	Do any volatile compounds have a % D (difference o between the initial and continuing RRF or CF which (SW-846, page 8260B-19, section 7.4.5.2).		20%
NOTE:	(Method Requirement) For the following CCC covalues must be \leq 20.0%. If %D values reported document in the Data Assessment.	=	
	1,1-Dichloroethene Chloroform		

- 27 VOA -

1,2-Dichloropropane

Toluene

Ethylbenzene Vinyl chloride

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

ACTION: Circle all outliers with a red pencil.

ACTION: Qualify both positive results and non-detects for the outlier compound(s) as estimated, "J". When %D is above 90%, qualify all positive results for that analyte "J" and all non-detect results for that analyte "R".

NOTE: The above data qualification action applies regardless of method requirements.

15.5 Do any volatile compounds have a RRF < 0.05? [] X ____

NOTE: (Method Requirement) For SPCC compounds, the individual RRF values must be > the values in the following list for each calibration verification. If average RRF values reported are below the listed values document in the data assessment.

Chloromethane	0.10
1,1-Dichloroethane	0.10
Bromoform	0.10
Chlorobenzene	0.30
1,1,2,2-Tetrachloroethane	0.30

ACTION: Circle all outliers with a red pencil.

ACTION: If RRF < 0.05, or < the the requirements for the 5 compounds is section 15.5 above, qualify all positive results for that analyte "J" and all non-detect results for that analyte "R".

NOTE: The above data qualification action applies regardless of method requirements.

16.0 <u>Internal Standards (CLP Form VIII Equivalent)</u>

16.1 Are the internal standard (IS) areas on the internal standard reporting forms of every sample and blank within the upper and lower limits (-50% to + 100%) for each initial mid-point calibration (SW-846, 8260B-20, Sect. 7.4.7)? [X]

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

ACTION: If errors are large or information is missing, take action

as specified in section 3.2 above.

ACTION: List each outlying internal standard below.

(Attach additional sheets if necessary.)

- ACTION: 1. If the internal standard area count is outside the upper or lower limit, flag with "J" all positive results quantitated with this internal standard.
 - 2. Do not qualify non-detects when the associated IS are counts area > + 100%.
 - 3. If the IS area is below the lower limit (< 50%), qualify all associated non-detects (U-values) "J".
 - 4. If extremely low area counts are reported (< -25%) or if performance exhibits a major abrupt drop off, flag all associated non-detects as unusable "R" and positive results as estimated "J".
- 16.2 Are the retention times of all internal standards within 30 seconds of the associated initial mid-point calibration standard (SW-846, 8260B-20, Sect. 7.4.6)?

 [X]

ACTION: Professional judgement should be used to qualify data if the retention times differ by more than 30 seconds.

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

17.0 Field Duplicates

17.1 Were any field duplicates submitted for volatile analysis?

[X]

ACTION: Compare the reported results for field duplicates and

calculate the relative percent difference.

ACTION: Any gross variation between field duplicate

results must be addressed in the Data Assessment. However, if large differences exist, take action

specified in section 3.2 above.

To Whom It May Concern:

I, Daliz M. Estades Santaliz, in my capacity as Puerto Rico Certified Chemist, hereby certify the attached Analytical Results from Project Number PTL-07, Project Name GE Patillas, Puerto Rico, and Laboratory ID Numbers:

Lcda. Daliz Martistades Santaliz

Page 1 of 3

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL07 Report Date: 9/5/2012 12:34 Submit Date: 8/23/2012 10:05

Analysis Name	Units	6766763 SW-01	MDL	6766764 PW-01	MDL	6766765 SW-02	MDL
		Result		Result		Result	
Acetone	ug/l	N.D.	- 6	N.D.	6	N.D.	6
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromoform	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
2-Butanone	ug/l	N.D.	3	N.D.	3	N.D.	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
sec-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
tert-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Carbon Tetrachloride	ug/I	N.D.	1	N.D.	. 1	N.D.	1
Chlorobenzene	ug/l	N.D.	8.0	N.D.	0.8	N.D.	0.8
Chloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Chloroform	ug/l	N.D.	0.8	3 1	0.8	N.D.	0.8
Chloromethane	ug/l	N.D.	1	N.D	1	N.D.	1
2-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	9
4-Chlorotoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dibromo-3-chloropropane	ug/l	N.D.	2	N.D.	2	N.D.	2
Dibromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1.2-Dibromoethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	. 1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1.4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	· N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
rans-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	4
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	1	N.D.	1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

PTL07 0009

Page 2 of 3

Dest	MWH America				ale: 9/5/2012		
Proj	ect: GE Patillas SDG: PTI		8	Submit Da	ate: 8/23/201	2 10:05	
4-Methyl-2-pentanone	ug/l	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	4	N.D.	4	N.D.	4
Styrene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	4	N.D.	1	N.D.	4
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	- 1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	4
1,1,1-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Trichloroethene	ug/l	N.D.	0.0	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	- 4
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	4
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	- 4
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	. N.D.	4
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	1
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
		6766766		6766767		6766768	
Analysis Name	Units	PW-02		SW-03		PW-03	
- Maryona Printing		Result	MDL	Result	MDL	Result	MDL
Acetone	ug/I	N.D.	6	N.D.	6	N.D.	6
Benzene	ug/l	N.D.	0.5	N.D.	0.5	N.D.	. 0.5
Bromobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromochloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromodichloromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Bromoform	ug/l	N.D.	1	N.D.	- 1	N.D.	1
Bromomethane	ug/l	N.D.	- 1	N.D.	1	N.D.	1
2-Butanone	ug/l	N.D.	3	N.D.	3	N.D.	3
n-Butylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

sec-Butylbenzene

tert-Butylbenzene

Chlorobenzene

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

1,2-Dibromo-3-chloropropane

Dibromochloromethane

1,2-Dibromoethane

Chloroethane

Chloroform

Carbon Tetrachloride

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/

PTL07 0010

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

1

0.8

0.8

2

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

N.D.

8.0

0.8

2

1

1

1

2

8.0

0.8

Page 3 of 3

MWH Americas, Inc.
Project: GE Patillas Puerto Rico
SDG: PTL07

Report Date: 9/5/2012 12:34 Submit Date: 8/23/2012 10:05

Dibromomethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,4-Dichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Dichlorodifluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2-Dichloroethane	ug/l	N.D.	1	N.D.	. 1	N.D.	. 1
1,1-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
cis-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
trans-1,2-Dichloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3-Dichloropropane	ug/l	N.D.	1	N.D.	. 1	N.D.	1
2,2-Dichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
cis-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
trans-1,3-Dichloropropene	ug/l	N.D.	1	N.D.	1	N.D.	1
Ethylbenzene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Hexachlorobutadiene	ug/l	N.D.	2	N.D.	2	N.D.	2
Isopropylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
p-Isopropyltoluene	ug/l	N.D.	1	N.D.	- 1	N.D.	- 1
Methyl Tertiary Butyl Ether	ug/l	N.D.	0.5	N.D.	0.5	N.D.	0.5
4-Methyl-2-pentanone	ug/I	N.D.	3	N.D.	3	N.D.	3
Methylene Chloride	ug/l	N.D.	2	N.D.	2	N.D.	2
Naphthalene	ug/l	N.D.	1	N.D.	1	N.D.	1
n-Propylbenzene	ug/l	N.D.	1	N.D	1	N.D.	1
Styrene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,2,2-Tetrachloroethane	ug/l	N.D.	1	N.D.	1	N.D.	1
Tetrachloroethene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
Toluene	ug/l	N.D.	0.7	N.D.	0.7	N.D.	0.7
1,2,3-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trichlorobenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,1,1-Trichloroethane	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
1,1,2-Trichloroethane	ug/l	N.D.	0.8	N.D.	8.0	N.D.	0.8
Trichloroethene	ug/l	N.D.	1	N.D.	1	N.D.	1
Trichlorofluoromethane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,3-Trichloropropane	ug/l	N.D.	1	N.D.	1	N.D.	1
1,2,4-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
1,3,5-Trimethylbenzene	ug/l	N.D.	1	N.D.	1	N.D.	1
Vinyl Chloride	ug/l	N.D.	1	N.D.	1	N.D.	
m+p-Xylene	ug/l	N.D.	0.8	N.D.	0.8	N.D.	0.8
o-Xylene	ug/l	N.D.	8.0	N.D.	0.8	N.D.	0.8

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

SOP # HW-24 Revision # 2 October 2006 Page 1 of 30

USEPA

Hazardous Waste Support Branch
Validating Volatile Organic Compounds
By Gas Chromatography/Mass Spectrometry
SW-846 Method 8260B

Draw and hou	General Francisco	Date: 12/8/06
Prepared by: _	Juge garra	<u>1</u> Date: 17/0/06
	George Kanas, Chemist	
	Hazardous Waste Support Section	
	$(\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	- 1
Prepared by:	Lissell Hellone	Date: 12/8/00
AND ADDRESS MATHEMATICAL PRINCIPLE AND ADDRESS.	Russell Arnone, Chemist	
	Hazardous Waste Support Section	
	(/)	
	¥. \) Date:
Concurred by:	Judo m. Move	Date:
	Linde Mauel, Chief	
	Hazardous Waste Support Section	
Annance d by	Market of market	Date: 12 /11 /06
Approved by: _	May My June	Date: 12/1/00
	Robert Runyon, Chief	
	Hazardous Waste Support Branch	
	A 10	
	Annual Review	
Reviewed by: _		Data
INEVIEWED Dy		Date:
	Name	
Reviewed by:		Date:
	Name	

Scope and Applicability

This SOP offers detailed guidance in evaluating laboratory data generated according to the USEPA SW-846, Method 8260B December 1996. The validation methods and actions discussed in this document are based on the requirements set forth in USEPA SW-846, Method 8260B and Method 8000C, Rev 3, March 2003; and "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," January, 2005. This document covers technical as well as method specific problems; however situations may arise where data limitations must be assessed based on the reviewer's own professional judgement.

Summary

To ensure a thorough evaluation of each result in a data case, the reviewer must complete the checklist within this SOP, answering specific questions while performing the prescribed "ACTIONS" in each section. Qualifiers (or flags) are applied to questionable or unusable results as instructed. The data qualifiers discussed in this document are defined on page 4.

The reviewer must prepare a detailed data assessment to be submitted along with the complete SOP checklist. The Data Assessment must list all data qualifications, reasons for qualifications, instances of missing data, and contract non-compliance.

DEFINITIONS

Acronyms

BNA - base neutral acid(another name for Semi Volatiles) CLP - Contract Laboratory Program CROL - Contract Required Ouantitation Limit CF - calibration factor %D - percent difference DCB -decachlorobiphenyl DDD - dichlorodiphenyldichloroethane DDE - dichlorodiphenylethane DDT - dichlorodiphenyltrichloroethane DoC - Date of Collection GC - gas chromatography GC/ECD - gas chromatograph/electron capture detector GC/MS - gas chromatograph/mass spectrometer GPC - gel permeation chromatography IS - internal standard kg - kilogram ug - microgram MS - matrix spike MSD - matrix spike duplicate ℓ - liter mℓ - milliliter PCB - Polychlorinated biphenyl PE - performance evaluation PEM - Performance Evaluation Mixture QC - quality control RAS - Routine Analytical Services RIC - reconstructed ion chromatogram RPD - relative percent difference RRF - relative response factor RRF - average relative response factor (from initial calibration) RRT - relative retention time RSD - relative standard deviation RT - retention time RSCC - Regional Sample Control Center SDG - sample delivery group SMC - system monitoring compound SOP - standard operating procedure SOW - Statement of Work SVOA - semivolatile organic acid TCL - Target Compound List TCLP - Toxicity Characteristics Leachate Procedure TCX -tetrachloro-m-xylene TIC - tentatively identified compound

TOPO - Task Order Project Officer

TPO - Technical Project Officer

VOA - Volatile organic

VTSR - Validated Time of Sample Receipt

Data Qualifiers

U -The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

- J -The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N -The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- JN -The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ -The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R -The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

LAB QUALIFIERS:

- D The positive value is the result of an analysis at a secondary dilution factor.
- B The analyte is present in the associated method blank as well as in the sample. This qualifier has a different meaning when validating inorganic data.
- E The concentration of this analyte exceeds the calibration range of the instrument.
- A Indicates a Tentatively Identified Compound (TIC) is a suspected adol-condensation product.

- 4 VOA -

X,Y,Z- Laboratory defined flags. The data reviewer must change these qualifiers during validation so that the data user may understand their impact on the data.

O N/A

Date: January 2006

	SW846 Method 8260B VOA	SOP:	HW-24,	Rev.	2
			YE	ES NO	1
т.	PACKAGE COMPLETENESS AND DEL	T.TVERART.ES			

CASE	NUMBI	ER:	PTL 07	LAB: Lancaster	<u>Laboratori</u> es
SITE	NAME	. GE	Patillas - Puerto Rico		
1.0	<u>Data</u>	Comp	leteness and Deliver	ables	
	1.1		all data been submit at or CLP Forms Equi	ted in CLP deliverable valent?	[X]
	ACTIO	ON:	If not, note the ef the Data Assessment	fect on review of the d narrative.	ata in
2.0	Cove	r Let	ter, SDG Narrative		
	2.1		laboratory narratived release present?	e, and/or cover letter	[X]
	2.2		case number and SDG he narrative or cove	, ,	[x]
	ACTIO	ON:	If not, note the ef the Data Assessment	fect on review of the d narrative.	ata in
II.			VOI	LATILE ANALYSES	
1.0	<u>Traf</u>	fic R	eports and Laborator	y Narrative	
	1.1	from	-	and/or Chain of Custod present for all samples	ies <u>[X]</u>
	ACTIO	ON:	If no, contact the of missing or illeg	laboratory/sampling teamible copies.	m for replacement
	1.2	Is a	sampling trip repor	t present (if required)	? <u>[X]</u>
	1.3	Samp	le Conditions/Proble		
				- 6 VOA -	

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

1.3.1 Do the Traffic Reports, Chain of Custodies, or Lab
Narrative indicate any problems with sample
receipt, condition of samples, analytical problems
or special notations affecting the quality of the
data?

x [_] ____

ACTION: If all the VOA vials for a sample have air bubbles or the VOA vial analyzed had air bubbles, flag all positive results "J" and all non-detects "R".

ACTION: If any sample analyzed as a soil, other than TCLP, contains 50%-90% water, all data should be flagged as estimated ("J"). If a soil sample, other than TCLP, contains more than 90% water, flag all positive results "J" and all non-detects "R".

ACTION: If samples were not iced or if the ice was melted upon receipt at the laboratory and the temperature of the cooler was elevated (>10°C), flag all positive results "J" and all non-detects non"UJ".

2.0 <u>Holding Times</u>

2.1 Have any volatile holding times, determined from date of collection to date of analysis, been exceeded?

____ [X]

The maximum holding time for aqueous samples is 14 days.

The maximum holding time for soils non aqueous samples is 14 days.

NOTE: If unpreserved, aqueous samples maintained at 4°C for aromatic hydrocarbons analysis must be analyzed within 7 days. If preserved with HCL acid to a pH<2 and stored at 4°C, then aqueous samples must be analyzed within 14 days from time of collection. For non-aqueous samples for volatile components that are frozen (less than 7°C) or are properly cooled (4°C ± 2°C) and perserved with NaHSO₄, the maximum holding time is 14 days from sample collection. If

3.0

Date: January 2006 SOP: HW-24, Rev. 2

[X]

r 37a

YES NO N/A

uncertain about preservation, contact the laboratory /sampling team to determine whether or not samples were preserved.

Qualify sample results according to Table 1: ACTION:

Table 1. Holding Time Actions for Trace Volatile Analysis

Matrix	Preserved	Criteria	Action			
			Detected Associated Compounds	Non-Detected Associated Compounds		
Aqueous	No	≤7 days	No qualifications			
	No	> 7 days	J	R		
	Yes	≤14 days	No qualifications			
	Yes	≻ 14 days	J	R		
Non Aqueous	No	≤ 14 days	J	R		
	Yes	≤ 14 days	≤ 14 days No qualifications			
	Yes/No	≻ 14 days	J	R		

3.1 Have the volatile surrogate recoveries been listed on Surrogate Recovery forms for each of the following matrices:

<u>Surrogate Recovery (CLP Form II Equivalent)</u>

a.	Water	[X]		
b.	Soil		X	

3.2 If so, are all the samples listed on the appropriate Surrogate Recovery forms for each matrix:

a.	water			
b.	Soil	[]	X	

If large errors exist, deliverables are unavailable or ACTION: information is missing, document the effect(s) in Data

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

Assessments and contact the laboratory/project officer/appropriate official for an explanation /resubmittal, make any necessary corrections and document effect in the Data Assessment.

3.3 Were the surrogate recovery limits followed per Table 2. If Table 2 criteria were not followed, the laboratory may use inhouse performance criteria (per SW-846, Method 8000C, sectiom 9.7). Other compounds may be used as surrogates, depending upon the analysis requirements.

Table 2. Surrogate Spike Recovery Limits for Water and Soil/Sediments

DMC	Recovery Limits (%)Water	Recovery Limits Soil/Sediment
4-Bromofluorobenzene	80-120 ⁷⁸⁻¹¹³	70-130
Dibromofluoromethane	80-120 80-116	70-130
Toluene-d ₈	80-120 80-113	70-130
Dichloroethane-d ₄	-80-120 ⁷⁷⁻¹¹³	70-130

Note: Use above table if laboratory did not provide in house recovery criteria.

Note: Other compounds may be used as surrogated depending upon the analysis requirements.

3.4 Were outliers marked correctly with an asterisk?

ACTION: Circle all outliers with a red pencil.

3.5 Were one or more volatile surrogate recoveries out of specification for any sample or method blank. Table 2.

Ill X

If yes, were samples reanalyzed?

Were method blanks reanalyzed?

Ill X

Were method blanks reanalyzed?

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

ACTION: If all surrogate recoveries are > 10% but 1 or more compounds do not meet method specifications:

- 1. Flag all positive results as estimated ("J").
- Flag all non-detects as estimated detection limits ("UJ") when recoveries are less than the lower acceptance limit.
- 3. If recoveries are greater than the upper acceptance limit, do not qualify non-detects, but qualify positive results as estimated "J".

If any surrogate has a recovery of < 10%:

- 1. Positive results are qualified with ("J").
- 2. Non-detects for that should be qualified as unusable ("R").

NOTE: Professional judgement should be used to qualify data that have method blank surrogate recoveries out of specification in both original and reanalyses. The basic concern is whether the blank problems represent an isolated problem with the blank alone or whether there is a fundamental problem with the analytical process. If one or more samples in the batch show acceptable surrogate recoveries, the reviewer may choose the blank problem to be an isolated occurrence.

3.6 Are there any transcription/calculation errors between raw data and reported data?

[] X _____

ACTION: If large errors exist, take action as specified in section 3.2 above.

- 4.0 <u>Laboratory Control Sample (Form III/Equivalent)</u>
 - 4.1 Is the LCS prepared, extracted, analyzed, and reported once for every 20 field samples of a similar matrix, per SDG.

USEPA Region II Date: January 2006 SW846 Method 8260B VOA SOP: HW-24, Rev. 2 YES NO N/A Note: LCS consists of an aliquot of a clean (control) matrix similar to the sample matrix and of the same weight or volume. If any <u>Laboratory Control</u> <u>Sample</u> data are missing, ACTION: call the lab for explanation /resubmittals. Make note in the data assessment. 4.2 Were the Laboratory Control Samples analyzed at the required frequency for each of the following matrices: Α. Water [X] B. Soil C. Med Soil The LCS is spiked with the same analytes at the same Note: concentrations as the matrix spike (SW-846 8000C, Section 9.5). If different make note in data assessment. Matrix/LCS spiking standards should be prepared from volatile organic compounds which are representative of the compounds being investigating. At a minimum, the matrix spike should include 1,1-dichloroethene, trichloroethene, chlorobenzene, toluene, and benzene. If any MS/MD, MS/MSD or replicate data are ACTION: missing, take the action specified in 3.2 above. 4.3 Have in house LCS recovery limits been developed (Method 8000C, Sect 9.7). [X] 4.4 If in house limits are not developed, are LCS acceptance recovery limits between 70 - 130% (Method 8000c Sect 9.5)? [_] ____

4.5 Were one or more of the volatile LCS recoveries outside the in

house laboratory recovery criteria for spiked analytes? If in house limits are not present use 70 - 130% recovery limits.

[] X

SOP: HW-24, Rev. 2

Date: January 2006

YES NO N/A

Table 3. LCS Actions for Volatile Analysis

Criteria	Action		
	Detected Spiked Compounds	Non-Detected Spiked Compounds	
%R > Upper Acceptance Limit	J	No Qualifiers	
%R < Lower Acceptance Limit	J	IJ	
Lower Acceptance Limit ≤ %R	No Qual	ifications	

	5.0	Matrix	Spikes	Form	III	or	equivalent
--	-----	--------	--------	------	-----	----	------------

5.1	Are all data for matrix spike and matrix duplic	cate
	or matrix spike duplicate (MS/MD or MS/MSD)	
	present and complete for each matrix?	x

NOTE: The laboratory should use one matrix spike and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If the sample is not expected to contain target analytes, a MS/MSD should be analyzed (SW-846, Method 8260B, Sect 8.4.2).

ACTION: If any data are missing take action as specified in section 3.2 above.

5.3 Were matrix spikes analyzed at the required frequency for each of the following matrices? (One MS/MD, MS/MSD or laboratory replicate must be performed for every 20 samples

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

of similar matrix or concentration level. Laboratories analyzing one to ten samples per month are required to analyze at least one MS per month [page 8000C, section 9.5.])

a.	Water	[]	X	
b.	Waste	[]		X
c.	Soil/Solid	[]		X

Note: The LCS is spiked with the same analytes at the same concentrations as the matrix spike (SW-846 8000C, Section 9.5). If different make note in data assessment.

Matrix/LCS spiking standards should be prepared from volatile organic compounds which are representative of the compounds being investigating. At a minimum, the matrix spike should include 1,1-dichloroethene, trichloroethene, chlorobenzene, toluene, and benzene. The concentration of the LCS should be determined as described SW-Method 8000C Section 9.5.

ACTION: If any MS/MD, MS/MSD or replicate data are missing, take the action specified in 3.2 above.

- 5.4 Have in house MS recovery limits been developed (Method 8000C, Sect 9.7) for each matrix. $\begin{bmatrix}
 1
 \end{bmatrix}$
- 5.5 Were one or more of the volatile MS/MSD recoveries outside of the in-house laboratory recovery criteria for spiked analytes? If none are present, then use 70-130% recovery as per SW-846, 8000C, Sect. 9.5.4.

ACTION: Circle all outliers with a red pencil.

NOTE: If any individual % recovery in the MS (or MSD) falls outside the designated range for recovery the reviewer should determine if there is a matrix effect. A matrix effect is indicated if the LCS data are within limits but the MS data exceeds the limits.

YES NO N/A

Date: January 2006

SOP: HW-24, Rev. 2

NOTE:

No qualification of data is necessary on MS and MSD data alone. However, using informed professional judgement, the data reviewer may use MS and MSD resuts in conjunction with other QC criteria to determine the need for some qualificatios.

Note:

The data reviewer should first try to determine to what extent the results of the MS and MSD affect the associated data. This determination should be made with regard to he MS and MSD sample itself, as welll as specific analytes for all samples associated with the MS and MSD.

Note:

In those instances where it can be determned that the results of the MS and MSD affect only the sample spiked, limit qualification to this sample only. However, it may be determined through the MS and MSD results that a laboratory is having a systematic problem in the analysis of one or more analytes that affect all associated samples, and the reviewer must use professional judgement to qualify the data from all associated samples.

Note:

The reviewer must use professional judgement to determine the need for qualification of non-spiked compounds.

ACTION:

Follow criteria in Table 4 when professional judgement deems qualification of sample.

Table 4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Actions for Volatile Analysis

Criteria	Action			
	Detected Spiked Compounds	Non-Detected Spiked Compounds		
%R > Upper Acceptance Limit	J	No Qualifiers		
%R < Lower Acceptance Limit	J	UJ		
Lower Acceptance Limit < %R	No (Qualifications		

	USEPA Region II SW846 Method 8260B VOA				Date: Jan SOP: HW-2	-	2	
6.0	Blank	c (CLP Fo	rm IV Equ	ivalent)				
	6.1	Is the M	ethod Blar	nk Summary	form present	-?	[X]	
	6.2	analyzed	for ever	y 20 (or le	n method blar ess) samples cion or each	of	n <u>[X]</u>	
	6.3	Has a me		k been anal	yzed for eac	ch GC/MS	[X]	
	ACTIO	spe not dat dat	cified abo available a. Howeve a reviewer	ove (section e, reject (er, using p	nissing, take on 3.2). If (R) all associated field ata.	blank data ciated pos judgement	a is itive , the	
	6.4		grams, qua		olank raw dat s or data sys			
		stabilit	y) for each	= =	ormance (base ent acceptabl		[X]	
7.0	Conta	amination	<u>.</u>					
	NOTE: "Water blanks", "drill blanks" and "distilled water blanks are validated like any other sample and are not used to qualify the data. Do not confuse them with the other Quality blanks discussed below.					to		
	7.1 Do any method/instrument/reagent blanks have positive results for target analytes and/or TICs? When applies as described below, the contaminant concentration these blanks are multiplied by the sample dilution and corrected for percent moisture where necessary					lied in n factor		

- 15 VOA -

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

7.2 Do any field/rinse blanks have positive volatile organic compound results? ____ X

ACTION: Prepare a list of the samples associated with each of the contaminated blanks. (Attach a separate sheet.)

NOTE: All field blank results associated to a particular group of samples (may exceed one per case or one per day) may be used to qualify data. Blanks may not be qualified because of contamination in another blank. Field blanks must be qualified forsurrogate, or calibration QC problems.

ACTION: Follow the directions in Table 5 below to qualify sample results due to contamination. Use the largest value from all the associated blanks.

Table 5. Volatile Organic Analysis Blank Contamination Criteria

rable 3. Volume organic inaliant blaim concamination criteria				
Blank Type	Blank Result	Sample Result	Action for Samples	
	Detects	Not detected	No qualification	
		< CRQL	Report CRQL value with a U	
	< CRQL*	≥ CRQL	Use professional judgement	
		< CRQL	Report CRQL value with a U	
Method, Storage, Field,	> CRQL*	<pre></pre>	Report the concentration for the sample with a U, or quanity the data as unusable R	
Trip, Instrument**		≥ CRQL and ≥ blank contamination	Use professional judgement	
		< CRQL	Report CRQL value with a U	
	= CRQL*	≥ CRQL	Use professional judgement	
	Gross contam- ination	Detects	Qualify results as unusable R	

^{* 2}x the CRQL for methylene chloride, 2-butanone, and acetone

NOTE:

If gross blank contamination exists(e.g., saturated peaks, "hump-o-grams," "junk" peaks), all affected positive compounds in the associated samples should be qualified as unusable "R", due to interference. Non-detected volatile organic target compounds do not require qualification unless the contamination is so high that it interferes with the analyses of non-detected compounds.

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

		_	ion II nod 8260B VOA	Date: Janua SOP: HW-24,	_	. 2	N/A
	7.3		there field/rinse/equipment blank every sample?	s associated		_X	
	ACTIO	ON:	For low level samples, note in d that there is no associated fiel blank. Exception: samples taken water tap do not have associated	d/rinse/equipm from a drinki	nent .ng		
8.0	GC/MS	S Appa	aratus and Materials				
	8.1	colum Checi	the lab use the proper gas chroma mn(s) for analysis of volatiles b k raw data, instrument logs or co etermine what type of column(s) w	y Method 8260E entact the lab was (were) used			
	NOTE:	:	For the analysis of volatiles, to requires the use of 60 m. x 0.75 column, coated with VOCOL(Supelocolumn. (see SW-846, page 8260B-	mm capillary co) or equivale	ent		
	ACTION:		If the specified column, or equidocument the effects in the Data professional judgement to determ data.	Assessment.	Use		of the
9.0	GC/MS	S Ins	trument Performance Check (CLP Fo	rm V Equivalen	ıt)		
	9.1 Are the GC/MS Instrument Performance (present for Bromofluorobenzene (BFB), forms list the associated samples with analyzed?			and do these h date/time	<u>X]</u>		
	9.2	mass	the enhanced bar graph spectrum a /charge (m/z) listing for the BFB ided for each twelve hour shift?	3	<u>X]</u>		
	9.3	Has a	an instrument performance check s	colution (BFB)			

- 18 VOA -

Date: January 2006 SOP: HW-24, Rev. 2

been englished for enemy topling become of comple	
been analyzed for every twelve hours of sample analysis per instrument?(see Table 4, SW-846, page 8260B-36) [X]	
ACTION: List date, time, instrument ID, and sample analyses for which no associated GC/MS GC/MS tuning data available.	ata are
ACTION: If the laboratory/project officer cannot provide missidata, reject ("R") all data generated outside an acceptively hour calibration interval.	_
ACTION: If mass assignment is in error, flag all associated sa data as unusable, "R".	ample
9.4 Have the ion abundances been normalized to m/z 95?	
9.5 Have the ion abundance criteria been met for each instrument used? [X] [X] [X]	
ACTION: List all data which do not meet ion abundance criteria (attach a separate sheet).	
ACTION: If ion abundance criteria are not met, take action as specified in section 3.2.	
9.6 Are there any transcription/calculation errors between mass lists and reported values? (Check at least two values but if errors are found, check more.) [X]	
9.7 Have the appropriate number of significant figures (two) been reported? [X]	
ACTION: If large errors exist, take action as specified in section 3.2.	
9.8 Are the spectra of the mass calibration compounds acceptabl $[X]$	_e.
ACTION: Use professional judgement to determine wheather associated data should be accepted, qualified, or rejected.	ciated

Date: January 2006 SOP: HW-24, Rev. 2

	DWOT) 11 C C.	Mechod 6200B VOA SOF. IIW 29				24, Nev. 2				
					YES	NO N	ſ/A				
10.0	Targe										
	10.1	pres	the Organic Analysis reporting forms ent with required header information , for each of the following:								
		a.	Samples and/or fractions as approp	riate	[X]						
		b.	Matrix spikes and matrix spike dup	licates	[X]						
		С.	Blanks		[X]						
		d.	Laboratory Control Samples		<u>[X]</u>						
	10.2	iden Repo	the reconstructed Ion Chromatograms tified compounds, and the data systerts) included in the sample package owing?	ts (Qı	ant	ne					
		a.	Samples and/or fractions as approp	riate	[X]						
		b.	Matrix spikes and matrix spike dup. (Mass spectra not required)	licates	[X]						
		С.	Blanks		[X]						
		d.	Laboratory Control Samples		[X]						
	ACTION:		If any data are missing, take action specified in 3.2 above.	on							
			hromatographic performance acceptable ect to:	le with							
		Base	line stability?		[X]						

	egion II ethod 8260B VOA	Date: January 2006 SOP: HW-24, Rev. 2
		YES NO N/A
Re	solution?	<u>[X]</u>
Pe	ak shape?	<u>[X]</u>
Fu	ll-scale graph (attenuation)?	<u>[X]</u>
Ot:	her:	
ACTION:	Use professional judgement to dete	rmine the acceptability of
	e the lab-generated standard mass spe latile compounds present for each sam	
ACTION:	If any mass spectra are missing, t 3.2 above. If the lab does not gen spectra, make a note in the Data A missing, contact the lab.	erate their own standard
	the RRT of each reported compound wi andard RRT in the continuing calibrat	
re	e all ions present in the standard ma lative intensity greater than 10% (of so present in the sample mass spectru	the most abundant ion)
in	the relative intensities of the char the sample agree within ± 30% of the lative intensities in the reference s	corresponding
ACTION:	Use professional judgement to dete acceptability of data. If it is de incorrect identifications were mad should be rejected ("R"), flagged Presumptive evidence of the present compound) or changed to non detect calculated detection limit. In ord	termined that de, all such data ("N") - dece of the ded ("U") at the

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

positively identified, the data must comply with the criteria listed in 9.6, 9.7, and 9.8.

ACTION: When sample carry-over is a possibility, professional judgement should be used to determine if instrument cross-contamination has affected any positive compound identification.

11.0 Tentatively Identified Compounds (TIC) (CLP Form I/TIC Equivalent)

11.1 If Tentatively Identified Compound were required for this project, are all Tentatively Identified Compound reporting forms present; and do listed TICs include scan number or retention time, estimated concentration and a qualifier? [] x

NOTE: Add "N" qualifier to all TICs which have CAS number, if missing.

NOTE: Have the project officer/appropriate official check the project plan to determine if lab was required to identify non-target analytes (SW-846, page 8260B-23, Sect. 7.6.2).

- 11.2 Are the mass spectra for the tentatively identified compounds and associated "best match" spectra included in the sample package for each of the following:
 - a. Samples and/or fractions as appropriate $[\]$ \underline{X}
 - b. Blanks [] X

ACTION: If any TIC data are missing, take action specified in 3.2 above.

ACTION: Add "JN" qualifier only to analytes identified by a CAS#.

NOTE: If TICs are present in the associated blanks take action as specified in section 3.2 above.

USEPA Region II Date: January 2006 SW846 Method 8260B VOA SOP: HW-24, Rev. 2 YES NO N/A 11.3 Are any priority pollutants listed as TIC compounds (i.e., an BNA compound listed as a VOA TIC)? 1. Flag with "R" any target compound listed as a TIC. ACTION: 2. Make sure all rejected compounds are properly reported if they are target compounds. 11.4 Are all ions present in the reference mass spectrum with a relative intensity greater than 10% (of the most abundant ion) _____ also present in the sample mass spectrum? 11.5 Do TIC and "best match" standard relative ion intensities agree within ± 20%? [] X ACTION: Use professional judgement to determine acceptability of TIC identifications. If it is determined that an incorrect identification was made, change the identification to "unknown" or to some less specific identification (example: "C3 substituted benzene") as appropriate. Also, when a compound is not found in any blank, but is a suspected artifact of a common laboratory contaminant, the result should be qualified as unusable, "R". (Common lab contaminants: CO₂(M/E 44), Siloxanes (M/E 73), Hexane, Aldol Condensation Products, Solvent Preservatives, and related byproducts). 12.0 Compound Quantitation and Reported Detection Limits 12.1 Are there any transcription/calculation errors in organic analysis reporting form results? Check at least two positive values. Verify that the correct internal standard, quantitation ion, and average initial RRF/CF were used to calculate organic analysis reporting form result. Were any errors found?

NOTE: Structural isomers with similar mass spectra, but insufficient GC resolution (i.e. percent valley between the two peaks > 25%) should be

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

reported as isomeric pairs. The reviewer should check the raw data to ensure that all such isomers were included in the quantitation (i.e., add the areas of the two coeluting peaks to calculate the total concentration).

12.2 Are the method CRQL's adjusted to reflect sample dilutions and, for soils, sample moisture? [X] ____

ACTION: If errors are large, take action as specified in section 3.2 above.

ACTION: When a sample is analyzed at more than one dilution, the lowest detection limits are used (unless a QC exceedance dictates the use of the higher detection limit from the diluted sample data). Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and it's associated value on the original reporting form (if present) and substituting the data from the analysis of the diluted sample. Specify which organic analysis reporting form is to be used, then draw a red "X" across the entire page of all reporting forms that should not be used, including any in the summary package.

13.0 Standards Data (GC/MS)

13.1 Are the Reconstructed Ion Chromatograms, and data system printouts (Quant Reports) present for initial and continuing calibration?

[X]

ACTION: If any calibration standard data are missing, take action specified in section 3.2 above.

14.0 GC/MS Initial Calibration (CLP Form VI Equivalent)

USEPA Reg SW846 Met	ion II hod 8260B VOA	Date: January 2006 SOP: HW-24, Rev. 2 YES NO N/A
	the Initial Calibration reportir lete for the volatile fraction?	ng forms present and [X]
ACTION:	If any calibration forms or state take action specified in section	-
ACTION:	If the percent relative standar $(8000C-39)$ qualify positive result when % RSD > 90%,. Qualify all analyte "J" and all non-detects "R".	alts for that analyte "J". positive results for that
14.2 Are	all average RRFs > 0.050?	_[X]
NOTE:	(Method Requirement) For SPCC of values must be ≥ the values in individual RRF values reported document in the Data Assessment	the following list. If are below the listed values
	1,1-Dichloroethane Bromoform Chlorobenzene	0.10 0.10 0.10 0.30 0.30
ACTION:	Circle all outliers with red pe	encil.
ACTION:	For any target analyte with average requirements for the 5 compound positive results for that analyte "R".	ds in 14.2 above, qualify all
14.3 Are	response factors stable over the	e concentration

NOTE: (Method Requirement) For the following CCC compounds, the %RSD values must be \leq 30.0%. If %RSD values reported are > 30.0% document in the Data Assessment.

[X]

range of the calibration.

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

1,1-Dichloroethene

Chloroform

1,2-Dichloropropane

Toluene

Ethylbenzene Vinyl chloride

ACTION: Circle all outliers with a red pencil.

ACTION: If the % RSD is > 20.0%, or > 30% for the 6 compounds in 14.3 above, qualify positive results for that analyte "J" and non-detects using professional judgement. When RSD > 90%, qualify all positive results for that analyte "J" and all non-detect results for that analyte "R".

NOTE: The above data qualification action applies regardless of method requirements.

NOTE: Analytes previously qualified "U" due to blank contamination are still considered as "hits" when qualifying for calibration criteria.

14.4 Was the % RSD determined using RRF or CF? X

If no, what method was used to determine the linearity of the initial calibration? Document any effects to the case in the Data Assessment.

14.5 Are there any transcription/calculation errors in the reporting of RRF or % RSD? (Check at least two values but if errors are found, check more.)

[] X _____

ACTION: Circle errors with a red pencil.

ACTION: If errors are large, take action as specified in section 3.2 above.

15.0 GC/MS Calibration Verification (CLP Form VII Equivalent)

		YES NO	N/A
	Are the Calibration Verification reporting forms p complete for all compounds of interest?	resent an	.d
	Has a calibration verification standard been analy twelve hours of sample analysis per instrument?	zed for e	very
ACTIO	N: List below all sample analyses that were not hours of a calibration verification analysis instrument used.		relve
ACTION	N: If any forms are missing or no calibration verification standard has been analyzed twelv hours prior to sample analysis, take action a specified in section 3.2 above. If calibratio verification data are not available, flag al associated sample data as unusable ("R").	s n	
	Was the % D determined from the calibration verifidetermined using RRF or CF?	cation [X]	
,	If no, what method was used to determine the calib verification? Document any effects to the case in Assessment.		
]	Do any volatile compounds have a % D (difference o between the initial and continuing RRF or CF which (SW-846, page 8260B-19, section 7.4.5.2).		20%
NOTE:	(Method Requirement) For the following CCC covalues must be \leq 20.0%. If %D values reported document in the Data Assessment.	=	
	1,1-Dichloroethene Chloroform		

- 27 VOA -

1,2-Dichloropropane

Toluene

Ethylbenzene Vinyl chloride

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

ACTION: Circle all outliers with a red pencil.

ACTION: Qualify both positive results and non-detects for the outlier compound(s) as estimated, "J". When %D is above 90%, qualify all positive results for that analyte "J" and all non-detect results for that analyte "R".

NOTE: The above data qualification action applies regardless of method requirements.

15.5 Do any volatile compounds have a RRF < 0.05? [] X ____

NOTE: (Method Requirement) For SPCC compounds, the individual RRF values must be > the values in the following list for each calibration verification. If average RRF values reported are below the listed values document in the data assessment.

Chloromethane	0.10
1,1-Dichloroethane	0.10
Bromoform	0.10
Chlorobenzene	0.30
1,1,2,2-Tetrachloroethane	0.30

ACTION: Circle all outliers with a red pencil.

ACTION: If RRF < 0.05, or < the the requirements for the 5 compounds is section 15.5 above, qualify all positive results for that analyte "J" and all non-detect results for that analyte "R".

NOTE: The above data qualification action applies regardless of method requirements.

16.0 <u>Internal Standards (CLP Form VIII Equivalent)</u>

16.1 Are the internal standard (IS) areas on the internal standard reporting forms of every sample and blank within the upper and lower limits (-50% to + 100%) for each initial mid-point calibration (SW-846, 8260B-20, Sect. 7.4.7)? [X]

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

ACTION: If errors are large or information is missing, take action

as specified in section 3.2 above.

ACTION: List each outlying internal standard below.

(Attach additional sheets if necessary.)

- ACTION: 1. If the internal standard area count is outside the upper or lower limit, flag with "J" all positive results quantitated with this internal standard.
 - 2. Do not qualify non-detects when the associated IS are counts area > + 100%.
 - 3. If the IS area is below the lower limit (< 50%), qualify all associated non-detects (U-values) "J".
 - 4. If extremely low area counts are reported (< -25%) or if performance exhibits a major abrupt drop off, flag all associated non-detects as unusable "R" and positive results as estimated "J".
- 16.2 Are the retention times of all internal standards within 30 seconds of the associated initial mid-point calibration standard (SW-846, 8260B-20, Sect. 7.4.6)?

 [X]

ACTION: Professional judgement should be used to qualify data if the retention times differ by more than 30 seconds.

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

17.0 Field Duplicates

17.1 Were any field duplicates submitted for volatile analysis?

[X]

ACTION: Compare the reported results for field duplicates and

calculate the relative percent difference.

ACTION: Any gross variation between field duplicate

results must be addressed in the Data Assessment. However, if large differences exist, take action

specified in section 3.2 above.

To Whom It May Concern:

I, Daliz M. Estades Santaliz, in my capacity as Puerto Rico Certified Chemist, hereby certify the attached Analytical Results from Project Number PTL-08, Project Name GE Patillas, Puerto Rico, and Laboratory ID Numbers:

Lcda Daliz Mi Estades Santaliz

A 1392912

O LICEN

Page 1 of 5

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL08 Report Date: 9/5/2012 12:35 Submit Date: 8/23/2012 10:05

Analysis Name	Units	6766771 Soil Cutting MW-23		6766772 Soil Cutting MW-23		
		Result	MDL	Result	MDL	
Benzene	mg/l	n.a.	n.a.	N.D.	0.010	
2-Butanone	mg/l	n.a.	n.a.	N.D.	0.060	
Carbon Tetrachloride	mg/l	n.a.	n.a.	N.D.	0.020	
Chlorobenzene	mg/l	n.a.	n.a.	N.D.	0.016	
Chloroform	mg/l	n.a.	n.a.	N.D.	0.016	
1,2-Dichloroethane	mg/l	n.a.	n.a.	N.D.	0.020	
1,1-Dichloroethene	mg/l	n.a.	n.a.	N.D.	0.016	
Tetrachloroethene	mg/l	n.a.	n.a.	N.D.	0.016	
Trichloroethene	mg/l	n.a.	n.a.	N.D.	0.020	
Vinyl Chloride	mg/l	n.a.	n.a.	N.D.	0.020	
1,4-Dichlorobenzene	mg/l	N.D.	0.005	n.a.	n.a.	
2,4-Dinitrotoluene	mg/l	N.D.	0.005	n.a.	n.a.	
Hexachlorobenzene	mg/l	N.D.	0.005	n.a.	n.a.	
Hexachlorobutadiene	mg/l	N.D.	0.005	n.a.	n.a.	
Hexachloroethane	mg/l	N.D.	0.005	n.a.	n.a.	
2-Methylphenol	mg/l	N.D.	0.005	n.a.	n.a.	
4-Methylphenol	mg/i	N.D.	0.010	n.a.	n.a.	
Nitrobenzene	mg/l	N.D.	0.005	n.a.	n.a.	
Pentachlorophenol	mg/l	N.D.	0.015	n.a.	n.a.	
Pyridine	mg/l	N.D.	0.010	n.a.	n.a.	
2,4,5-Trichlorophenol	mg/l	N.D.	0.005	n.a.	n.a.	
2,4,6-Trichlorophenol	mg/l	N.D.	0.005	n.a.		
Arsenic	mg/l	N.D.	0.0068		n.a.	
Barium	mg/l	0.122	0.00033	n.a.	n.a.	
Cadmium	mg/l	0.00036 J	0.00033	n.a.	n.a.	
Chromium		0.00036 J	0.00036	n.a.	n.a.	
_ead	mg/l	N.D.	100.00	n.a.	n.a.	
Selenium	mg/l	0.002.0	0.0051	n.a.	n.a.	
	mg/l	N.D.	0.0075	n.a.	n.a.	
Silver	mg/l	0.0025 J	0.0012	n.a.	n.a.	
Mercury	mg/l	N.D.	0.000070	n.a.	n.a.	
		6766769		6766770 Water For		
Analysis Name	Units	TB-082112		Vault		
		Result	MDL	Result	MDL	
Acetone	ug/l	N.D.	6	n.a.	n.a.	
Benzene	ug/l	N.D.	0.5	n.a.	n.a.	
Bromobenzene	ug/l	N.D.	1	n.a.	n.a.	
Bromochloromethane	ug/l	N.D.	1	n.a.	n.a.	
Bromodichloromethane	ug/l	N.D.	1	n.a.	n.a.	
Bromoform	ug/l	N.D.	1	n.a.	n.a.	

Eurofins Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax: 717-656-2681

PTL08 0010

2216.01

Page 2 of 5

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL08 Report Date: 9/5/2012 12:35 Submit Date: 8/23/2012 10:05

2-Butanone ug/l N.D. 3 n.a. r.a. n-Butylbenzene ug/l N.D. 1 n.a. r.a. sec-Butylbenzene ug/l N.D. 1 n.a. r.a. tert-Butylbenzene ug/l N.D. 1 n.a. r.a. Carbon Tetrachloride ug/l N.D. 1 n.a. r.a. Chlorobenzene ug/l N.D. 1 n.a. r.a. Chlorobenzene ug/l N.D. 1 n.a. r.a. Chlorobenzene ug/l N.D. 1 n.a. r.a. Chlorobenzene ug/l N.D. 1 n.a. r.a. Chlorobenzene ug/l N.D. 1 n.a. r.a. Chlorobenzene ug/l N.D. 1 n.a. r.a. 1,2-Dibromo-3-chloropropane ug/l N.D. 1 n.a. r.a. 1,2-Dibromo-dhlane ug/l N.D. 1 n.a.	a.
n-Butylbenzene ug/l N.D. 1 n.a. n.a. sec-Butylbenzene ug/l N.D. 1 n.a. n.a. tert-Butylbenzene ug/l N.D. 1 n.a. n.a. Carbon Tetrachloride ug/l N.D. 1 n.a. n.a. Chlorobenzene ug/l N.D. 0.8 n.a. n.a. Chlorothane ug/l N.D. 1 n.a. n.a. Chlorothane ug/l N.D. 1 n.a. n.a. 2-Chlorotoluene ug/l N.D. 1 n.a. n.a. 4-Chlorotoluene ug/l N.D. 1 n.a. n.a. 1,2-Dibromo-3-chloropropane ug/l N.D. 1 n.a. n.a. 1,2-Dibromoethane ug/l N.D. 1 n.a. n.a. 1,2-Dibromoethane ug/l N.D. 1 n.a. n.a. 1,2-Dichlorobenzene ug/l N.D. 1	a.
sec-Butylbenzene ug/l N.D. 1 n.a.	a.
tert-Butylbenzene ug/l N.D. 1 n.a. n.a. Carbon Tetrachloride ug/l N.D. 1 n.a. n.a. Chlorobenzene ug/l N.D. 0.8 n.a. n.a. Chloroethane ug/l N.D. 1 n.a. n.a. Chloroform ug/l N.D. 1 n.a. n.a. Chloromethane ug/l N.D. 1 n.a. n.a. Chlorotoluene ug/l N.D. 1 n.a. n.a. 4-Chlorotoluene ug/l N.D. 1 n.a. n.a. 1,2-Dibromo-3-chloropropane ug/l N.D. 1 n.a. n.a. Dibromochloromethane ug/l N.D. 1 n.a. n.a. 1,2-Dibromoethane ug/l N.D. 1 n.a. n.a. 1,2-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,3-Dichlorobenzene ug/l N.D. 1 <	.a.
Carbon Tetrachloride ug/l N.D. 1 n.a. n.a. Chlorobenzene ug/l N.D. 0.8 n.a. n.a. Chloroethane ug/l N.D. 1 n.a. n.a. Chloroform ug/l N.D. 1 n.a. n.a. Chloromethane ug/l N.D. 1 n.a. n.a. 2-Chlorotoluene ug/l N.D. 1 n.a. n.a. 4-Chlorotoluene ug/l N.D. 1 n.a. n.a. 1,2-Dibromo-3-chloropropane ug/l N.D. 1 n.a. n.a. Dibromochloromethane ug/l N.D. 1 n.a. n.a. 1,2-Dibromoethane ug/l N.D. 1 n.a. n.a. 1,2-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,3-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,4-Dichlorodenzene ug/l N.D. 1	a
Chlorobenzene ug/l N.D. 0.8 n.a. r.a. Chloroethane ug/l N.D. 1 n.a. r.a. Chloroform ug/l N.D. 0.8 n.a. r.a. Chloromethane ug/l N.D. 1 n.a. r.a. 2-Chlorotoluene ug/l N.D. 1 n.a. r.a. 4-Chlorotoluene ug/l N.D. 1 n.a. r.a. 1,2-Dibromo-3-chloropropane ug/l N.D. 1 n.a. r.a. Dibromochloromethane ug/l N.D. 1 n.a. r.a. 1,2-Dibromoethane ug/l N.D. 1 n.a. r.a. Dibromomethane ug/l N.D. 1 n.a. r.a. 1,2-Dichlorobenzene ug/l N.D. 1 n.a. r.a. 1,3-Dichlorobenzene ug/l N.D. 1 n.a. r.a. 1,4-Dichlorodefluoromethane ug/l N.D. 1	a.
Chloroethane ug/l N.D. 1 n.a. n.a. Chloroform ug/l N.D. 0.8 n.a. n.a. Chloromethane ug/l N.D. 1 n.a. n.a. 2-Chlorotoluene ug/l N.D. 1 n.a. n.a. 4-Chlorotoluene ug/l N.D. 1 n.a. n.a. 1,2-Dibromo-3-chloropropane ug/l N.D. 2 n.a. n.a. Dibromochloromethane ug/l N.D. 1 n.a. n.a. 1,2-Dibromoethane ug/l N.D. 1 n.a. n.a. Dibromomethane ug/l N.D. 1 n.a. n.a. 1,2-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,3-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,4-Dichlorobenzene ug/l N.D. 1 n.a. n.a. Dichlorodifluoromethane ug/l N.D. 1	a.
Chloroform ug/l N.D. 0.8 n.a. n.a. Chloromethane ug/l N.D. 1 n.a. n.a. 2-Chlorotoluene ug/l N.D. 1 n.a. n.a. 4-Chlorotoluene ug/l N.D. 1 n.a. n.a. 1,2-Dibromo-3-chloropropane ug/l N.D. 2 n.a. n.a. Dibromochloromethane ug/l N.D. 1 n.a. n.a. 1,2-Dibromoethane ug/l N.D. 1 n.a. n.a. 1,2-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,2-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,3-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,4-Dichlorobenzene ug/l N.D. 1 n.a. n.a. Dichlorodifluoromethane ug/l N.D. 1 n.a. n.a.	a.
Chloromethane ug/l N.D. 1 n.a. n.a. 2-Chlorotoluene ug/l N.D. 1 n.a. n.a. 4-Chlorotoluene ug/l N.D. 1 n.a. n.a. 1,2-Dibromo-3-chloropropane ug/l N.D. 2 n.a. n.a. Dibromochloromethane ug/l N.D. 1 n.a. n.a. 1,2-Dibromoethane ug/l N.D. 1 n.a. n.a. 1,2-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,3-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,4-Dichlorobenzene ug/l N.D. 1 n.a. n.a. Dichlorodifluoromethane ug/l N.D. 1 n.a. n.a.	.a.
2-Chlorotoluene ug/l N.D. 1 n.a.	a.
4-Chlorotoluene ug/l N.D. 1 n.a.	a.
1,2-Dibromo-3-chloropropane ug/l N.D. 2 n.a. n	a.
Dibromochloromethane ug/l N.D. 1 n.a. n.a. 1,2-Dibromoethane ug/l N.D. 1 n.a. n.a. Dibromomethane ug/l N.D. 1 n.a. n.a. 1,2-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,3-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,4-Dichlorobenzene ug/l N.D. 1 n.a. n.a. Dichlorodifluoromethane ug/l N.D. 1 n.a. n.a.	.a.
1,2-Dibromoethane ug/l N.D. 1 n.a.	a.
Dibromomethane ug/l N.D. 1 n.a. n.a. 1,2-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,3-Dichlorobenzene ug/l N.D. 1 n.a. n.a. 1,4-Dichlorobenzene ug/l N.D. 1 n.a. n.a. Dichlorodifluoromethane ug/l N.D. 1 n.a. n.a.	a.
1,2-Dichlorobenzene ug/l N.D. 1 n.a.	a.
1,3-Dichlorobenzene ug/l N.D. 1 n.a. n.a. n.a. 1,4-Dichlorobenzene ug/l N.D. 1 n.a. n.a. n.a. Dichlorodifluoromethane ug/l N.D. 1 n.a. n.a.	a.
1,4-Dichlorobenzene ug/l N.D. 1 n.a. n. Dichlorodifluoromethane ug/l N.D. 1 n.a. n. a.	a.
Dichlorodifluoromethane ug/l N.D. 1 n.a. n	a.
1,1-Dichloroethane ug/l N.D. I n.a. n	.a.
1,2-Dichloroethane ug/l N.D. 1 n.a. n	.a.
	.a.
	a.
그 사이 경계 및 내용 그 사이를 내용하는 사이를 가장 보고 있다. 그렇게 되었다는 그 없어요. 는 그 없어요. 그렇게 되었다는 그 없어요. 그렇게 되었다는 그렇게 되었다면 그렇게 되었다는 렇게 되었다면 그렇게 되었다면 그렇게 그렇게 그렇게 그렇게 그렇게 그렇게 그렇게 그렇게 그렇게 그렇게	a.
	a.
	a.
	a.
	a.
	a.
	a,
	a.
	a.
	a.
	a.
	a.
	a.
	a.
	a.
	a.
	a.
Styrene ug/l N.D. 1 n.a. n.	a.
1,1,1,2-Tetrachloroethane ug/l N.D. 1 n.a. n.	a.
	a.
Tetrachloroethene ug/l N.D. 0.8 n.a. n.	a.
Toluene ug/l N.D. 0.7 n.a. n.	a.
1,2,3-Trichlorobenzene ug/l N.D. 1 n.a. n.	a.

alstide history

Page 3 of 5

MWH Americas, Inc.
Project: GE Patillas Puerto Rico
SDC: DTI 09

Report Date: 9/5/2012 12:35 Submit Date: 8/23/2012 10:05

1,2,4-Trichlorobenzene	ug/l	N.D.	1	n.a.	n.a.
1,1,1-Trichloroethane	ug/l	N.D.	0.8	n.a.	n.a.
1,1,2-Trichloroethane	ug/l	N.D.	0.8	n.a.	n.a.
Trichloroethene	ug/l	N.D.	1	n.a.	n.a.
Trichlorofluoromethane	ug/l	N.D.	1	n.a.	n.a.
1,2,3-Trichloropropane	ug/l	N.D.	· 4	n.a.	n.a.
1,2,4-Trimethylbenzene	ug/l	N.D.	1	n.a.	n.a.
1,3,5-Trimethylbenzene	ug/l	N.D.	1	n.a.	n.a.
Vinyl Chloride	ug/l	N.D.	9	n.a.	n.a.
m+p-Xylene	ug/l	N.D.	0.8	n.a.	n.a.
o-Xylene	ug/l	N.D.	0.8	n.a.	n.a.
Acenaphthene	ug/l	n.a.	n.a.	N.D.	0.09
Acenaphthylene	ug/l	n.a.	n.a.	N.D.	0.09
Acetophenone	ug/l	n.a.	n.a.	N.D.	0.5
2-Acetylaminofluorene	ug/l	n.a.	n.a.	N.D.	2
4-Aminobiphenyl	ug/I	n.a.	n.a.	N.D.	0.5
Aniline	ug/l	n.a.	n.a.	N.D.	0.5
Anthracene	ug/l	n.a.	n.a.	N.D.	0.09
Benzo(a)anthracene	ug/l	n.a.	n.a.	N.D.	0.09
Benzo(a)pyrene	ug/l	n.a.	n.a.	N.D.	0.09
Benzo(b)fluoranthene	ug/l	n.a.	n.a.	N.D.	0.09
Benzo(g,h,i)perylene	ug/l	n.a.	n.a.	N.D.	0.09
Benzo(k)fluoranthene	ug/l	n.a.	n.a.	N.D.	0.09
Benzyl alcohol	ug/l	n.a.	n.a.	N.D.	5
4-Bromophenyl-phenylether	ug/l	n.a.	n.a.	N.D.	0.5
Butylbenzylphthalate	ug/l	n.a.	n.a.	N.D.	2
Di-n-butylphthalate	ug/l	n.a.	n.a.	N.D.	2
4-Chloro-3-methylphenol	ug/l	n.a.	n.a.	N.D.	0.5
4-Chloroaniline	ug/l	n.a.	n.a.	N.D.	0.5
Chlorobenzilate	ug/l	n.a.	n.a.	N.D.	3
bis(2-Chloroethoxy)methane	ug/l	n.a.	n.a.	N.D.	0.5
bis(2-Chloroethyl)ether	ug/l	n.a.	n.a.	N.D.	0.5
bis(2-Chloroisopropyl)ether	ug/l	n.a.	n.a.	N.D.	0.5
2-Chloronaphthalene	ug/l	n.a.	n.a.	N.D.	0.4
2-Chlorophenol	ug/l	n.a.	n.a.	N.D.	0.5
4-Chlorophenyl-phenylether	ug/l	n.a.	n.a.	N.D.	0.5
Chrysene	ug/l	n.a.	n.a.	N.D.	0.09
Diallate trans/cis	ug/l	n.a.	n.a.	N.D.	0.03
Dibenz(a,h)anthracene	ug/l	n.a.	n.a.	N.D.	0.09
Diberizofuran	ug/l	n.a.	n.a.	N.D.	0.5
1,2-Dichlorobenzene	ug/l	n.a.	n.a.	N.D.	0.5
1,3-Dichlorobenzene	ug/l	n.a.	n.a.	N.D.	0.5
1,4-Dichlorobenzene	ug/l	n.a.	n.a.	N.D.	0.5
3,3'-Dichlorobenzidine	ug/i	n.a.	n.a.	N.D.	2
2,4-Dichlorophenol	ug/l	n.a.	n.a.	N.D.	0.5
2,6-Dichlorophenol	ug/l	n.a.		N.D.	0.5
2,0-Didilorophenor	ugn	11.6.	n.a.	14.12.	0.5

Alstidus Schlig

Page 4 of 5

MWH Americas, Inc. Project: GE Patillas Puerto Rico SDG: PTL08 Report Date: 9/5/2012 12:35 Submit Date: 8/23/2012 10:05

Diethylphthalate	ug/l	n.a.	n.a.	N.D.	2
Dimethoate	ug/l	n.a.	n.a.	N.D.	3
p-Dimethylaminoazobenzene	ug/l	n.a.	n.a.	N.D.	0.5
3,3'-Dimethylbenzidine	ug/l	n.a.	n.a.	N.D.	24
7,12-Dimethylbenz(a)anthracene	ug/l	n.a.	n.a.	N.D.	0.5
2,4-Dimethylphenol	ug/l	n.a.	n.a.	N.D.	0.5
Dimethylphthalate	ug/I	n.a.	n.a.	N.D.	2
4,6-Dinitro-2-methylphenol	ug/l	n.a.	n.a.	N.D.	5
1,3-Dinitrobenzene	ug/I	n.a.	n.a.	N.D.	2
2,4-Dinitrophenol	ug/l	n.a.	n.a.	N.D.	9
2,4-Dinitrotoluene	ug/l	n.a.	n.a.	N.D.	0.9
2,6-Dinitrotoluene	ug/l	n.a.	n.a.	N.D.	0.5
Ethyl methanesulfonate	ug/l	n.a.	n.a.	N.D.	0.5
bis(2-Ethylhexyl)phthalate	ug/l	n.a.	n.a.	4 J	2
Fluoranthene	ug/l	n.a.	n.a.	N.D.	0.09
Fluorene	ug/l	n.a.	n.a.	N.D.	0.09
Hexachlorobenzene	ug/l	n.a.	n.a.	N.D.	0.09
Hexachlorobutadiene	ug/l	n.a.	n.a.	N.D.	0.5
Hexachlorocyclopentadiene	ug/l	n.a.	n.a.	N.D.	5
Hexachloroethane	ug/l	n.a.	n.a.	N.D.	0.9
Hexachloropropene	ug/l	n.a.	n.a.	N.D.	2
Indeno(1,2,3-cd)pyrene	ug/l	n.a.	n.a.	N.D.	0.09
Isodrin	ug/l	n.a.	n.a.	N.D.	0.5
Isophorone	ug/l	n.a.	n.a.	N.D.	0.5
Isosafrole	ug/l	n.a.	n.a.	N.D.	2
Methapyrilene	ug/l	n.a.	n.a.	N.D.	14
Methyl methanesulfonate	ug/l	n.a.	n.a.	N.D.	0.9
3-Methylcholanthrene	ug/l	n.a.	n.a.	N.D.	0.5
2-Methylnaphthalene	ug/l	n.a.	n.a.	N.D.	0.09
2-Methylphenol	ug/l	n.a.	n.a.	N.D.	0.5
4-Methylphenol	ug/l	n.a.	n.a.	N.D.	0.5
Naphthalene	ug/l	n.a.	n.a.	N.D.	0.09
1,4-Naphthoquinone	ug/l	n.a.	n.a.	N.D.	9
1-Naphthylamine	ug/l	n.a.	n.a.	N.D.	5
2-Naphthylamine	ug/l	n.a.	n.a.	N.D.	5
5-Nitro-o-toluidine	ug/l	n.a.	n.a.	N.D.	0.5
2-Nitroaniline	ug/l	n.a.	n.a.	N.D.	0.5
3-Nitroaniline	ug/l	n.a.	n.a.	N.D.	0.5
4-Nitroaniline	ug/l	n.a.	n.a.	N.D.	0.5
Nitrobenzene	ug/l	n.a.	n.a.	N.D.	0.5
2-Nitrophenol	ug/l	n.a.	n.a.	N.D.	0.5
4-Nitrophenol	ug/l	n.a.	n.a.	N.D.	9
4-Nitroquinoline-1-oxide	ug/l	n.a.	n.a.	N.D.	19
N-Nitroso-di-n-propylamine	ug/l	n.a.	n.a.	N.D.	0.5
N-Nitrosodi-n-butylamine	ug/l	n.a.	n.a.	N.D.	2
N-Nitrosodiethylamine	ug/l	n.a.	n.a.	N.D.	0.5

Westerded on John

Page 5 of 5

MWH Americas, Inc.
Project: GE Patillas Puerto Rico
SDG: PTL08

Report	Date:	9/5/2012	12:35
Submit	Date:	8/23/2012	10:05

N-Nitrosodimethylamine	ug/I	n.a.	n.a.	N.D.	2
N-Nitrosodiphenylamine	ug/l	n.a.	n.a.	N.D.	0.5
N-Nitrosomethylethylamine	ug/l	n.a.	n.a.	N.D.	2
N-Nitrosomorpholine	ug/l	n.a.	n.a.	N.D.	2
N-Nitrosopiperidine	ug/l	n.a.	n.a.	N.D.	0.5
N-Nitrosopyrrolidine	ug/i	n.a.	n.a.	N.D.	0.5
Di-n-octylphthalate	ug/l	n.a.	n.a.	N.D.	2
Pentachlorobenzene	ug/l	n.a.	n.a.	N.D.	0.5
Pentachloronitrobenzene	ug/l	n.a.	n.a.	N.D.	2
Pentachlorophenol	ug/l	n.a.	n.a.	N.D.	0.9
Phenacetin	ug/l	n.a.	n.a.	N.D.	0.5
Phenanthrene	ug/l	n.a.	n.a.	N.D.	0.09
Phenol	ug/l	n.a.	n.a.	N.D.	0.5
1,4-Phenylenediamine	ug/l	n.a.	n.a.	N.D.	71
2-Picoline	ug/l	n.a.	n.a.	N.D.	2
Pronamide	ug/l	n.a.	n.a.	N.D.	0.5
Pyrene	ug/l	n.a.	n.a.	N.D.	0.09
Pyridine	ug/l	n.a.	n.a.	N.D.	2
Safrole	ug/l	n.a.	n.a.	N.D.	2
1,2,4,5-Tetrachlorobenzene	ug/l	n.a.	n.a.	N.D.	0.5
2,3,4,6-Tetrachlorophenol	ug/l	n.a.	n.a.	N.D.	0.5
Tetraethyldithiopyrophosphate	ug/l	n.a.	n.a.	N.D.	0.9
Thionazin	ug/I	n.a.	n.a.	N.D.	2
o-Toluidine	ug/l	n.a.	n.a.	N,D.	0.5
1,2,4-Trichlorobenzene	ug/l	n.a.	n.a.	N.D.	0.5
2,4,5-Trichlorophenol	ug/I	n.a.	n.a.	N.D.	0.5
2,4,6-Trichlorophenol	ug/l	n.a.	n.a.	N.D.	0.5
O,O,O-Triethylphosphorothioate	ug/l	n.a.	n.a.	N.D.	2
1,3,5-Trinitrobenzene	ug/l	n.a.	n.a.	N.D.	5
Arsenic	mg/l	n.a.	n.a.	N.D.	0.0068
Barium	mg/l	n.a.	n.a.	0.135	0.00033
Cadmium	mg/l	n.a.	n.a.	0.0021 J	0.00036
Chromium	mg/l	n.a.	n.a.	L 0800.0	0.0011
Lead	mg/l	n.a.	n.a.	0.0112 J	0.0051
Selenium	mg/l	n.a.	n.a.	N.D.	0.0075
Silver	mg/l	n.a.	n.a.	0.0037 J	0.0012
Mercury	mg/l	n.a.	n.a.	N.D.	0.000070

Alstide Siche

SOP # HW-24 Revision # 2 October 2006 Page 1 of 30

USEPA

Hazardous Waste Support Branch
Validating Volatile Organic Compounds
By Gas Chromatography/Mass Spectrometry
SW-846 Method 8260B

Draw and hou	General Francisco	Date: 12/8/06
Prepared by: _	Juge garra	<u>1</u> Date: 17/0/06
	George Kanas, Chemist	
	Hazardous Waste Support Section	
	$(\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	- 1
Prepared by:	Lissell Hellone	Date: 12/8/00
AND ADDRESS MATHEMATICAL PROPERTY AND ADDRESS AND ADDR	Russell Arnone, Chemist	
	Hazardous Waste Support Section	
	(/)	
	¥. \) Date:
Concurred by:	Judo m. Move	Date:
	Linde Mauel, Chief	
	Hazardous Waste Support Section	
Annance d by	Market of market	Date: 12 /11 /06
Approved by: _	May My June	Date: 12/1/00
	Robert Runyon, Chief	
	Hazardous Waste Support Branch	
	A 1.D. 1	
	Annual Review	
Reviewed by: _		Data
ixeviewed by		Date:
	Name	
Reviewed by:		Date:
	Name	

Scope and Applicability

This SOP offers detailed guidance in evaluating laboratory data generated according to the USEPA SW-846, Method 8260B December 1996. The validation methods and actions discussed in this document are based on the requirements set forth in USEPA SW-846, Method 8260B and Method 8000C, Rev 3, March 2003; and "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," January, 2005. This document covers technical as well as method specific problems; however situations may arise where data limitations must be assessed based on the reviewer's own professional judgement.

Summary

To ensure a thorough evaluation of each result in a data case, the reviewer must complete the checklist within this SOP, answering specific questions while performing the prescribed "ACTIONS" in each section. Qualifiers (or flags) are applied to questionable or unusable results as instructed. The data qualifiers discussed in this document are defined on page 4.

The reviewer must prepare a detailed data assessment to be submitted along with the complete SOP checklist. The Data Assessment must list all data qualifications, reasons for qualifications, instances of missing data, and contract non-compliance.

DEFINITIONS

Acronyms

BNA - base neutral acid(another name for Semi Volatiles) CLP - Contract Laboratory Program CROL - Contract Required Ouantitation Limit CF - calibration factor %D - percent difference DCB -decachlorobiphenyl DDD - dichlorodiphenyldichloroethane DDE - dichlorodiphenylethane DDT - dichlorodiphenyltrichloroethane DoC - Date of Collection GC - gas chromatography GC/ECD - gas chromatograph/electron capture detector GC/MS - gas chromatograph/mass spectrometer GPC - gel permeation chromatography IS - internal standard kg - kilogram ug - microgram MS - matrix spike MSD - matrix spike duplicate ℓ - liter mℓ - milliliter PCB - Polychlorinated biphenyl PE - performance evaluation PEM - Performance Evaluation Mixture QC - quality control RAS - Routine Analytical Services RIC - reconstructed ion chromatogram RPD - relative percent difference RRF - relative response factor RRF - average relative response factor (from initial calibration) RRT - relative retention time RSD - relative standard deviation RT - retention time RSCC - Regional Sample Control Center SDG - sample delivery group SMC - system monitoring compound SOP - standard operating procedure SOW - Statement of Work SVOA - semivolatile organic acid TCL - Target Compound List TCLP - Toxicity Characteristics Leachate Procedure TCX -tetrachloro-m-xylene TIC - tentatively identified compound

TOPO - Task Order Project Officer

TPO - Technical Project Officer

VOA - Volatile organic

VTSR - Validated Time of Sample Receipt

Data Qualifiers

U -The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

- J -The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N -The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- JN -The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ -The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R -The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

LAB QUALIFIERS:

- D The positive value is the result of an analysis at a secondary dilution factor.
- B The analyte is present in the associated method blank as well as in the sample. This qualifier has a different meaning when validating inorganic data.
- E The concentration of this analyte exceeds the calibration range of the instrument.
- A Indicates a Tentatively Identified Compound (TIC) is a suspected adol-condensation product.

- 4 VOA -

X,Y,Z- Laboratory defined flags. The data reviewer must change these qualifiers during validation so that the data user may understand their impact on the data.

Date: January 2006 SOP: HW-24, Rev. 2 YES NO N/A

	~_ ~_	~~~~~~~~		
⊥.	PACKAGE	COMPLETENESS	AND	DELIVERABLES

~-~-			-1
CASE	NUMBE.	R: PTL - 08 LAB: Lancaster L	<u>aboratori</u> es
SITE	NAME:	GE Patillas - Puerto Rico	
1.0	<u>Data (</u>	Completeness and Deliverables	
		Has all data been submitted in CLP deliverable format or CLP Forms Equivalent?	[X]
	ACTIO	N: If not, note the effect on review of the dat the Data Assessment narrative.	ca in
2.0	Cover	Letter, SDG Narrative	
		Is a laboratory narrative, and/or cover letter signed release present?	[X]
		Are case number and SDG number(s) contained in the narrative or cover letter?	[x]
	ACTIO	N: If not, note the effect on review of the dat the Data Assessment narrative.	ca in
II.		VOLATILE ANALYSES	
1.0	<u>Traff</u>	ic Reports and Laboratory Narrative	
		Are the Traffic Reports, and/or Chain of Custodie from the field samplers present for all samples	es
	i	sign release present?	[X]
	ACTIO	N: If no, contact the laboratory/sampling team of missing or illegible copies.	for replacement
	1.2	Is a sampling trip report present (if required)?	[X]
	1.3	Sample Conditions/Problems	
		- 6 VOA -	

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

1.3.1 Do the Traffic Reports, Chain of Custodies, or Lab
Narrative indicate any problems with sample
receipt, condition of samples, analytical problems
or special notations affecting the quality of the
data?

x [_] ____

ACTION: If all the VOA vials for a sample have air bubbles or the VOA vial analyzed had air bubbles, flag all positive results "J" and all non-detects "R".

ACTION: If any sample analyzed as a soil, other than TCLP, contains 50%-90% water, all data should be flagged as estimated ("J"). If a soil sample, other than TCLP, contains more than 90% water, flag all positive results "J" and all non-detects "R".

ACTION: If samples were not iced or if the ice was melted upon receipt at the laboratory and the temperature of the cooler was elevated (>10°C), flag all positive results "J" and all non-detects non"UJ".

2.0 <u>Holding Times</u>

2.1 Have any volatile holding times, determined from date of collection to date of analysis, been exceeded?

____ [X]

The maximum holding time for aqueous samples is 14 days.

The maximum holding time for soils non aqueous samples is 14 days.

NOTE: If unpreserved, aqueous samples maintained at 4°C for aromatic hydrocarbons analysis must be analyzed within 7 days. If preserved with HCL acid to a pH<2 and stored at 4°C, then aqueous samples must be analyzed within 14 days from time of collection. For non-aqueous samples for volatile components that are frozen (less than 7°C) or are properly cooled (4°C ± 2°C) and perserved with NaHSO₄, the maximum holding time is 14 days from sample collection. If

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

uncertain about preservation, contact the laboratory /sampling team to determine whether or not samples were preserved.

ACTION: Qualify sample results according to Table 1:

Table 1. Holding Time Actions for Trace Volatile Analysis

Matrix	Preserved	Criteria	Action		
			Detected Associated Compounds	Non-Detected Associated Compounds	
Aqueous	No	≤7 days	No qualifications		
	No	≻ 7 days	J	R	
	Yes	≤14 days	No qualifications		
	Yes	≻ 14 days	Ј	R	
Non Aqueous	No	≤ 14 days	J	R	
	Yes	≤ 14 days	No qualifications		
	Yes/No	> 14 days	J	R	

3.0 <u>Surrogate Recovery</u> (CLP Form II Equivalent)

3.1		the volatile surrogate recoveries been liste very forms for each of the following matrices	2
	a.	Water	[X]
	b.	Soil	[X]
3.2		o, are all the samples listed on the approprivery forms for each matrix:	ate Surrogate
	a.	Water	[x]
	b.	Soil	[x]

ACTION: If large errors exist, deliverables are unavailable or information is missing, document the effect(s) in Data

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

Assessments and contact the laboratory/project officer/appropriate official for an explanation /resubmittal, make any necessary corrections and document effect in the Data Assessment.

3.3 Were the surrogate recovery limits followed per Table 2. If Table 2 criteria were not followed, the laboratory may use inhouse performance criteria (per SW-846, Method 8000C, sectiom 9.7). Other compounds may be used as surrogates, depending upon the analysis requirements.

Table 2. Surrogate Spike Recovery Limits for Water and Soil/Sediments

DMC	Recovery Limits (%)Water	Recovery Limits Soil/Sediment
4-Bromofluorobenzene	80-120 ⁷⁸⁻¹¹³	70-130
Dibromofluoromethane	80-120 80-116	70-130
Toluene-d ₈	80-120 80-113	70-130
Dichloroethane-d ₄	-80-120 77-113	70-130

Were method blanks reanalyzed?

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

ACTION: If all surrogate recoveries are > 10% but 1 or more compounds do not meet method specifications:

- 1. Flag all positive results as estimated ("J").
- 2. Flag all non-detects as estimated detection limits ("UJ") when recoveries are less than the lower acceptance limit.
- 3. If recoveries are greater than the upper acceptance limit, do not qualify non-detects, but qualify positive results as estimated "J".

If any surrogate has a recovery of < 10%:

- 1. Positive results are qualified with ("J").
- 2. Non-detects for that should be qualified as unusable ("R").

NOTE: Professional judgement should be used to qualify data that have method blank surrogate recoveries out of specification in both original and reanalyses. The basic concern is whether the blank problems represent an isolated problem with the blank alone or whether there is a fundamental problem with the analytical process. If one or more samples in the batch show acceptable surrogate recoveries, the reviewer may choose the blank problem to be an isolated occurrence.

3.6 Are there any transcription/calculation errors between raw data and reported data?

[] X _____

ACTION: If large errors exist, take action as specified in section 3.2 above.

- 4.0 <u>Laboratory Control Sample (Form III/Equivalent)</u>
 - 4.1 Is the LCS prepared, extracted, analyzed, and reported once for every 20 field samples of a similar matrix, per SDG.

 [x]

	_	ion II hod 8260B VOA		uary 2006 4, Rev. 2 YES NO N/A
Note	:	LCS consists of an aliquot of a clesimilar to the sample matrix and ovolume.		
ACTION: If any <u>Laboratory Control</u> <u>Sample</u> data are miss call the lab for explanation /resubmittals. Me note in the data assessment.				
4.2		the Laboratory Control Samples anauency for each of the following mat	_	he required
	Α.	Water		[x]
	В.	Soil		[x]
	С.	Med Soil		<u>x</u>
Note	:	The LCS is spiked with the same and concentrations as the matrix spike 9.5). If different make note in domatrix/LCS spiking standards should volatile organic compounds which as compounds being investigating. At spike should include 1,1-dichloroed chlorobenzene, toluene, and benzene	(SW-846 8 ata assess d be prepare represe a minimum thene, tri	000C, Section ment. red from ntative of the , the matrix
ACTI	ON:	If any MS/MD, MS/MSD or replicate missing, take the action specified		ove.
4.3		in house LCS recovery limits been (9.7).	developed	(Method 8000C,
4.4		n house limits are not developed, a ts between 70 - 130% (Method 8000c		_ =

4.5 Were one or more of the volatile LCS recoveries outside the in

house laboratory recovery criteria for spiked analytes? If in house limits are not present use 70 - 130% recovery limits.

[X]

SOP: HW-24, Rev. 2

YES NO N/A

Date: January 2006

Table 3. LCS Actions for Volatile Analysis

Table 3. Led Actions for Volatile Analysis					
Criteria	Action				
	Detected Spiked Compounds	Non-Detected Spiked Compounds			
%R > Upper Acceptance Limit	J	No Qualifiers			
%R < Lower Acceptance Limit	J	עט			
Lower Acceptance Limit ≤ %R	No Qualifications				

	5.0	Matrix	Spikes	Form	III	or	equivalent
--	-----	--------	--------	------	-----	----	------------

5.1	Are all data for matrix spike and matrix duplication	ate
	or matrix spike duplicate (MS/MD or MS/MSD)	
	present and complete for each matrix?	[X]

NOTE: The laboratory should use one matrix spike and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If the sample is not expected to contain target analytes, a MS/MSD should be analyzed (SW-846, Method 8260B, Sect 8.4.2).

5.2	Have MS/MD or	r MS/MSD	results	been	summarized	on		
	modified CLP	Form III	Ι?			Гх	x]	

ACTION: If any data are missing take action as specified in section 3.2 above.

5.3 Were matrix spikes analyzed at the required frequency for each of the following matrices? (One MS/MD, MS/MSD or laboratory replicate must be performed for every 20 samples

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

of similar matrix or concentration level. Laboratories analyzing one to ten samples per month are required to analyze at least one MS per month [page 8000C, section 9.5.])

a.	Water	[X]	
b.	Waste	<u> </u>	X
c.	Soil/Solid	[]	Х

Note: The LCS is spiked with the same analytes at the same concentrations as the matrix spike (SW-846 8000C, Section 9.5). If different make note in data assessment.

Matrix/LCS spiking standards should be prepared from volatile organic compounds which are representative of the compounds being investigating. At a minimum, the matrix spike should include 1,1-dichloroethene, trichloroethene, chlorobenzene, toluene, and benzene. The concentration of the LCS should be determined as described SW-Method 8000C Section 9.5.

ACTION: If any MS/MD, MS/MSD or replicate data are missing, take the action specified in 3.2 above.

- 5.4 Have in house MS recovery limits been developed (Method 8000C, Sect 9.7) for each matrix.

 [x] _____
- 5.5 Were one or more of the volatile MS/MSD recoveries outside of the in-house laboratory recovery criteria for spiked analytes? If none are present, then use 70-130% recovery as per SW-846, 8000C, Sect. 9.5.4.

 [x] ________

ACTION: Circle all outliers with a red pencil.

NOTE: If any individual % recovery in the MS (or MSD) falls outside the designated range for recovery the reviewer should determine if there is a matrix effect. A matrix effect is indicated if the LCS data are within limits but the MS data exceeds the limits.

YES NO N/A

Date: January 2006

SOP: HW-24, Rev. 2

NOTE:

No qualification of data is necessary on MS and MSD data alone. However, using informed professional judgement, the data reviewer may use MS and MSD resuts in conjunction with other QC criteria to determine the need for some qualificatios.

Note:

The data reviewer should first try to determine to what extent the results of the MS and MSD affect the associated data. This determination should be made with regard to he MS and MSD sample itself, as welll as specific analytes for all samples associated with the MS and MSD.

Note:

In those instances where it can be determned that the results of the MS and MSD affect only the sample spiked, limit qualification to this sample only. However, it may be determined through the MS and MSD results that a laboratory is having a systematic problem in the analysis of one or more analytes that affect all associated samples, and the reviewer must use professional judgement to qualify the data from all associated samples.

Note:

The reviewer must use professional judgement to determine the need for qualification of non-spiked compounds.

ACTION:

Follow criteria in Table 4 when professional judgement deems qualification of sample.

Table 4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Actions for Volatile Analysis

Criteria	Action			
	Detected Spiked Compounds	Non-Detected Spiked Compounds		
%R > Upper Acceptance Limit	J	No Qualifiers		
%R < Lower Acceptance Limit	J	UJ		
Lower Acceptance Limit < %R	No Qualifications			

		A Region 6 Method	II 8260B VOA			Date: Jan SOP: HW-2	-	2
6.0	Blank	c (CLP Fo	rm IV Equ	ivalent)				
	6.1 Is the Method Blank Summary form present?			t?	[X]			
	6.2 Frequency of Analysis: Has a method blank been analyzed for every 20 (or less) samples of similar matrix or concentration or each extraction batch?			of	n <u>[X]</u>			
	6.3 Has a method blank been analyzed for each GC/MS system used ?				ch GC/MS	[X]		
	ACTIO	spe not dat dat	cified abo available a. Howeve a reviewer	ove (sections) e, reject of er, using p	nissing, take on 3.2). If (R) all associated ata.	blank dat ciated pos judgement	a is itive , the	
	6.4		grams, qua		olank raw da s or data sys			
		stabilit	y) for eac	= =	ormance (base ent acceptab		<u>[X]</u>	
7.0	Conta	amination						
	NOTE:	are qua	validated lify the d	d like any	blanks" and other sample ot confuse the	e and are	not used	to
	7.1 Do any method/instrument/reagent blanks have positive results for target analytes and/or TICs? When applies as described below, the contaminant concentration these blanks are multiplied by the sample dilution and corrected for percent moisture where necessary			lied in n factor				

- 15 VOA -

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

7.2 Do any field/rinse blanks have positive volatile organic compound results? ____ [x] ___

ACTION: Prepare a list of the samples associated with each of the contaminated blanks. (Attach a separate sheet.)

NOTE: All field blank results associated to a particular group of samples (may exceed one per case or one per day) may be used to qualify data. Blanks may not be qualified because of contamination in another blank. Field blanks must be qualified forsurrogate, or calibration QC problems.

ACTION: Follow the directions in Table 5 below to qualify sample results due to contamination. Use the largest value from all the associated blanks.

Table 5. Volatile Organic Analysis Blank Contamination Criteria

Tubic 3. Voluciie Organic Imari, bib Brain Concaminación Criocria				
Blank Type	Blank Result	Sample Result	Action for Samples	
	Detects	Not detected	No qualification	
		< CRQL	Report CRQL value with a U	
	< CRQL*	≥ CRQL	Use professional judgement	
		< CRQL Report CRQL	Report CRQL value with a U	
Method, Storage, Field,	> CRQL*	<pre></pre>	Report the concentration for the sample with a U, or quanity the data as unusable R	
Trip, Instrument**		<pre></pre>	Use professional judgement	
		< CRQL	Report CRQL value with a U	
	= CRQL* Gross contam- ination	≥ CRQL	Use professional judgement	
		Detects	Qualify results as unusable R	

^{* 2}x the CRQL for methylene chloride, 2-butanone, and acetone

NOTE:

If gross blank contamination exists(e.g., saturated peaks, "hump-o-grams," "junk" peaks), all affected positive compounds in the associated samples should be qualified as unusable "R", due to interference. Non-detected volatile organic target compounds do not require qualification unless the contamination is so high that it interferes with the analyses of non-detected compounds.

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

		_	ion II nod 8260B VOA	Date: January 2000 SOP: HW-24, Rev. 2	2
	7.3		there field/rinse/equipment blank every sample?	ks associated	
	ACTIO	ON:	For low level samples, note in of that there is no associated field blank. Exception: samples taken water tap do not have associated	ld/rinse/equipment n from a drinking	
8.0	GC/MS	S Appa	aratus and Materials		
	8.1	colum Checi	the lab use the proper gas chromamn(s) for analysis of volatiles be raw data, instrument logs or content and the column(s) were remained what type of column(s) were remained to the column of the col	by Method 8260B?	
	NOTE:		For the analysis of volatiles, to requires the use of 60 m. x 0.75 column, coated with VOCOL(Supelocolumn. (see SW-846, page 8260B-	5 mm capillary co) or equivalent	
	ACTION:		If the specified column, or equidocument the effects in the Data professional judgement to determ data.	a Assessment. Use	
9.0	GC/MS	S Ins	trument Performance Check (CLP Fo	orm V Equivalent)	
	present for Brome		the GC/MS Instrument Performance ent for Bromofluorobenzene (BFB), s list the associated samples wit yzed?	, and do these	
	mass/charg		the enhanced bar graph spectrum a /charge (m/z) listing for the BFE ided for each twelve hour shift?		
	9.3	Has a	an instrument performance check s	solution (BFB)	

- 18 VOA -

Date: January 2006 SOP: HW-24, Rev. 2

been analyzed for every twelve hours of sample	
analysis per instrument?(see Table 4, SW-846, page 8260B-36)	
ACTION: List date, time, instrument ID, and sample analyses for which no associated GC/MS GC/MS tuning date available.	a are
ACTION: If the laboratory/project officer cannot provide missing data, reject ("R") all data generated outside an acceptative twelve hour calibration interval.	_
ACTION: If mass assignment is in error, flag all associated same data as unusable, "R".	ple
9.4 Have the ion abundances been normalized to m/z 95?	
9.5 Have the ion abundance criteria been met for each instrument used? [X] [X] [X]	<u> </u>
ACTION: List all data which do not meet ion abundance criteria (attach a separate sheet).	
ACTION: If ion abundance criteria are not met, take action as specified in section 3.2.	
9.6 Are there any transcription/calculation errors between mass lists and reported values? (Check at least two values but if errors are found, check more.) [X]	
9.7 Have the appropriate number of significant figures (two) been reported? [X]	
ACTION: If large errors exist, take action as specified in section 3.2.	
9.8 Are the spectra of the mass calibration compounds acceptable $[X]$	
ACTION: Use professional judgement to determine wheather associdate should be accepted, qualified, or rejected.	—— ated

Date: January 2006 SOP: HW-24, Rev. 2

	SW040 Method 0200B VOA SOF. IIW				1, 1/C	• 4		
					YES	NO N	I/A	
10.0	Target Analytes (CLP Form I Equivalent)							
	10.1	pres	the Organic Analysis reporting form ent with required header informatio, for each of the following:					
		a.	Samples and/or fractions as approp	riate	[X]			
		b.	Matrix spikes and matrix spike dup	licates	[X]			
		C.	Blanks		[X]			
		d.	Laboratory Control Samples		<u>[X]</u>			
	10.2	Are the reconstructed Ion Chromatograms, mass spectra for the identified compounds, and the data system printouts (Quant Reports) included in the sample package for each of the following?						
		a.	Samples and/or fractions as approp	riate	[X]			
		b.	Matrix spikes and matrix spike dup (Mass spectra not required)	licates	[X]			
		С.	Blanks		<u>[X]</u>			
		d.	Laboratory Control Samples		[X]			
	ACTIO	ON:	If any data are missing, take acti specified in 3.2 above.	on				
	10.3		hromatographic performance acceptab ect to:	le with				
		Base	line stability?		[X]			

	egion II ethod 8260B VOA	Date: January 2006 SOP: HW-24, Rev. 2
		YES NO N/A
Re	solution?	<u>[X]</u>
Pe	ak shape?	<u>[X]</u>
Fu	ll-scale graph (attenuation)?	<u>[X]</u>
Ot:	her:	
ACTION:	Use professional judgement to dete	rmine the acceptability of
	e the lab-generated standard mass spe latile compounds present for each sam	
ACTION:	If any mass spectra are missing, t 3.2 above. If the lab does not gen spectra, make a note in the Data A missing, contact the lab.	erate their own standard
	the RRT of each reported compound wi andard RRT in the continuing calibrat	
re	e all ions present in the standard ma lative intensity greater than 10% (of so present in the sample mass spectru	the most abundant ion)
in	the relative intensities of the char the sample agree within ± 30% of the lative intensities in the reference s	corresponding
ACTION:	Use professional judgement to dete acceptability of data. If it is de incorrect identifications were mad should be rejected ("R"), flagged Presumptive evidence of the present compound) or changed to non detect calculated detection limit. In ord	termined that de, all such data ("N") - dece of the ded ("U") at the

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

positively identified, the data must comply with the criteria listed in 9.6, 9.7, and 9.8.

ACTION: When sample carry-over is a possibility, professional judgement should be used to determine if instrument cross-contamination has affected any positive compound identification.

11.0 Tentatively Identified Compounds (TIC) (CLP Form I/TIC Equivalent)

11.1 If Tentatively Identified Compound were required for this project, are all Tentatively Identified Compound reporting forms present; and do listed TICs include scan number or retention time, estimated concentration and a qualifier? [] x

NOTE: Add "N" qualifier to all TICs which have CAS number, if missing.

NOTE: Have the project officer/appropriate official check the project plan to determine if lab was required to identify non-target analytes (SW-846, page 8260B-23, Sect. 7.6.2).

- 11.2 Are the mass spectra for the tentatively identified compounds and associated "best match" spectra included in the sample package for each of the following:
 - a. Samples and/or fractions as appropriate $[\]$ \underline{X}
 - b. Blanks [] X

ACTION: If any TIC data are missing, take action specified in 3.2 above.

ACTION: Add "JN" qualifier only to analytes identified by a CAS#.

NOTE: If TICs are present in the associated blanks take action as specified in section 3.2 above.

USEPA Region II Date: January 2006 SW846 Method 8260B VOA SOP: HW-24, Rev. 2 YES NO N/A 11.3 Are any priority pollutants listed as TIC compounds (i.e., an BNA compound listed as a VOA TIC)? 1. Flag with "R" any target compound listed as a TIC. ACTION: 2. Make sure all rejected compounds are properly reported if they are target compounds. 11.4 Are all ions present in the reference mass spectrum with a relative intensity greater than 10% (of the most abundant ion) _____ also present in the sample mass spectrum? 11.5 Do TIC and "best match" standard relative ion intensities agree within ± 20%? [] X ACTION: Use professional judgement to determine acceptability of TIC identifications. If it is determined that an incorrect identification was made, change the identification to "unknown" or to some less specific identification (example: "C3 substituted benzene") as appropriate. Also, when a compound is not found in any blank, but is a suspected artifact of a common laboratory contaminant, the result should be qualified as unusable, "R". (Common lab contaminants: CO₂(M/E 44), Siloxanes (M/E 73), Hexane, Aldol Condensation Products, Solvent Preservatives, and related byproducts). 12.0 Compound Quantitation and Reported Detection Limits 12.1 Are there any transcription/calculation errors in organic analysis reporting form results? Check at least two positive values. Verify that the correct internal standard, quantitation ion, and average initial RRF/CF were used to calculate organic analysis reporting form result. Were any errors found?

NOTE: Structural isomers with similar mass spectra, but insufficient GC resolution (i.e. percent valley between the two peaks > 25%) should be

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

reported as isomeric pairs. The reviewer should check the raw data to ensure that all such isomers were included in the quantitation (i.e., add the areas of the two coeluting peaks to calculate the total concentration).

12.2 Are the method CRQL's adjusted to reflect sample dilutions and, for soils, sample moisture? [X] ____

ACTION: If errors are large, take action as specified in section 3.2 above.

ACTION: When a sample is analyzed at more than one dilution, the lowest detection limits are used (unless a QC exceedance dictates the use of the higher detection limit from the diluted sample data). Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and it's associated value on the original reporting form (if present) and substituting the data from the analysis of the diluted sample. Specify which organic analysis reporting form is to be used, then draw a red "X" across the entire page of all reporting forms that should not be used, including any in the summary package.

13.0 Standards Data (GC/MS)

13.1 Are the Reconstructed Ion Chromatograms, and data system printouts (Quant Reports) present for initial and continuing calibration?

[X]

ACTION: If any calibration standard data are missing, take action specified in section 3.2 above.

14.0 GC/MS Initial Calibration (CLP Form VI Equivalent)

USEPA Reg SW846 Met	ion II hod 8260B VOA	Date: January 2006 SOP: HW-24, Rev. 2 YES NO N/A
	the Initial Calibration reportir lete for the volatile fraction?	ng forms present and [X]
ACTION:	If any calibration forms or state take action specified in section	-
ACTION:	If the percent relative standar $(8000C-39)$ qualify positive result when % RSD > 90%,. Qualify all analyte "J" and all non-detects "R".	alts for that analyte "J". positive results for that
14.2 Are	all average RRFs > 0.050?	_[X]
NOTE:	(Method Requirement) For SPCC of values must be ≥ the values in individual RRF values reported document in the Data Assessment	the following list. If are below the listed values
	1,1-Dichloroethane Bromoform Chlorobenzene	0.10 0.10 0.10 0.30 0.30
ACTION:	Circle all outliers with red pe	encil.
ACTION:	For any target analyte with average requirements for the 5 compound positive results for that analyte "R".	ds in 14.2 above, qualify all
14.3 Are	response factors stable over the	e concentration

NOTE: (Method Requirement) For the following CCC compounds, the %RSD values must be \leq 30.0%. If %RSD values reported are > 30.0% document in the Data Assessment.

[X]

range of the calibration.

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

1,1-Dichloroethene

Chloroform

1,2-Dichloropropane

Toluene

Ethylbenzene Vinyl chloride

ACTION: Circle all outliers with a red pencil.

ACTION: If the % RSD is > 20.0%, or > 30% for the 6 compounds in 14.3 above, qualify positive results for that analyte "J" and non-detects using professional judgement. When RSD > 90%, qualify all positive results for that analyte "J" and all non-detect results for that analyte "R".

NOTE: The above data qualification action applies regardless of method requirements.

NOTE: Analytes previously qualified "U" due to blank contamination are still considered as "hits" when qualifying for calibration criteria.

14.4 Was the % RSD determined using RRF or CF? X

If no, what method was used to determine the linearity of the initial calibration? Document any effects to the case in the Data Assessment.

14.5 Are there any transcription/calculation errors in the reporting of RRF or % RSD? (Check at least two values but if errors are found, check more.)

[] X _____

ACTION: Circle errors with a red pencil.

ACTION: If errors are large, take action as specified in section 3.2 above.

15.0 GC/MS Calibration Verification (CLP Form VII Equivalent)

	YES NO N/A
	the Calibration Verification reporting forms present and plete for all compounds of interest? [X]
	a calibration verification standard been analyzed for every lve hours of sample analysis per instrument? X
ACTION:	List below all sample analyses that were not within twelve hours of a calibration verification analysis for each instrument used.
ACTION:	If any forms are missing or no calibration verification standard has been analyzed twelve hours prior to sample analysis, take action as specified in section 3.2 above. If calibration verification data are not available, flag all associated sample data as unusable ("R").
	the % D determined from the calibration verification ermined using RRF or CF? [X]
ver	no, what method was used to determine the calibration ification? Document any effects to the case in the Data essment.
bet	any volatile compounds have a % D (difference or drift) ween the initial and continuing RRF or CF which exceeds 20% -846, page 8260B-19, section 7.4.5.2).
NOTE:	(Method Requirement) For the following CCC compounds, the %D values must be \leq 20.0%. If %D values reported are > 20.0% document in the Data Assessment.
	<pre>1,1-Dichloroethene Chloroform 1,2-Dichloropropane Toluene Ethylbenzene Vinyl chloride</pre>

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

ACTION: Circle all outliers with a red pencil.

ACTION: Qualify both positive results and non-detects for the outlier compound(s) as estimated, "J". When %D is above 90%, qualify all positive results for that analyte "J" and all non-detect results for that analyte "R".

NOTE: The above data qualification action applies regardless of method requirements.

15.5 Do any volatile compounds have a RRF < 0.05? [] X ____

NOTE: (Method Requirement) For SPCC compounds, the individual RRF values must be > the values in the following list for each calibration verification. If average RRF values reported are below the listed values document in the data assessment.

Chloromethane	0.10
1,1-Dichloroethane	0.10
Bromoform	0.10
Chlorobenzene	0.30
1,1,2,2-Tetrachloroethane	0.30

ACTION: Circle all outliers with a red pencil.

ACTION: If RRF < 0.05, or < the the requirements for the 5 compounds is section 15.5 above, qualify all positive results for that analyte "J" and all non-detect results for that analyte "R".

NOTE: The above data qualification action applies regardless of method requirements.

16.0 <u>Internal Standards (CLP Form VIII Equivalent)</u>

16.1 Are the internal standard (IS) areas on the internal standard reporting forms of every sample and blank within the upper and lower limits (-50% to + 100%) for each initial mid-point calibration (SW-846, 8260B-20, Sect. 7.4.7)? [X]

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

ACTION: If errors are large or information is missing, take action

as specified in section 3.2 above.

ACTION: List each outlying internal standard below.

(Attach additional sheets if necessary.)

- ACTION: 1. If the internal standard area count is outside the upper or lower limit, flag with "J" all positive results quantitated with this internal standard.
 - 2. Do not qualify non-detects when the associated IS are counts area > + 100%.
 - 3. If the IS area is below the lower limit (< 50%), qualify all associated non-detects (U-values) "J".
 - 4. If extremely low area counts are reported (< -25%) or if performance exhibits a major abrupt drop off, flag all associated non-detects as unusable "R" and positive results as estimated "J".
- 16.2 Are the retention times of all internal standards within 30 seconds of the associated initial mid-point calibration standard (SW-846, 8260B-20, Sect. 7.4.6)?

 [X]

ACTION: Professional judgement should be used to qualify data if the retention times differ by more than 30 seconds.

Date: January 2006 SOP: HW-24, Rev. 2

YES NO N/A

17.0 Field Duplicates

17.1 Were any field duplicates submitted for volatile analysis?

[X]

ACTION: Compare the reported results for field duplicates and

calculate the relative percent difference.

ACTION: Any gross variation between field duplicate

results must be addressed in the Data Assessment. However, if large differences exist, take action

specified in section 3.2 above.